Properties

Label 1976.2
Level 1976
Weight 2
Dimension 66108
Nonzero newspaces 72
Sturm bound 483840
Trace bound 24

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1976 = 2^{3} \cdot 13 \cdot 19 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 72 \)
Sturm bound: \(483840\)
Trace bound: \(24\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1976))\).

Total New Old
Modular forms 123552 67604 55948
Cusp forms 118369 66108 52261
Eisenstein series 5183 1496 3687

Trace form

\( 66108 q - 156 q^{2} - 156 q^{3} - 156 q^{4} - 156 q^{6} - 156 q^{7} - 156 q^{8} - 312 q^{9} - 156 q^{10} - 156 q^{11} - 156 q^{12} - 348 q^{14} - 156 q^{15} - 156 q^{16} - 306 q^{17} - 156 q^{18} - 156 q^{19}+ \cdots - 414 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1976))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1976.2.a \(\chi_{1976}(1, \cdot)\) 1976.2.a.a 1 1
1976.2.a.b 1
1976.2.a.c 2
1976.2.a.d 3
1976.2.a.e 4
1976.2.a.f 4
1976.2.a.g 5
1976.2.a.h 7
1976.2.a.i 7
1976.2.a.j 10
1976.2.a.k 10
1976.2.c \(\chi_{1976}(1899, \cdot)\) n/a 240 1
1976.2.d \(\chi_{1976}(989, \cdot)\) n/a 216 1
1976.2.g \(\chi_{1976}(77, \cdot)\) n/a 252 1
1976.2.h \(\chi_{1976}(987, \cdot)\) n/a 276 1
1976.2.j \(\chi_{1976}(1065, \cdot)\) 1976.2.j.a 2 1
1976.2.j.b 2
1976.2.j.c 2
1976.2.j.d 4
1976.2.j.e 24
1976.2.j.f 28
1976.2.m \(\chi_{1976}(1975, \cdot)\) None 0 1
1976.2.n \(\chi_{1976}(911, \cdot)\) None 0 1
1976.2.q \(\chi_{1976}(1569, \cdot)\) n/a 140 2
1976.2.r \(\chi_{1976}(729, \cdot)\) n/a 120 2
1976.2.s \(\chi_{1976}(913, \cdot)\) n/a 128 2
1976.2.t \(\chi_{1976}(425, \cdot)\) n/a 140 2
1976.2.v \(\chi_{1976}(265, \cdot)\) n/a 140 2
1976.2.w \(\chi_{1976}(343, \cdot)\) None 0 2
1976.2.y \(\chi_{1976}(645, \cdot)\) n/a 552 2
1976.2.bb \(\chi_{1976}(723, \cdot)\) n/a 504 2
1976.2.bd \(\chi_{1976}(179, \cdot)\) n/a 552 2
1976.2.be \(\chi_{1976}(1037, \cdot)\) n/a 552 2
1976.2.bh \(\chi_{1976}(1413, \cdot)\) n/a 552 2
1976.2.bi \(\chi_{1976}(867, \cdot)\) n/a 552 2
1976.2.bk \(\chi_{1976}(303, \cdot)\) None 0 2
1976.2.bn \(\chi_{1976}(153, \cdot)\) n/a 124 2
1976.2.bo \(\chi_{1976}(183, \cdot)\) None 0 2
1976.2.bs \(\chi_{1976}(711, \cdot)\) None 0 2
1976.2.bu \(\chi_{1976}(961, \cdot)\) n/a 140 2
1976.2.bw \(\chi_{1976}(335, \cdot)\) None 0 2
1976.2.bz \(\chi_{1976}(881, \cdot)\) n/a 140 2
1976.2.cb \(\chi_{1976}(103, \cdot)\) None 0 2
1976.2.ce \(\chi_{1976}(607, \cdot)\) None 0 2
1976.2.cg \(\chi_{1976}(685, \cdot)\) n/a 504 2
1976.2.ch \(\chi_{1976}(835, \cdot)\) n/a 552 2
1976.2.ck \(\chi_{1976}(805, \cdot)\) n/a 552 2
1976.2.cm \(\chi_{1976}(1323, \cdot)\) n/a 552 2
1976.2.cn \(\chi_{1976}(277, \cdot)\) n/a 552 2
1976.2.cp \(\chi_{1976}(259, \cdot)\) n/a 552 2
1976.2.cs \(\chi_{1976}(27, \cdot)\) n/a 480 2
1976.2.cu \(\chi_{1976}(581, \cdot)\) n/a 552 2
1976.2.cv \(\chi_{1976}(107, \cdot)\) n/a 552 2
1976.2.cx \(\chi_{1976}(885, \cdot)\) n/a 480 2
1976.2.da \(\chi_{1976}(75, \cdot)\) n/a 552 2
1976.2.db \(\chi_{1976}(381, \cdot)\) n/a 504 2
1976.2.df \(\chi_{1976}(1855, \cdot)\) None 0 2
1976.2.dg \(\chi_{1976}(1167, \cdot)\) None 0 2
