Properties

Label 197.14.a.b
Level 197197
Weight 1414
Character orbit 197.a
Self dual yes
Analytic conductor 211.245211.245
Analytic rank 00
Dimension 109109
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,14,Mod(1,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.1");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: N N == 197 197
Weight: k k == 14 14
Character orbit: [χ][\chi] == 197.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 211.244930035211.244930035
Analytic rank: 00
Dimension: 109109
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 109q+192q2+8018q3+471040q4+88496q5+383232q6+1680731q7+1820859q8+59521391q9+16373653q10+21199298q11+63225856q12+59695238q13+37888529q14++12084396239183q99+O(q100) 109 q + 192 q^{2} + 8018 q^{3} + 471040 q^{4} + 88496 q^{5} + 383232 q^{6} + 1680731 q^{7} + 1820859 q^{8} + 59521391 q^{9} + 16373653 q^{10} + 21199298 q^{11} + 63225856 q^{12} + 59695238 q^{13} + 37888529 q^{14}+ \cdots + 12084396239183 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1 −179.919 949.600 24179.0 −44809.9 −170851. 555727. −2.87636e6 −692583. 8.06216e6
1.2 −177.486 −1858.29 23309.4 5365.93 329822. 583422. −2.68313e6 1.85893e6 −952379.
1.3 −175.365 1521.48 22560.7 48722.0 −266814. 305586. −2.51977e6 720588. −8.54411e6
1.4 −173.852 −154.401 22032.6 10183.6 26843.0 −382540. −2.40622e6 −1.57048e6 −1.77044e6
1.5 −172.035 −63.8588 21404.1 −26311.4 10986.0 −168215. −2.27295e6 −1.59025e6 4.52650e6
1.6 −168.643 977.710 20248.6 23282.0 −164884. −126937. −2.03327e6 −638407. −3.92635e6
1.7 −161.852 −660.311 18003.9 −63584.1 106872. 71804.7 −1.58807e6 −1.15831e6 1.02912e7
1.8 −160.527 1724.90 17577.0 32215.0 −276893. −423232. −1.50655e6 1.38096e6 −5.17138e6
1.9 −158.182 −1675.68 16829.6 7989.80 265063. −477515. −1.36632e6 1.21359e6 −1.26384e6
1.10 −155.970 2509.18 16134.6 −12965.5 −391357. 428722. −1.23881e6 4.70166e6 2.02223e6
1.11 −150.597 −933.812 14487.5 16987.2 140630. 147144. −948089. −722318. −2.55822e6
1.12 −149.393 641.280 14126.2 61634.3 −95802.7 −435746. −886531. −1.18308e6 −9.20772e6
1.13 −145.155 −2025.07 12878.0 −10162.8 293949. 345875. −680200. 2.50658e6 1.47518e6
1.14 −136.248 −2369.27 10371.7 626.226 322809. −79078.9 −296974. 4.01912e6 −85322.4
1.15 −135.924 −2298.95 10283.3 41046.5 312481. 283206. −284251. 3.69083e6 −5.57919e6
1.16 −135.355 −1650.52 10129.0 −19198.7 223406. −557349. −262189. 1.12989e6 2.59865e6
1.17 −134.862 −985.192 9995.81 −46787.8 132865. 482450. −243265. −623719. 6.30990e6
1.18 −133.322 64.3497 9582.75 19563.1 −8579.24 177321. −185418. −1.59018e6 −2.60819e6
1.19 −133.256 1856.77 9565.17 −55057.7 −247426. 87617.4 −182983. 1.85327e6 7.33677e6
1.20 −130.527 1003.60 8845.21 −12039.6 −130997. −78177.1 −85261.9 −587101. 1.57148e6
See next 80 embeddings (of 109 total)
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.109
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
197197 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 197.14.a.b 109
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
197.14.a.b 109 1.a even 1 1 trivial