Properties

Label 197.14.a.b.1.18
Level $197$
Weight $14$
Character 197.1
Self dual yes
Analytic conductor $211.245$
Analytic rank $0$
Dimension $109$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,14,Mod(1,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 14, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.1");
 
S:= CuspForms(chi, 14);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 197.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(211.244930035\)
Analytic rank: \(0\)
Dimension: \(109\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.18
Character \(\chi\) \(=\) 197.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-133.322 q^{2} +64.3497 q^{3} +9582.75 q^{4} +19563.1 q^{5} -8579.24 q^{6} +177321. q^{7} -185418. q^{8} -1.59018e6 q^{9} +O(q^{10})\) \(q-133.322 q^{2} +64.3497 q^{3} +9582.75 q^{4} +19563.1 q^{5} -8579.24 q^{6} +177321. q^{7} -185418. q^{8} -1.59018e6 q^{9} -2.60819e6 q^{10} -336016. q^{11} +616648. q^{12} +1.41878e7 q^{13} -2.36408e7 q^{14} +1.25888e6 q^{15} -5.37816e7 q^{16} +1.10884e8 q^{17} +2.12006e8 q^{18} -1.18009e8 q^{19} +1.87469e8 q^{20} +1.14106e7 q^{21} +4.47983e7 q^{22} -7.03272e8 q^{23} -1.19316e7 q^{24} -8.37987e8 q^{25} -1.89154e9 q^{26} -2.04922e8 q^{27} +1.69922e9 q^{28} -3.44657e9 q^{29} -1.67837e8 q^{30} -5.07264e9 q^{31} +8.68922e9 q^{32} -2.16225e7 q^{33} -1.47832e10 q^{34} +3.46895e9 q^{35} -1.52383e10 q^{36} +2.95097e10 q^{37} +1.57332e10 q^{38} +9.12980e8 q^{39} -3.62736e9 q^{40} +3.95254e10 q^{41} -1.52128e9 q^{42} -5.83732e10 q^{43} -3.21996e9 q^{44} -3.11089e10 q^{45} +9.37617e10 q^{46} +8.53901e10 q^{47} -3.46083e9 q^{48} -6.54462e10 q^{49} +1.11722e11 q^{50} +7.13534e9 q^{51} +1.35958e11 q^{52} -2.30840e11 q^{53} +2.73206e10 q^{54} -6.57352e9 q^{55} -3.28785e10 q^{56} -7.59387e9 q^{57} +4.59503e11 q^{58} +2.95758e11 q^{59} +1.20636e10 q^{60} +3.76657e11 q^{61} +6.76294e11 q^{62} -2.81973e11 q^{63} -7.17885e11 q^{64} +2.77557e11 q^{65} +2.88276e9 q^{66} +5.34143e11 q^{67} +1.06257e12 q^{68} -4.52554e10 q^{69} -4.62488e11 q^{70} +1.73500e12 q^{71} +2.94848e11 q^{72} +6.32699e11 q^{73} -3.93429e12 q^{74} -5.39243e10 q^{75} -1.13085e12 q^{76} -5.95827e10 q^{77} -1.21720e11 q^{78} -1.64725e12 q^{79} -1.05214e12 q^{80} +2.52208e12 q^{81} -5.26960e12 q^{82} -7.58482e11 q^{83} +1.09345e11 q^{84} +2.16923e12 q^{85} +7.78243e12 q^{86} -2.21786e11 q^{87} +6.23034e10 q^{88} +1.01548e11 q^{89} +4.14750e12 q^{90} +2.51579e12 q^{91} -6.73929e12 q^{92} -3.26423e11 q^{93} -1.13844e13 q^{94} -2.30863e12 q^{95} +5.59149e11 q^{96} -1.06120e12 q^{97} +8.72542e12 q^{98} +5.34326e11 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 109 q + 192 q^{2} + 8018 q^{3} + 471040 q^{4} + 88496 q^{5} + 383232 q^{6} + 1680731 q^{7} + 1820859 q^{8} + 59521391 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 109 q + 192 q^{2} + 8018 q^{3} + 471040 q^{4} + 88496 q^{5} + 383232 q^{6} + 1680731 q^{7} + 1820859 q^{8} + 59521391 q^{9} + 16373653 q^{10} + 21199298 q^{11} + 63225856 q^{12} + 59695238 q^{13} + 37888529 q^{14} + 87246239 q^{15} + 2130706432 q^{16} + 228353715 q^{17} + 400647337 q^{18} + 1139301305 q^{19} + 1109969259 q^{20} + 539982398 q^{21} + 1613315649 q^{22} + 920306804 q^{23} + 5542439613 q^{24} + 31241700999 q^{25} + 1864366110 q^{26} + 17825460755 q^{27} + 20413389070 q^{28} + 7185436621 q^{29} + 2050251883 q^{30} + 28475592572 q^{31} + 8334714660 q^{32} + 19623425846 q^{33} + 37845014194 q^{34} + 25255003636 q^{35} + 287968706746 q^{36} + 71523920490 q^{37} + 67778214914 q^{38} + 44951568463 q^{39} + 169184871486 q^{40} + 69139231052 q^{41} + 58715177635 q^{42} + 247544146139 q^{43} + 63861560722 q^{44} + 257443045479 q^{45} + 160530477869 q^{46} + 308496573061 q^{47} + 412228130018 q^{48} + 1736616239908 q^{49} + 1680360028531 q^{50} + 756579032995 q^{51} + 928015404666 q^{52} + 342783723680 q^{53} - 597894730601 q^{54} + 59276330527 q^{55} - 3822929869144 q^{56} - 562905761941 q^{57} + 62740419347 q^{58} + 827401964151 q^{59} - 2247133283907 q^{60} + 988213134514 q^{61} + 1937380192071 q^{62} + 1788190111357 q^{63} + 11682175668457 q^{64} + 2494670804291 q^{65} + 11819807890512 q^{66} + 8038740399790 q^{67} + 10126245189885 q^{68} + 5225665164579 q^{69} + 11464042631319 q^{70} + 4867145119603 q^{71} + 18133468947055 q^{72} + 9684156738615 q^{73} + 16996786880941 q^{74} + 16718732018262 q^{75} + 21454522032798 q^{76} + 6593100920650 q^{77} + 33749579076633 q^{78} + 7591753073823 q^{79} + 24349241260570 q^{80} + 38778649605417 q^{81} + 25555033184251 q^{82} + 16945724819556 q^{83} + 21855489402730 q^{84} + 15544906794766 q^{85} + 18664144286914 q^{86} + 19049540636401 q^{87} + 17318749473003 q^{88} + 11289674998576 q^{89} + 20983303956671 q^{90} + 47242561944227 q^{91} - 25046698097386 q^{92} - 5411884145985 q^{93} + 18338784709341 q^{94} + 6784117894603 q^{95} - 36827486682955 q^{96} + 45969533477736 q^{97} - 42983409526150 q^{98} + 12084396239183 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −133.322 −1.47301 −0.736507 0.676430i \(-0.763526\pi\)
−0.736507 + 0.676430i \(0.763526\pi\)
\(3\) 64.3497 0.0509634 0.0254817 0.999675i \(-0.491888\pi\)
0.0254817 + 0.999675i \(0.491888\pi\)
\(4\) 9582.75 1.16977
