Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [197,14,Mod(1,197)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(197, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 14, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("197.1");
S:= CuspForms(chi, 14);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 197 \) |
Weight: | \( k \) | \(=\) | \( 14 \) |
Character orbit: | \([\chi]\) | \(=\) | 197.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(211.244930035\) |
Analytic rank: | \(0\) |
Dimension: | \(109\) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −179.919 | 949.600 | 24179.0 | −44809.9 | −170851. | 555727. | −2.87636e6 | −692583. | 8.06216e6 | ||||||||||||||||||
1.2 | −177.486 | −1858.29 | 23309.4 | 5365.93 | 329822. | 583422. | −2.68313e6 | 1.85893e6 | −952379. | ||||||||||||||||||
1.3 | −175.365 | 1521.48 | 22560.7 | 48722.0 | −266814. | 305586. | −2.51977e6 | 720588. | −8.54411e6 | ||||||||||||||||||
1.4 | −173.852 | −154.401 | 22032.6 | 10183.6 | 26843.0 | −382540. | −2.40622e6 | −1.57048e6 | −1.77044e6 | ||||||||||||||||||
1.5 | −172.035 | −63.8588 | 21404.1 | −26311.4 | 10986.0 | −168215. | −2.27295e6 | −1.59025e6 | 4.52650e6 | ||||||||||||||||||
1.6 | −168.643 | 977.710 | 20248.6 | 23282.0 | −164884. | −126937. | −2.03327e6 | −638407. | −3.92635e6 | ||||||||||||||||||
1.7 | −161.852 | −660.311 | 18003.9 | −63584.1 | 106872. | 71804.7 | −1.58807e6 | −1.15831e6 | 1.02912e7 | ||||||||||||||||||
1.8 | −160.527 | 1724.90 | 17577.0 | 32215.0 | −276893. | −423232. | −1.50655e6 | 1.38096e6 | −5.17138e6 | ||||||||||||||||||
1.9 | −158.182 | −1675.68 | 16829.6 | 7989.80 | 265063. | −477515. | −1.36632e6 | 1.21359e6 | −1.26384e6 | ||||||||||||||||||
1.10 | −155.970 | 2509.18 | 16134.6 | −12965.5 | −391357. | 428722. | −1.23881e6 | 4.70166e6 | 2.02223e6 | ||||||||||||||||||
1.11 | −150.597 | −933.812 | 14487.5 | 16987.2 | 140630. | 147144. | −948089. | −722318. | −2.55822e6 | ||||||||||||||||||
1.12 | −149.393 | 641.280 | 14126.2 | 61634.3 | −95802.7 | −435746. | −886531. | −1.18308e6 | −9.20772e6 | ||||||||||||||||||
1.13 | −145.155 | −2025.07 | 12878.0 | −10162.8 | 293949. | 345875. | −680200. | 2.50658e6 | 1.47518e6 | ||||||||||||||||||
1.14 | −136.248 | −2369.27 | 10371.7 | 626.226 | 322809. | −79078.9 | −296974. | 4.01912e6 | −85322.4 | ||||||||||||||||||
1.15 | −135.924 | −2298.95 | 10283.3 | 41046.5 | 312481. | 283206. | −284251. | 3.69083e6 | −5.57919e6 | ||||||||||||||||||
1.16 | −135.355 | −1650.52 | 10129.0 | −19198.7 | 223406. | −557349. | −262189. | 1.12989e6 | 2.59865e6 | ||||||||||||||||||
1.17 | −134.862 | −985.192 | 9995.81 | −46787.8 | 132865. | 482450. | −243265. | −623719. | 6.30990e6 | ||||||||||||||||||
1.18 | −133.322 | 64.3497 | 9582.75 | 19563.1 | −8579.24 | 177321. | −185418. | −1.59018e6 | −2.60819e6 | ||||||||||||||||||
1.19 | −133.256 | 1856.77 | 9565.17 | −55057.7 | −247426. | 87617.4 | −182983. | 1.85327e6 | 7.33677e6 | ||||||||||||||||||
1.20 | −130.527 | 1003.60 | 8845.21 | −12039.6 | −130997. | −78177.1 | −85261.9 | −587101. | 1.57148e6 | ||||||||||||||||||
See next 80 embeddings (of 109 total) |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(197\) | \( -1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 197.14.a.b | ✓ | 109 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
197.14.a.b | ✓ | 109 | 1.a | even | 1 | 1 | trivial |