1976.2.dj \(\chi_{1976}(49, \cdot)\) n/a 140 2
1976.2.dk \(\chi_{1976}(289, \cdot)\) n/a 420 6
1976.2.dl \(\chi_{1976}(313, \cdot)\) n/a 360 6
1976.2.dm \(\chi_{1976}(9, \cdot)\) n/a 420 6
1976.2.do \(\chi_{1976}(7, \cdot)\) None 0 4
1976.2.dp \(\chi_{1976}(449, \cdot)\) n/a 280 4
1976.2.dr \(\chi_{1976}(293, \cdot)\) n/a 1104 4
1976.2.du \(\chi_{1976}(163, \cdot)\) n/a 1104 4
1976.2.dv \(\chi_{1976}(115, \cdot)\) n/a 1008 4
1976.2.dx \(\chi_{1976}(83, \cdot)\) n/a 1104 4
1976.2.ea \(\chi_{1976}(37, \cdot)\) n/a 1104 4
1976.2.ec \(\chi_{1976}(525, \cdot)\) n/a 1104 4
1976.2.ee \(\chi_{1976}(145, \cdot)\) n/a 280 4
1976.2.ef \(\chi_{1976}(695, \cdot)\) None 0 4
1976.2.ei \(\chi_{1976}(799, \cdot)\) None 0 4
1976.2.ek \(\chi_{1976}(239, \cdot)\) None 0 4
1976.2.el \(\chi_{1976}(721, \cdot)\) n/a 280 4
1976.2.en \(\chi_{1976}(369, \cdot)\) n/a 280 4
1976.2.ep \(\chi_{1976}(11, \cdot)\) n/a 1104 4
1976.2.es \(\chi_{1976}(141, \cdot)\) n/a 1104 4
1976.2.et \(\chi_{1976}(295, \cdot)\) None 0 6
1976.2.eu \(\chi_{1976}(329, \cdot)\) n/a 420 6
1976.2.ez \(\chi_{1976}(3, \cdot)\) n/a 1656 6
1976.2.fa \(\chi_{1976}(309, \cdot)\) n/a 1656 6
1976.2.fb \(\chi_{1976}(127, \cdot)\) None 0 6
1976.2.fc \(\chi_{1976}(623, \cdot)\) None 0 6
1976.2.fl \(\chi_{1976}(157, \cdot)\) n/a 1440 6
1976.2.fm \(\chi_{1976}(237, \cdot)\) n/a 1656 6
1976.2.fn \(\chi_{1976}(51, \cdot)\) n/a 1656 6
1976.2.fo \(\chi_{1976}(147, \cdot)\) n/a 1656 6
1976.2.ft \(\chi_{1976}(451, \cdot)\) n/a 1656 6
1976.2.fu \(\chi_{1976}(547, \cdot)\) n/a 1440 6
1976.2.fv \(\chi_{1976}(101, \cdot)\) n/a 1656 6
1976.2.fw \(\chi_{1976}(389, \cdot)\) n/a 1656 6
1976.2.fx \(\chi_{1976}(79, \cdot)\) None 0 6
1976.2.fy \(\chi_{1976}(471, \cdot)\) None 0 6
1976.2.fz \(\chi_{1976}(25, \cdot)\) n/a 420 6
1976.2.ga \(\chi_{1976}(17, \cdot)\) n/a 420 6
1976.2.gh \(\chi_{1976}(61, \cdot)\) n/a 1656 6
1976.2.gi \(\chi_{1976}(355, \cdot)\) n/a 1656 6
1976.2.gj \(\chi_{1976}(231, \cdot)\) None 0 6
1976.2.gn \(\chi_{1976}(357, \cdot)\) n/a 3312 12
1976.2.gp \(\chi_{1976}(123, \cdot)\) n/a 3312 12
1976.2.gr \(\chi_{1976}(99, \cdot)\) n/a 3312 12
1976.2.gt \(\chi_{1976}(275, \cdot)\) n/a 3312 12
1976.2.gv \(\chi_{1976}(21, \cdot)\) n/a 3312 12
1976.2.gx \(\chi_{1976}(509, \cdot)\) n/a 3312 12
1976.2.gy \(\chi_{1976}(119, \cdot)\) None 0 12
1976.2.ha \(\chi_{1976}(41, \cdot)\) n/a 840 12
1976.2.hc \(\chi_{1976}(33, \cdot)\) n/a 840 12
1976.2.he \(\chi_{1976}(281, \cdot)\) n/a 840 12
1976.2.hg \(\chi_{1976}(63, \cdot)\) None 0 12
1976.2.hi \(\chi_{1976}(47, \cdot)\) None 0 12

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1976))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1976)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(38))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(76))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(104))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(152))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(247))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(494))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(988))\)\(^{\oplus 2}\)