\(5\) 19563.1 0.559929 0.279965 0.960010i \(-0.409677\pi\)
0.279965 + 0.960010i \(0.409677\pi\)
\(6\) −8579.24 −0.0750698
\(7\) 177321. 0.569670 0.284835 0.958577i \(-0.408061\pi\)
0.284835 + 0.958577i \(0.408061\pi\)
\(8\) −185418. −0.250073
\(9\) −1.59018e6 −0.997403
\(10\) −2.60819e6 −0.824784
\(11\) −336016. −0.0571883 −0.0285941 0.999591i \(-0.509103\pi\)
−0.0285941 + 0.999591i \(0.509103\pi\)
\(12\) 616648. 0.0596155
\(13\) 1.41878e7 0.815235 0.407617 0.913153i \(-0.366360\pi\)
0.407617 + 0.913153i \(0.366360\pi\)
\(14\) −2.36408e7 −0.839131
\(15\) 1.25888e6 0.0285359
\(16\) −5.37816e7 −0.801409
\(17\) 1.10884e8 1.11417 0.557083 0.830457i \(-0.311920\pi\)
0.557083 + 0.830457i \(0.311920\pi\)
\(18\) 2.12006e8 1.46919
\(19\) −1.18009e8 −0.575464 −0.287732 0.957711i \(-0.592901\pi\)
−0.287732 + 0.957711i \(0.592901\pi\)
\(20\) 1.87469e8 0.654988
\(21\) 1.14106e7 0.0290323
\(22\) 4.47983e7 0.0842392
\(23\) −7.03272e8 −0.990587 −0.495293 0.868726i \(-0.664939\pi\)
−0.495293 + 0.868726i \(0.664939\pi\)
\(24\) −1.19316e7 −0.0127446
\(25\) −8.37987e8 −0.686479
\(26\) −1.89154e9 −1.20085
\(27\) −2.04922e8 −0.101795
\(28\) 1.69922e9 0.666382
\(29\) −3.44657e9 −1.07597 −0.537984 0.842955i \(-0.680814\pi\)
−0.537984 + 0.842955i \(0.680814\pi\)
\(30\) −1.67837e8 −0.0420338
\(31\) −5.07264e9 −1.02656 −0.513278 0.858222i \(-0.671569\pi\)
−0.513278 + 0.858222i \(0.671569\pi\)
\(32\) 8.68922e9 1.43056
\(33\) −2.16225e7 −0.00291451
\(34\) −1.47832e10 −1.64118
\(35\) 3.46895e9 0.318975
\(36\) −1.52383e10 −1.16673
\(37\) 2.95097e10 1.89084 0.945418 0.325860i \(-0.105654\pi\)
0.945418 + 0.325860i \(0.105654\pi\)
\(38\) 1.57332e10 0.847666
\(39\) 9.12980e8 0.0415472
\(40\) −3.62736e9 −0.140023
\(41\) 3.95254e10 1.29951 0.649757 0.760142i \(-0.274871\pi\)
0.649757 + 0.760142i \(0.274871\pi\)
\(42\) −1.52128e9 −0.0427650
\(43\) −5.83732e10 −1.40821 −0.704107 0.710094i \(-0.748652\pi\)
−0.704107 + 0.710094i \(0.748652\pi\)
\(44\) −3.21996e9 −0.0668971
\(45\) −3.11089e10 −0.558475
\(46\) 9.37617e10 1.45915
\(47\) 8.53901e10 1.15550 0.577752 0.816212i \(-0.303930\pi\)
0.577752 + 0.816212i \(0.303930\pi\)
\(48\) −3.46083e9 −0.0408425
\(49\) −6.54462e10 −0.675476
\(50\) 1.11722e11 1.01119
\(51\) 7.13534e9 0.0567818
\(52\) 1.35958e11 0.953637
\(53\) −2.30840e11 −1.43060 −0.715301 0.698817i \(-0.753710\pi\)
−0.715301 + 0.698817i \(0.753710\pi\)
\(54\) 2.73206e10 0.149945
\(55\) −6.57352e9 −0.0320214
\(56\) −3.28785e10 −0.142459
\(57\) −7.59387e9 −0.0293276
\(58\) 4.59503e11 1.58492
\(59\) 2.95758e11 0.912848 0.456424 0.889762i \(-0.349130\pi\)
0.456424 + 0.889762i \(0.349130\pi\)
\(60\) 1.20636e10 0.0333805
\(61\) 3.76657e11 0.936057 0.468029 0.883713i \(-0.344964\pi\)
0.468029 + 0.883713i \(0.344964\pi\)
\(62\) 6.76294e11 1.51213
\(63\) −2.81973e11 −0.568190
\(64\) −7.17885e11 −1.30582
\(65\) 2.77557e11 0.456474
\(66\) 2.88276e9 0.00429312
\(67\) 5.34143e11 0.721393 0.360696 0.932683i \(-0.382539\pi\)
0.360696 + 0.932683i \(0.382539\pi\)
\(68\) 1.06257e12 1.30332
\(69\) −4.52554e10 −0.0504837
\(70\) −4.62488e11 −0.469854
\(71\) 1.73500e12 1.60739 0.803695 0.595042i \(-0.202865\pi\)
0.803695 + 0.595042i \(0.202865\pi\)
\(72\) 2.94848e11 0.249424
\(73\) 6.32699e11 0.489326 0.244663 0.969608i \(-0.421323\pi\)
0.244663 + 0.969608i \(0.421323\pi\)
\(74\) −3.93429e12 −2.78523
\(75\) −5.39243e10 −0.0349853
\(76\) −1.13085e12 −0.673160
\(77\) −5.95827e10 −0.0325784
\(78\) −1.21720e11 −0.0611995
\(79\) −1.64725e12 −0.762402 −0.381201 0.924492i \(-0.624489\pi\)
−0.381201 + 0.924492i \(0.624489\pi\)
\(80\) −1.05214e12 −0.448732
\(81\) 2.52208e12 0.992215
\(82\) −5.26960e12 −1.91420
\(83\) −7.58482e11 −0.254646 −0.127323 0.991861i \(-0.540639\pi\)
−0.127323 + 0.991861i \(0.540639\pi\)
\(84\) 1.09345e11 0.0339611
\(85\) 2.16923e12 0.623854
\(86\) 7.78243e12 2.07432
\(87\) −2.21786e11 −0.0548351
\(88\) 6.23034e10 0.0143013
\(89\) 1.01548e11 0.0216589 0.0108294 0.999941i \(-0.496553\pi\)
0.0108294 + 0.999941i \(0.496553\pi\)
\(90\) 4.14750e12 0.822641
\(91\) 2.51579e12 0.464414
\(92\) −6.73929e12 −1.15876
\(93\) −3.26423e11 −0.0523168
\(94\) −1.13844e13 −1.70207
\(95\) −2.30863e12 −0.322219
\(96\) 5.59149e11 0.0729062
\(97\) −1.06120e12 −0.129355 −0.0646773 0.997906i \(-0.520602\pi\)
−0.0646773 + 0.997906i \(0.520602\pi\)
\(98\) 8.72542e12 0.994986
\(99\) 5.34326e11 0.0570398
\(100\) −8.03023e12 −0.803023
\(101\) 2.50396e12 0.234714 0.117357 0.993090i \(-0.462558\pi\)
0.117357 + 0.993090i \(0.462558\pi\)
\(102\) −9.51298e11 −0.0836403
\(103\) 1.64465e13 1.35716 0.678582 0.734524i \(-0.262595\pi\)
0.678582 + 0.734524i \(0.262595\pi\)
\(104\) −2.63067e12 −0.203868
\(105\) 2.23226e11 0.0162560
\(106\) 3.07761e13 2.10730
\(107\) −2.35354e13 −1.51610 −0.758048 0.652199i \(-0.773847\pi\)
−0.758048 + 0.652199i \(0.773847\pi\)
\(108\) −1.96372e12 −0.119076
\(109\) 1.08183e13 0.617855 0.308927 0.951086i \(-0.400030\pi\)
0.308927 + 0.951086i \(0.400030\pi\)
\(110\) 8.76394e11 0.0471680
\(111\) 1.89894e12 0.0963635
\(112\) −9.53662e12 −0.456538
\(113\) −2.02866e13 −0.916642 −0.458321 0.888787i \(-0.651549\pi\)
−0.458321 + 0.888787i \(0.651549\pi\)
\(114\) 1.01243e12 0.0432000
\(115\) −1.37582e13 −0.554659
\(116\) −3.30276e13 −1.25864
\(117\) −2.25611e13 −0.813117
\(118\) −3.94311e13 −1.34464
\(119\) 1.96620e13 0.634707
\(120\) −2.33419e11 −0.00713607
\(121\) −3.44098e13 −0.996729
\(122\) −5.02167e13 −1.37883
\(123\) 2.54345e12 0.0662277
\(124\) −4.86098e13 −1.20083
\(125\) −4.02744e13 −0.944309
\(126\) 3.75932e13 0.836952
\(127\) −1.11600e12 −0.0236015 −0.0118007 0.999930i \(-0.503756\pi\)
−0.0118007 + 0.999930i \(0.503756\pi\)
\(128\) 2.45278e13 0.492939
\(129\) −3.75630e12 −0.0717674
\(130\) −3.70045e13 −0.672392
\(131\) −7.66177e11 −0.0132454 −0.00662271 0.999978i \(-0.502108\pi\)
−0.00662271 + 0.999978i \(0.502108\pi\)
\(132\) −2.07203e11 −0.00340931
\(133\) −2.09256e13 −0.327824
\(134\) −7.12131e13 −1.06262
\(135\) −4.00892e12 −0.0569977
\(136\) −2.05599e13 −0.278623
\(137\) −1.13516e14 −1.46681 −0.733406 0.679790i \(-0.762071\pi\)
−0.733406 + 0.679790i \(0.762071\pi\)
\(138\) 6.03354e12 0.0743632
\(139\) 9.84064e13 1.15725 0.578625 0.815594i \(-0.303590\pi\)
0.578625 + 0.815594i \(0.303590\pi\)
\(140\) 3.32421e13 0.373127
\(141\) 5.49483e12 0.0588885
\(142\) −2.31314e14 −2.36771
\(143\) −4.76732e12 −0.0466219
\(144\) 8.55226e13 0.799327
\(145\) −6.74256e13 −0.602466
\(146\) −8.43527e13 −0.720785
\(147\) −4.21145e12 −0.0344246
\(148\) 2.82784e14 2.21184
\(149\) 8.88962e13 0.665537 0.332769 0.943008i \(-0.392017\pi\)
0.332769 + 0.943008i \(0.392017\pi\)
\(150\) 7.18929e12 0.0515339
\(151\) −1.35348e14 −0.929184 −0.464592 0.885525i \(-0.653799\pi\)
−0.464592 + 0.885525i \(0.653799\pi\)
\(152\) 2.18811e13 0.143908
\(153\) −1.76325e14 −1.11127
\(154\) 7.94368e12 0.0479885
\(155\) −9.92366e13 −0.574799
\(156\) 8.74886e12 0.0486006
\(157\) −1.27304e14 −0.678415 −0.339208 0.940711i \(-0.610159\pi\)
−0.339208 + 0.940711i \(0.610159\pi\)
\(158\) 2.19615e14 1.12303
\(159\) −1.48545e13 −0.0729084
\(160\) 1.69988e14 0.801012
\(161\) −1.24705e14 −0.564307
\(162\) −3.36248e14 −1.46155
\(163\) −2.35957e14 −0.985402 −0.492701 0.870199i \(-0.663990\pi\)
−0.492701 + 0.870199i \(0.663990\pi\)
\(164\) 3.78762e14 1.52013
\(165\) −4.23004e11 −0.00163192
\(166\) 1.01122e14 0.375098
\(167\) 5.14608e14 1.83577 0.917887 0.396841i \(-0.129894\pi\)
0.917887 + 0.396841i \(0.129894\pi\)
\(168\) −2.11573e12 −0.00726021
\(169\) −1.01582e14 −0.335393
\(170\) −2.89207e14 −0.918946
\(171\) 1.87656e14 0.573969
\(172\) −5.59376e14 −1.64729
\(173\) −2.64003e13 −0.0748703 −0.0374352 0.999299i \(-0.511919\pi\)
−0.0374352 + 0.999299i \(0.511919\pi\)
\(174\) 2.95689e13 0.0807728
\(175\) −1.48593e14 −0.391066
\(176\) 1.80715e13 0.0458312
\(177\) 1.90320e13 0.0465219
\(178\) −1.35386e13 −0.0319038
\(179\) −7.41778e13 −0.168550 −0.0842751 0.996443i \(-0.526857\pi\)
−0.0842751 + 0.996443i \(0.526857\pi\)
\(180\) −2.98109e14 −0.653287
\(181\) 4.92340e13 0.104077 0.0520384 0.998645i \(-0.483428\pi\)
0.0520384 + 0.998645i \(0.483428\pi\)
\(182\) −3.35410e14 −0.684089
\(183\) 2.42378e13 0.0477047
\(184\) 1.30399e14 0.247719
\(185\) 5.77302e14 1.05873
\(186\) 4.35193e13 0.0770634
\(187\) −3.72587e13 −0.0637173
\(188\) 8.18273e14 1.35167
\(189\) −3.63370e13 −0.0579892
\(190\) 3.07791e14 0.474633
\(191\) 1.11945e15 1.66835 0.834177 0.551497i \(-0.185943\pi\)
0.834177 + 0.551497i \(0.185943\pi\)
\(192\) −4.61957e13 −0.0665493
\(193\) 8.33791e14 1.16127 0.580637 0.814163i \(-0.302804\pi\)
0.580637 + 0.814163i \(0.302804\pi\)
\(194\) 1.41482e14 0.190541
\(195\) 1.78607e13 0.0232635
\(196\) −6.27155e14 −0.790152
\(197\) 5.84517e13 0.0712470
\(198\) −7.12374e13 −0.0840204
\(199\) −7.17125e14 −0.818559 −0.409279 0.912409i \(-0.634220\pi\)
−0.409279 + 0.912409i \(0.634220\pi\)
\(200\) 1.55378e14 0.171670
\(201\) 3.43720e13 0.0367646
\(202\) −3.33833e14 −0.345737
\(203\) −6.11149e14 −0.612947
\(204\) 6.83762e13 0.0664216
\(205\) 7.73240e14 0.727636
\(206\) −2.19268e15 −1.99912
\(207\) 1.11833e15 0.988014
\(208\) −7.63042e14 −0.653336
\(209\) 3.96530e13 0.0329098
\(210\) −2.97610e13 −0.0239454
\(211\) 2.41815e15 1.88646 0.943228 0.332145i \(-0.107772\pi\)
0.943228 + 0.332145i \(0.107772\pi\)
\(212\) −2.21209e15 −1.67347
\(213\) 1.11647e14 0.0819181
\(214\) 3.13778e15 2.23323
\(215\) −1.14196e15 −0.788500
\(216\) 3.79963e13 0.0254561
\(217\) −8.99485e14 −0.584798
\(218\) −1.44232e15 −0.910108
\(219\) 4.07140e13 0.0249378
\(220\) −6.29924e13 −0.0374577
\(221\) 1.57319e15 0.908307
\(222\) −2.53171e14 −0.141945
\(223\) −8.73928e14 −0.475876 −0.237938 0.971280i \(-0.576472\pi\)
−0.237938 + 0.971280i \(0.576472\pi\)
\(224\) 1.54078e15 0.814946
\(225\) 1.33255e15 0.684696
\(226\) 2.70465e15 1.35023
\(227\) −6.91282e14 −0.335341 −0.167671 0.985843i \(-0.553624\pi\)
−0.167671 + 0.985843i \(0.553624\pi\)
\(228\) −7.27702e13 −0.0343066
\(229\) −1.47272e15 −0.674821 −0.337410 0.941358i \(-0.609551\pi\)
−0.337410 + 0.941358i \(0.609551\pi\)
\(230\) 1.83427e15 0.817020
\(231\) −3.83413e12 −0.00166031
\(232\) 6.39056e14 0.269071
\(233\) 1.15513e15 0.472951 0.236476 0.971637i \(-0.424008\pi\)
0.236476 + 0.971637i \(0.424008\pi\)
\(234\) 3.00790e15 1.19773
\(235\) 1.67050e15 0.647001
\(236\) 2.83418e15 1.06782
\(237\) −1.06000e14 −0.0388546
\(238\) −2.62138e15 −0.934932
\(239\) −2.45789e15 −0.853054 −0.426527 0.904475i \(-0.640263\pi\)
−0.426527 + 0.904475i \(0.640263\pi\)
\(240\) −6.77047e13 −0.0228689
\(241\) 1.42030e15 0.466949 0.233474 0.972363i \(-0.424990\pi\)
0.233474 + 0.972363i \(0.424990\pi\)
\(242\) 4.58758e15 1.46820
\(243\) 4.89007e14 0.152361
\(244\) 3.60941e15 1.09497
\(245\) −1.28033e15 −0.378219
\(246\) −3.39098e14 −0.0975543
\(247\) −1.67429e15 −0.469138
\(248\) 9.40558e14 0.256714
\(249\) −4.88081e13 −0.0129777
\(250\) 5.36947e15 1.39098
\(251\) 6.31094e15 1.59300 0.796498 0.604641i \(-0.206684\pi\)
0.796498 + 0.604641i \(0.206684\pi\)
\(252\) −2.70208e15 −0.664652
\(253\) 2.36311e14 0.0566500
\(254\) 1.48787e14 0.0347653
\(255\) 1.39590e14 0.0317938
\(256\) 2.61082e15 0.579719
\(257\) −6.01618e15 −1.30243 −0.651217 0.758891i \(-0.725741\pi\)
−0.651217 + 0.758891i \(0.725741\pi\)
\(258\) 5.00798e14 0.105714
\(259\) 5.23270e15 1.07715
\(260\) 2.65976e15 0.533969
\(261\) 5.48067e15 1.07317
\(262\) 1.02148e14 0.0195107
\(263\) 2.35468e14 0.0438753 0.0219376 0.999759i \(-0.493016\pi\)
0.0219376 + 0.999759i \(0.493016\pi\)
\(264\) 4.00921e12 0.000728841 0
\(265\) −4.51596e15 −0.801036
\(266\) 2.78984e15 0.482890
\(267\) 6.53458e12 0.00110381
\(268\) 5.11856e15 0.843863
\(269\) 4.65931e15 0.749777 0.374888 0.927070i \(-0.377681\pi\)
0.374888 + 0.927070i \(0.377681\pi\)
\(270\) 5.34477e14 0.0839584
\(271\) 5.40905e15 0.829509 0.414754 0.909933i \(-0.363868\pi\)
0.414754 + 0.909933i \(0.363868\pi\)
\(272\) −5.96351e15 −0.892903
\(273\) 1.61891e14 0.0236682
\(274\) 1.51342e16 2.16064
\(275\) 2.81577e14 0.0392586
\(276\) −4.33671e14 −0.0590543
\(277\) 2.80004e14 0.0372431 0.0186216 0.999827i \(-0.494072\pi\)
0.0186216 + 0.999827i \(0.494072\pi\)
\(278\) −1.31197e16 −1.70464
\(279\) 8.06641e15 1.02389
\(280\) −6.43207e14 −0.0797670
\(281\) −4.84246e15 −0.586779 −0.293390 0.955993i \(-0.594783\pi\)
−0.293390 + 0.955993i \(0.594783\pi\)
\(282\) −7.32582e14 −0.0867435
\(283\) 1.37940e16 1.59617 0.798087 0.602543i \(-0.205846\pi\)
0.798087 + 0.602543i \(0.205846\pi\)
\(284\) 1.66261e16 1.88028
\(285\) −1.48560e14 −0.0164214
\(286\) 6.35588e14 0.0686747
\(287\) 7.00869e15 0.740294
\(288\) −1.38174e16 −1.42684
\(289\) 2.39064e15 0.241367
\(290\) 8.98932e15 0.887441
\(291\) −6.82881e13 −0.00659236
\(292\) 6.06300e15 0.572399
\(293\) −7.51639e15 −0.694017 −0.347008 0.937862i \(-0.612802\pi\)
−0.347008 + 0.937862i \(0.612802\pi\)
\(294\) 5.61479e14 0.0507079
\(295\) 5.78595e15 0.511130
\(296\) −5.47163e15 −0.472847
\(297\) 6.88571e13 0.00582145
\(298\) −1.18518e16 −0.980346
\(299\) −9.97787e15 −0.807561
\(300\) −5.16743e14 −0.0409248
\(301\) −1.03508e16 −0.802217
\(302\) 1.80449e16 1.36870
\(303\) 1.61129e14 0.0119618
\(304\) 6.34673e15 0.461182
\(305\) 7.36859e15 0.524126
\(306\) 2.35081e16 1.63692
\(307\) 1.13907e16 0.776515 0.388258 0.921551i \(-0.373077\pi\)
0.388258 + 0.921551i \(0.373077\pi\)
\(308\) −5.70966e14 −0.0381093
\(309\) 1.05833e15 0.0691658
\(310\) 1.32304e16 0.846687
\(311\) 1.58816e16 0.995293 0.497646 0.867380i \(-0.334198\pi\)
0.497646 + 0.867380i \(0.334198\pi\)
\(312\) −1.69283e14 −0.0103898
\(313\) 1.69022e16 1.01602 0.508012 0.861350i \(-0.330381\pi\)
0.508012 + 0.861350i \(0.330381\pi\)
\(314\) 1.69725e16 0.999315
\(315\) −5.51627e15 −0.318146
\(316\) −1.57852e16 −0.891835
\(317\) −1.99751e16 −1.10561 −0.552807 0.833309i \(-0.686443\pi\)
−0.552807 + 0.833309i \(0.686443\pi\)
\(318\) 1.98043e15 0.107395
\(319\) 1.15810e15 0.0615328
\(320\) −1.40441e16 −0.731169
\(321\) −1.51450e15 −0.0772655
\(322\) 1.66259e16 0.831233
\(323\) −1.30853e16 −0.641163
\(324\) 2.41684e16 1.16066
\(325\) −1.18892e16 −0.559642
\(326\) 3.14583e16 1.45151
\(327\) 6.96154e14 0.0314880
\(328\) −7.32872e15 −0.324974
\(329\) 1.51415e16 0.658256
\(330\) 5.63958e13 0.00240384
\(331\) −1.37750e15 −0.0575717 −0.0287859 0.999586i \(-0.509164\pi\)
−0.0287859 + 0.999586i \(0.509164\pi\)
\(332\) −7.26834e15 −0.297878
\(333\) −4.69258e16 −1.88592
\(334\) −6.86085e16 −2.70412
\(335\) 1.04495e16 0.403929
\(336\) −6.13679e14 −0.0232668
\(337\) −2.54029e16 −0.944689 −0.472344 0.881414i \(-0.656592\pi\)
−0.472344 + 0.881414i \(0.656592\pi\)
\(338\) 1.35431e16 0.494038
\(339\) −1.30544e15 −0.0467152
\(340\) 2.07872e16 0.729766
\(341\) 1.70449e15 0.0587070
\(342\) −2.50187e16 −0.845465
\(343\) −2.87855e16 −0.954468
\(344\) 1.08234e16 0.352156
\(345\) −8.85337e14 −0.0282673
\(346\) 3.51974e15 0.110285
\(347\) 6.09352e16 1.87381 0.936907 0.349577i \(-0.113675\pi\)
0.936907 + 0.349577i \(0.113675\pi\)
\(348\) −2.12532e15 −0.0641444
\(349\) 1.41610e15 0.0419496 0.0209748 0.999780i \(-0.493323\pi\)
0.0209748 + 0.999780i \(0.493323\pi\)
\(350\) 1.98107e16 0.576046
\(351\) −2.90739e15 −0.0829864
\(352\) −2.91971e15 −0.0818112
\(353\) 5.95627e16 1.63847 0.819235 0.573458i \(-0.194398\pi\)
0.819235 + 0.573458i \(0.194398\pi\)
\(354\) −2.53738e15 −0.0685274
\(355\) 3.39421e16 0.900024
\(356\) 9.73109e14 0.0253359
\(357\) 1.26525e15 0.0323468
\(358\) 9.88953e15 0.248277
\(359\) −1.22769e16 −0.302674 −0.151337 0.988482i \(-0.548358\pi\)
−0.151337 + 0.988482i \(0.548358\pi\)
\(360\) 5.76816e15 0.139660
\(361\) −2.81268e16 −0.668841
\(362\) −6.56397e15 −0.153307
\(363\) −2.21426e15 −0.0507968
\(364\) 2.41082e16 0.543258
\(365\) 1.23776e16 0.273988
\(366\) −3.23143e15 −0.0702697
\(367\) 1.96459e16 0.419703 0.209852 0.977733i \(-0.432702\pi\)
0.209852 + 0.977733i \(0.432702\pi\)
\(368\) 3.78231e16 0.793865
\(369\) −6.28526e16 −1.29614
\(370\) −7.69671e16 −1.55953
\(371\) −4.09329e16 −0.814970
\(372\) −3.12803e15 −0.0611986
\(373\) 9.84179e16 1.89220 0.946099 0.323878i \(-0.104987\pi\)
0.946099 + 0.323878i \(0.104987\pi\)
\(374\) 4.96740e15 0.0938564
\(375\) −2.59165e15 −0.0481252
\(376\) −1.58329e16 −0.288961
\(377\) −4.88991e16 −0.877167
\(378\) 4.84452e15 0.0854190
\(379\) −9.72245e16 −1.68508 −0.842541 0.538633i \(-0.818941\pi\)
−0.842541 + 0.538633i \(0.818941\pi\)
\(380\) −2.21231e16 −0.376922
\(381\) −7.18142e13 −0.00120281
\(382\) −1.49247e17 −2.45751
\(383\) −1.02352e17 −1.65694 −0.828468 0.560036i \(-0.810787\pi\)
−0.828468 + 0.560036i \(0.810787\pi\)
\(384\) 1.57835e15 0.0251219
\(385\) −1.16562e15 −0.0182416
\(386\) −1.11163e17 −1.71057
\(387\) 9.28240e16 1.40456
\(388\) −1.01692e16 −0.151315
\(389\) 1.27759e16 0.186947 0.0934735 0.995622i \(-0.470203\pi\)
0.0934735 + 0.995622i \(0.470203\pi\)
\(390\) −2.38123e15 −0.0342674
\(391\) −7.79815e16 −1.10368
\(392\) 1.21349e16 0.168918
\(393\) −4.93033e13 −0.000675032 0
\(394\) −7.79290e15 −0.104948
\(395\) −3.22254e16 −0.426891
\(396\) 5.12032e15 0.0667234
\(397\) 6.63410e16 0.850440 0.425220 0.905090i \(-0.360197\pi\)
0.425220 + 0.905090i \(0.360197\pi\)
\(398\) 9.56085e16 1.20575
\(399\) −1.34655e15 −0.0167071
\(400\) 4.50683e16 0.550150
\(401\) 4.58285e16 0.550424 0.275212 0.961384i \(-0.411252\pi\)
0.275212 + 0.961384i \(0.411252\pi\)
\(402\) −4.58254e15 −0.0541548
\(403\) −7.19694e16 −0.836884
\(404\) 2.39948e16 0.274561
\(405\) 4.93397e16 0.555570
\(406\) 8.14796e16 0.902879
\(407\) −9.91573e15 −0.108134
\(408\) −1.32302e15 −0.0141996
\(409\) 1.15184e17 1.21672 0.608358 0.793663i \(-0.291829\pi\)
0.608358 + 0.793663i \(0.291829\pi\)
\(410\) −1.03090e17 −1.07182
\(411\) −7.30475e15 −0.0747538
\(412\) 1.57603e17 1.58757
\(413\) 5.24441e16 0.520022
\(414\) −1.49098e17 −1.45536
\(415\) −1.48383e16 −0.142584
\(416\) 1.23281e17 1.16624
\(417\) 6.33243e15 0.0589774
\(418\) −5.28662e15 −0.0484766
\(419\) −1.68424e17 −1.52060 −0.760298 0.649575i \(-0.774947\pi\)
−0.760298 + 0.649575i \(0.774947\pi\)
\(420\) 2.13912e15 0.0190158
\(421\) 7.75103e16 0.678462 0.339231 0.940703i \(-0.389833\pi\)
0.339231 + 0.940703i \(0.389833\pi\)
\(422\) −3.22392e17 −2.77878
\(423\) −1.35786e17 −1.15250
\(424\) 4.28020e16 0.357755
\(425\) −9.29192e16 −0.764852
\(426\) −1.48850e16 −0.120666
\(427\) 6.67893e16 0.533244
\(428\) −2.25534e17 −1.77348
\(429\) −3.06776e14 −0.00237601
\(430\) 1.52249e17 1.16147
\(431\) 8.81664e16 0.662523 0.331261 0.943539i \(-0.392526\pi\)
0.331261 + 0.943539i \(0.392526\pi\)
\(432\) 1.10210e16 0.0815790
\(433\) 1.11461e17 0.812738 0.406369 0.913709i \(-0.366795\pi\)
0.406369 + 0.913709i \(0.366795\pi\)
\(434\) 1.19921e17 0.861415
\(435\) −4.33882e15 −0.0307038
\(436\) 1.03669e17 0.722748
\(437\) 8.29927e16 0.570047
\(438\) −5.42808e15 −0.0367337
\(439\) 1.70987e17 1.14010 0.570051 0.821609i \(-0.306923\pi\)
0.570051 + 0.821609i \(0.306923\pi\)
\(440\) 1.21885e15 0.00800769
\(441\) 1.04071e17 0.673722
\(442\) −2.09741e17 −1.33795
\(443\) 1.30826e16 0.0822375 0.0411187 0.999154i \(-0.486908\pi\)
0.0411187 + 0.999154i \(0.486908\pi\)
\(444\) 1.81971e16 0.112723
\(445\) 1.98659e15 0.0121274
\(446\) 1.16514e17 0.700973
\(447\) 5.72045e15 0.0339181
\(448\) −1.27296e17 −0.743889
\(449\) −2.91690e17 −1.68004 −0.840021 0.542554i \(-0.817457\pi\)
−0.840021 + 0.542554i \(0.817457\pi\)
\(450\) −1.77659e17 −1.00857
\(451\) −1.32812e16 −0.0743170
\(452\) −1.94402e17 −1.07226
\(453\) −8.70961e15 −0.0473544
\(454\) 9.21630e16 0.493962
\(455\) 4.92168e16 0.260039
\(456\) 1.40804e15 0.00733405
\(457\) −1.33514e17 −0.685602 −0.342801 0.939408i \(-0.611376\pi\)
−0.342801 + 0.939408i \(0.611376\pi\)
\(458\) 1.96345e17 0.994020
\(459\) −2.27225e16 −0.113416
\(460\) −1.31841e17 −0.648823
\(461\) 3.76065e17 1.82476 0.912382 0.409339i \(-0.134241\pi\)
0.912382 + 0.409339i \(0.134241\pi\)
\(462\) 5.11174e14 0.00244566
\(463\) 1.15716e17 0.545906 0.272953 0.962027i \(-0.412000\pi\)
0.272953 + 0.962027i \(0.412000\pi\)
\(464\) 1.85362e17 0.862291
\(465\) −6.38585e15 −0.0292937
\(466\) −1.54004e17 −0.696663
\(467\) 1.76242e17 0.786232 0.393116 0.919489i \(-0.371397\pi\)
0.393116 + 0.919489i \(0.371397\pi\)
\(468\) −2.16198e17 −0.951160
\(469\) 9.47149e16 0.410956
\(470\) −2.22714e17 −0.953041
\(471\) −8.19201e15 −0.0345744
\(472\) −5.48389e16 −0.228279
\(473\) 1.96143e16 0.0805333
\(474\) 1.41322e16 0.0572334
\(475\) 9.88904e16 0.395044
\(476\) 1.88416e17 0.742461
\(477\) 3.67078e17 1.42689
\(478\) 3.27691e17 1.25656
\(479\) 6.87114e16 0.259925 0.129962 0.991519i \(-0.458514\pi\)
0.129962 + 0.991519i \(0.458514\pi\)
\(480\) 1.09387e16 0.0408223
\(481\) 4.18677e17 1.54147
\(482\) −1.89357e17 −0.687822
\(483\) −8.02474e15 −0.0287590
\(484\) −3.29741e17 −1.16594
\(485\) −2.07604e16 −0.0724295
\(486\) −6.51954e16 −0.224430
\(487\) 4.38161e17 1.48832 0.744158 0.668004i \(-0.232851\pi\)
0.744158 + 0.668004i \(0.232851\pi\)
\(488\) −6.98390e16 −0.234083
\(489\) −1.51838e16 −0.0502195
\(490\) 1.70697e17 0.557122
\(491\) 7.76075e16 0.249962 0.124981 0.992159i \(-0.460113\pi\)
0.124981 + 0.992159i \(0.460113\pi\)
\(492\) 2.43732e16 0.0774712
\(493\) −3.82168e17 −1.19881
\(494\) 2.23220e17 0.691047
\(495\) 1.04531e16 0.0319382
\(496\) 2.72815e17 0.822691
\(497\) 3.07653e17 0.915681
\(498\) 6.50719e15 0.0191163
\(499\) 6.07391e17 1.76123 0.880613 0.473837i \(-0.157131\pi\)
0.880613 + 0.473837i \(0.157131\pi\)
\(500\) −3.85940e17 −1.10462
\(501\) 3.31149e16 0.0935574
\(502\) −8.41387e17 −2.34650
\(503\) −1.67159e17 −0.460192 −0.230096 0.973168i \(-0.573904\pi\)
−0.230096 + 0.973168i \(0.573904\pi\)
\(504\) 5.22828e16 0.142089
\(505\) 4.89853e16 0.131423
\(506\) −3.15054e16 −0.0834462
\(507\) −6.53678e15 −0.0170928
\(508\) −1.06943e16 −0.0276083
\(509\) −5.48168e17 −1.39717 −0.698583 0.715529i \(-0.746186\pi\)
−0.698583 + 0.715529i \(0.746186\pi\)
\(510\) −1.86104e16 −0.0468327
\(511\) 1.12191e17 0.278754
\(512\) −5.49011e17 −1.34687
\(513\) 2.41827e16 0.0585791
\(514\) 8.02090e17 1.91850
\(515\) 3.21746e17 0.759916
\(516\) −3.59957e16 −0.0839513
\(517\) −2.86924e16 −0.0660813
\(518\) −6.97633e17 −1.58666
\(519\) −1.69885e15 −0.00381565
\(520\) −5.14641e16 −0.114152
\(521\) −2.56918e17 −0.562793 −0.281397 0.959592i \(-0.590798\pi\)
−0.281397 + 0.959592i \(0.590798\pi\)
\(522\) −7.30694e17 −1.58080
\(523\) −2.45376e17 −0.524290 −0.262145 0.965028i \(-0.584430\pi\)
−0.262145 + 0.965028i \(0.584430\pi\)
\(524\) −7.34208e15 −0.0154941
\(525\) −9.56191e15 −0.0199301
\(526\) −3.13931e16 −0.0646289
\(527\) −5.62473e17 −1.14375
\(528\) 1.16289e15 0.00233571
\(529\) −9.44437e15 −0.0187375
\(530\) 6.02077e17 1.17994
\(531\) −4.70309e17 −0.910477
\(532\) −2.00524e17 −0.383479
\(533\) 5.60777e17 1.05941
\(534\) −8.71204e14 −0.00162593
\(535\) −4.60426e17 −0.848907
\(536\) −9.90398e16 −0.180401
\(537\) −4.77332e15 −0.00858990
\(538\) −6.21189e17 −1.10443
\(539\) 2.19910e16 0.0386293
\(540\) −3.84165e16 −0.0666742
\(541\) −2.75528e17 −0.472481 −0.236240 0.971695i \(-0.575915\pi\)
−0.236240 + 0.971695i \(0.575915\pi\)
\(542\) −7.21146e17 −1.22188
\(543\) 3.16819e15 0.00530411
\(544\) 9.63493e17 1.59388
\(545\) 2.11640e17 0.345955
\(546\) −2.15836e16 −0.0348635
\(547\) −6.71677e17 −1.07212 −0.536059 0.844180i \(-0.680088\pi\)
−0.536059 + 0.844180i \(0.680088\pi\)
\(548\) −1.08780e18 −1.71583
\(549\) −5.98954e17 −0.933626
\(550\) −3.75404e16 −0.0578284
\(551\) 4.06727e17 0.619181
\(552\) 8.39117e15 0.0126246
\(553\) −2.92093e17 −0.434317
\(554\) −3.73307e16 −0.0548596
\(555\) 3.71493e16 0.0539567
\(556\) 9.43004e17 1.35372
\(557\) 1.29772e18 1.84129 0.920644 0.390403i \(-0.127664\pi\)
0.920644 + 0.390403i \(0.127664\pi\)
\(558\) −1.07543e18 −1.50820
\(559\) −8.28186e17 −1.14802
\(560\) −1.86566e17 −0.255629
\(561\) −2.39759e15 −0.00324725
\(562\) 6.45606e17 0.864334
\(563\) −3.23275e17 −0.427827 −0.213913 0.976853i \(-0.568621\pi\)
−0.213913 + 0.976853i \(0.568621\pi\)
\(564\) 5.26556e16 0.0688859
\(565\) −3.96869e17 −0.513254
\(566\) −1.83905e18 −2.35118
\(567\) 4.47218e17 0.565235
\(568\) −3.21701e17 −0.401965
\(569\) 1.41375e18 1.74639 0.873196 0.487370i \(-0.162044\pi\)
0.873196 + 0.487370i \(0.162044\pi\)
\(570\) 1.98063e16 0.0241889
\(571\) −1.29622e18 −1.56510 −0.782551 0.622586i \(-0.786082\pi\)
−0.782551 + 0.622586i \(0.786082\pi\)
\(572\) −4.56840e16 −0.0545369
\(573\) 7.20364e16 0.0850251
\(574\) −9.34412e17 −1.09046
\(575\) 5.89333e17 0.680017
\(576\) 1.14157e18 1.30243
\(577\) 6.57893e17 0.742185 0.371093 0.928596i \(-0.378983\pi\)
0.371093 + 0.928596i \(0.378983\pi\)
\(578\) −3.18725e17 −0.355537
\(579\) 5.36542e16 0.0591825
\(580\) −6.46123e17 −0.704747
\(581\) −1.34495e17 −0.145064
\(582\) 9.10431e15 0.00971063
\(583\) 7.75660e16 0.0818137
\(584\) −1.17314e17 −0.122367
\(585\) −4.41367e17 −0.455288
\(586\) 1.00210e18 1.02230
\(587\) −8.27563e17 −0.834936 −0.417468 0.908692i \(-0.637082\pi\)
−0.417468 + 0.908692i \(0.637082\pi\)
\(588\) −4.03573e16 −0.0402689
\(589\) 5.98619e17 0.590746
\(590\) −7.71395e17 −0.752902
\(591\) 3.76135e15 0.00363099
\(592\) −1.58708e18 −1.51533
\(593\) 1.47638e18 1.39425 0.697126 0.716948i \(-0.254462\pi\)
0.697126 + 0.716948i \(0.254462\pi\)
\(594\) −9.18016e15 −0.00857508
\(595\) 3.84651e17 0.355391
\(596\) 8.51870e17 0.778526
\(597\) −4.61468e16 −0.0417166
\(598\) 1.33027e18 1.18955
\(599\) −1.32348e18 −1.17069 −0.585345 0.810784i \(-0.699041\pi\)
−0.585345 + 0.810784i \(0.699041\pi\)
\(600\) 9.99853e15 0.00874889
\(601\) 1.74144e18 1.50738 0.753691 0.657229i \(-0.228272\pi\)
0.753691 + 0.657229i \(0.228272\pi\)
\(602\) 1.37999e18 1.18168
\(603\) −8.49385e17 −0.719519
\(604\) −1.29701e18 −1.08693
\(605\) −6.73163e17 −0.558098
\(606\) −2.14821e16 −0.0176199
\(607\) 1.16961e18 0.949105 0.474553 0.880227i \(-0.342610\pi\)
0.474553 + 0.880227i \(0.342610\pi\)
\(608\) −1.02541e18 −0.823235
\(609\) −3.93273e16 −0.0312379
\(610\) −9.82395e17 −0.772045
\(611\) 1.21150e18 0.942007
\(612\) −1.68968e18 −1.29993
\(613\) −1.86809e18 −1.42202 −0.711009 0.703183i \(-0.751761\pi\)
−0.711009 + 0.703183i \(0.751761\pi\)
\(614\) −1.51863e18 −1.14382
\(615\) 4.97578e16 0.0370828
\(616\) 1.10477e16 0.00814699
\(617\) −1.49993e18 −1.09450 −0.547251 0.836969i \(-0.684326\pi\)
−0.547251 + 0.836969i \(0.684326\pi\)
\(618\) −1.41099e17 −0.101882
\(619\) 1.28869e18 0.920785 0.460393 0.887715i \(-0.347709\pi\)
0.460393 + 0.887715i \(0.347709\pi\)
\(620\) −9.50960e17 −0.672382
\(621\) 1.44116e17 0.100836
\(622\) −2.11736e18 −1.46608
\(623\) 1.80066e16 0.0123384
\(624\) −4.91015e16 −0.0332962
\(625\) 2.35040e17 0.157733
\(626\) −2.25343e18 −1.49662
\(627\) 2.55166e15 0.00167720
\(628\) −1.21993e18 −0.793590
\(629\) 3.27215e18 2.10671
\(630\) 7.35440e17 0.468634
\(631\) 2.76876e18 1.74620 0.873101 0.487540i \(-0.162106\pi\)
0.873101 + 0.487540i \(0.162106\pi\)
\(632\) 3.05430e17 0.190656
\(633\) 1.55607e17 0.0961403
\(634\) 2.66312e18 1.62858
\(635\) −2.18324e16 −0.0132152
\(636\) −1.42347e17 −0.0852860
\(637\) −9.28537e17 −0.550672
\(638\) −1.54400e17 −0.0906387
\(639\) −2.75897e18 −1.60321
\(640\) 4.79839e17 0.276011
\(641\) 2.68534e18 1.52905 0.764524 0.644595i \(-0.222974\pi\)
0.764524 + 0.644595i \(0.222974\pi\)
\(642\) 2.01916e17 0.113813
\(643\) 2.92849e18 1.63408 0.817038 0.576584i \(-0.195614\pi\)
0.817038 + 0.576584i \(0.195614\pi\)
\(644\) −1.19502e18 −0.660110
\(645\) −7.34850e16 −0.0401847
\(646\) 1.74456e18 0.944441
\(647\) −1.53528e18 −0.822830 −0.411415 0.911448i \(-0.634965\pi\)
−0.411415 + 0.911448i \(0.634965\pi\)
\(648\) −4.67639e17 −0.248126
\(649\) −9.93794e16 −0.0522042
\(650\) 1.58509e18 0.824360
\(651\) −5.78817e16 −0.0298033
\(652\) −2.26112e18 −1.15269
\(653\) 1.78601e18 0.901464 0.450732 0.892659i \(-0.351163\pi\)
0.450732 + 0.892659i \(0.351163\pi\)
\(654\) −9.28127e16 −0.0463823
\(655\) −1.49888e16 −0.00741649
\(656\) −2.12574e18 −1.04144
\(657\) −1.00611e18 −0.488055
\(658\) −2.01869e18 −0.969620
\(659\) 2.00624e18 0.954174 0.477087 0.878856i \(-0.341693\pi\)
0.477087 + 0.878856i \(0.341693\pi\)
\(660\) −4.05354e15 −0.00190897
\(661\) −3.79500e18 −1.76971 −0.884856 0.465865i \(-0.845743\pi\)
−0.884856 + 0.465865i \(0.845743\pi\)
\(662\) 1.83651e17 0.0848040
\(663\) 1.01235e17 0.0462904
\(664\) 1.40636e17 0.0636802
\(665\) −4.09369e17 −0.183558
\(666\) 6.25624e18 2.77799
\(667\) 2.42387e18 1.06584
\(668\) 4.93136e18 2.14743
\(669\) −5.62371e16 −0.0242523
\(670\) −1.39315e18 −0.594993
\(671\) −1.26563e17 −0.0535315
\(672\) 9.91489e16 0.0415325
\(673\) 6.85819e17 0.284519 0.142260 0.989829i \(-0.454563\pi\)
0.142260 + 0.989829i \(0.454563\pi\)
\(674\) 3.38676e18 1.39154
\(675\) 1.71722e17 0.0698798
\(676\) −9.73436e17 −0.392332
\(677\) 3.08893e18 1.23305 0.616527 0.787334i \(-0.288539\pi\)
0.616527 + 0.787334i \(0.288539\pi\)
\(678\) 1.74044e17 0.0688121
\(679\) −1.88174e17 −0.0736894
\(680\) −4.02215e17 −0.156009
\(681\) −4.44838e16 −0.0170901
\(682\) −2.27245e17 −0.0864762
\(683\) −3.58816e18 −1.35250 −0.676250 0.736672i \(-0.736396\pi\)
−0.676250 + 0.736672i \(0.736396\pi\)
\(684\) 1.79827e18 0.671412
\(685\) −2.22073e18 −0.821311
\(686\) 3.83774e18 1.40594
\(687\) −9.47689e16 −0.0343912
\(688\) 3.13941e18 1.12855
\(689\) −3.27511e18 −1.16628
\(690\) 1.18035e17 0.0416381
\(691\) 1.65030e18 0.576708 0.288354 0.957524i \(-0.406892\pi\)
0.288354 + 0.957524i \(0.406892\pi\)
\(692\) −2.52988e17 −0.0875810
\(693\) 9.47473e16 0.0324938
\(694\) −8.12400e18 −2.76016
\(695\) 1.92514e18 0.647978
\(696\) 4.11231e16 0.0137128
\(697\) 4.38273e18 1.44788
\(698\) −1.88797e17 −0.0617923
\(699\) 7.43321e16 0.0241032
\(700\) −1.42393e18 −0.457458
\(701\) −8.59076e17 −0.273441 −0.136721 0.990610i \(-0.543656\pi\)
−0.136721 + 0.990610i \(0.543656\pi\)
\(702\) 3.87619e17 0.122240
\(703\) −3.48242e18 −1.08811
\(704\) 2.41221e17 0.0746779
\(705\) 1.07496e17 0.0329734
\(706\) −7.94101e18 −2.41349
\(707\) 4.44005e17 0.133709
\(708\) 1.82379e17 0.0544199
\(709\) 2.40726e18 0.711743 0.355872 0.934535i \(-0.384184\pi\)
0.355872 + 0.934535i \(0.384184\pi\)
\(710\) −4.52523e18 −1.32575
\(711\) 2.61943e18 0.760422
\(712\) −1.88288e16 −0.00541631
\(713\) 3.56744e18 1.01689
\(714\) −1.68685e17 −0.0476474
\(715\) −9.32636e16 −0.0261050
\(716\) −7.10828e17 −0.197165
\(717\) −1.58165e17 −0.0434746
\(718\) 1.63678e18 0.445843
\(719\) −3.57856e17 −0.0965985 −0.0482992 0.998833i \(-0.515380\pi\)
−0.0482992 + 0.998833i \(0.515380\pi\)
\(720\) 1.67309e18 0.447567
\(721\) 2.91632e18 0.773136
\(722\) 3.74992e18 0.985212
\(723\) 9.13960e16 0.0237973
\(724\) 4.71797e17 0.121746
\(725\) 2.88818e18 0.738630
\(726\) 2.95210e17 0.0748243
\(727\) 7.11920e18 1.78837 0.894185 0.447698i \(-0.147756\pi\)
0.894185 + 0.447698i \(0.147756\pi\)
\(728\) −4.66473e17 −0.116138
\(729\) −3.98954e18 −0.984450
\(730\) −1.65020e18 −0.403588
\(731\) −6.47264e18 −1.56898
\(732\) 2.32265e17 0.0558035
\(733\) 7.20770e18 1.71641 0.858205 0.513307i \(-0.171580\pi\)
0.858205 + 0.513307i \(0.171580\pi\)
\(734\) −2.61923e18 −0.618229
\(735\) −8.23891e16 −0.0192753
\(736\) −6.11089e18 −1.41709
\(737\) −1.79481e17 −0.0412552
\(738\) 8.37963e18 1.90923
\(739\) −8.70530e17 −0.196605 −0.0983026 0.995157i \(-0.531341\pi\)
−0.0983026 + 0.995157i \(0.531341\pi\)
\(740\) 5.53214e18 1.23848
\(741\) −1.07740e17 −0.0239089
\(742\) 5.45725e18 1.20046
\(743\) 2.00355e18 0.436892 0.218446 0.975849i \(-0.429901\pi\)
0.218446 + 0.975849i \(0.429901\pi\)
\(744\) 6.05247e16 0.0130830
\(745\) 1.73909e18 0.372654
\(746\) −1.31213e19 −2.78723
\(747\) 1.20612e18 0.253985
\(748\) −3.57041e17 −0.0745346
\(749\) −4.17332e18 −0.863674
\(750\) 3.45524e17 0.0708891
\(751\) 3.55821e18 0.723723 0.361861 0.932232i \(-0.382141\pi\)
0.361861 + 0.932232i \(0.382141\pi\)
\(752\) −4.59242e18 −0.926031
\(753\) 4.06107e17 0.0811845
\(754\) 6.51933e18 1.29208
\(755\) −2.64783e18 −0.520278
\(756\) −3.48209e17 −0.0678341
\(757\) 3.93179e17 0.0759394 0.0379697 0.999279i \(-0.487911\pi\)
0.0379697 + 0.999279i \(0.487911\pi\)
\(758\) 1.29622e19 2.48215
\(759\) 1.52065e16 0.00288708
\(760\) 4.28062e17 0.0805783
\(761\) 4.45561e18 0.831585 0.415793 0.909459i \(-0.363504\pi\)
0.415793 + 0.909459i \(0.363504\pi\)
\(762\) 9.57441e15 0.00177176
\(763\) 1.91831e18 0.351973
\(764\) 1.07274e19 1.95159
\(765\) −3.44948e18 −0.622234
\(766\) 1.36458e19 2.44069
\(767\) 4.19615e18 0.744185
\(768\) 1.68006e17 0.0295445
\(769\) 5.83473e18 1.01742 0.508710 0.860938i \(-0.330123\pi\)
0.508710 + 0.860938i \(0.330123\pi\)
\(770\) 1.55403e17 0.0268702
\(771\) −3.87140e17 −0.0663765
\(772\) 7.99001e18 1.35842
\(773\) −2.92948e18 −0.493882 −0.246941 0.969031i \(-0.579425\pi\)
−0.246941 + 0.969031i \(0.579425\pi\)
\(774\) −1.23755e19 −2.06893
\(775\) 4.25080e18 0.704709
\(776\) 1.96766e17 0.0323481
\(777\) 3.36723e17 0.0548954
\(778\) −1.70331e18 −0.275376
\(779\) −4.66437e18 −0.747824
\(780\) 1.71155e17 0.0272129
\(781\) −5.82989e17 −0.0919239
\(782\) 1.03967e19 1.62573
\(783\) 7.06278e17 0.109528
\(784\) 3.51980e18 0.541333
\(785\) −2.49047e18 −0.379865
\(786\) 6.57321e15 0.000994331 0
\(787\) 7.19182e18 1.07895 0.539477 0.842000i \(-0.318622\pi\)
0.539477 + 0.842000i \(0.318622\pi\)
\(788\) 5.60129e17 0.0833426
\(789\) 1.51523e16 0.00223604
\(790\) 4.29635e18 0.628817
\(791\) −3.59724e18 −0.522183
\(792\) −9.90737e16 −0.0142641
\(793\) 5.34393e18 0.763106
\(794\) −8.84471e18 −1.25271
\(795\) −2.90601e17 −0.0408235
\(796\) −6.87203e18 −0.957525
\(797\) −1.25524e19 −1.73479 −0.867395 0.497620i \(-0.834207\pi\)
−0.867395 + 0.497620i \(0.834207\pi\)
\(798\) 1.79525e17 0.0246097
\(799\) 9.46838e18 1.28742
\(800\) −7.28145e18 −0.982049
\(801\) −1.61480e17 −0.0216026
\(802\) −6.10995e18 −0.810782
\(803\) −2.12597e17 −0.0279837
\(804\) 3.29378e17 0.0430062
\(805\) −2.43962e18 −0.315972
\(806\) 9.59511e18 1.23274
\(807\) 2.99826e17 0.0382112
\(808\) −4.64279e17 −0.0586956
\(809\) 1.12068e19 1.40545 0.702726 0.711461i \(-0.251966\pi\)
0.702726 + 0.711461i \(0.251966\pi\)
\(810\) −6.57807e18 −0.818363
\(811\) 1.29000e19 1.59204 0.796021 0.605268i \(-0.206934\pi\)
0.796021 + 0.605268i \(0.206934\pi\)
\(812\) −5.85649e18 −0.717007
\(813\) 3.48071e17 0.0422746
\(814\) 1.32198e18 0.159282
\(815\) −4.61606e18 −0.551756
\(816\) −3.83750e17 −0.0455054
\(817\) 6.88859e18 0.810376
\(818\) −1.53565e19 −1.79224
\(819\) −4.00057e18 −0.463208
\(820\) 7.40977e18 0.851167
\(821\) 1.08760e19 1.23948 0.619738 0.784809i \(-0.287239\pi\)
0.619738 + 0.784809i \(0.287239\pi\)
\(822\) 9.73884e17 0.110113
\(823\) −5.10795e18 −0.572991 −0.286495 0.958082i \(-0.592490\pi\)
−0.286495 + 0.958082i \(0.592490\pi\)
\(824\) −3.04948e18 −0.339390
\(825\) 1.81194e16 0.00200075
\(826\) −6.99196e18 −0.765999
\(827\) 8.30477e18 0.902697 0.451349 0.892348i \(-0.350943\pi\)
0.451349 + 0.892348i \(0.350943\pi\)
\(828\) 1.07167e19 1.15575
\(829\) 4.61268e17 0.0493571 0.0246785 0.999695i \(-0.492144\pi\)
0.0246785 + 0.999695i \(0.492144\pi\)
\(830\) 1.97827e18 0.210028
\(831\) 1.80182e16 0.00189804
\(832\) −1.01852e19 −1.06455
\(833\) −7.25693e18 −0.752593
\(834\) −8.44252e17 −0.0868746
\(835\) 1.00673e19 1.02790
\(836\) 3.79985e17 0.0384969
\(837\) 1.03950e18 0.104498
\(838\) 2.24547e19 2.23986
\(839\) −8.49861e18 −0.841192 −0.420596 0.907248i \(-0.638179\pi\)
−0.420596 + 0.907248i \(0.638179\pi\)
\(840\) −4.13902e16 −0.00406520
\(841\) 1.61819e18 0.157709
\(842\) −1.03338e19 −0.999384
\(843\) −3.11611e17 −0.0299043
\(844\) 2.31725e19 2.20672
\(845\) −1.98726e18 −0.187796
\(846\) 1.81032e19 1.69765
\(847\) −6.10158e18 −0.567807
\(848\) 1.24150e19 1.14650
\(849\) 8.87644e17 0.0813465
\(850\) 1.23882e19 1.12664
\(851\) −2.07534e19 −1.87304
\(852\) 1.06989e18 0.0958253
\(853\) −2.14697e19 −1.90835 −0.954174 0.299252i \(-0.903263\pi\)
−0.954174 + 0.299252i \(0.903263\pi\)
\(854\) −8.90448e18 −0.785475
\(855\) 3.67115e18 0.321382
\(856\) 4.36388e18 0.379135
\(857\) −1.24634e19 −1.07463 −0.537317 0.843380i \(-0.680562\pi\)
−0.537317 + 0.843380i \(0.680562\pi\)
\(858\) 4.08999e16 0.00349990
\(859\) 3.16481e18 0.268777 0.134389 0.990929i \(-0.457093\pi\)
0.134389 + 0.990929i \(0.457093\pi\)
\(860\) −1.09431e19 −0.922364
\(861\) 4.51007e17 0.0377279
\(862\) −1.17545e19 −0.975905
\(863\) −8.02569e18 −0.661321 −0.330660 0.943750i \(-0.607271\pi\)
−0.330660 + 0.943750i \(0.607271\pi\)
\(864\) −1.78061e18 −0.145623
\(865\) −5.16473e17 −0.0419221
\(866\) −1.48602e19 −1.19717
\(867\) 1.53837e17 0.0123009
\(868\) −8.61955e18 −0.684079
\(869\) 5.53503e17 0.0436005
\(870\) 5.78460e17 0.0452271
\(871\) 7.57831e18 0.588104
\(872\) −2.00591e18 −0.154509
\(873\) 1.68751e18 0.129019
\(874\) −1.10648e19 −0.839687
\(875\) −7.14150e18 −0.537944
\(876\) 3.90152e17 0.0291714
\(877\) −3.68350e18 −0.273378 −0.136689 0.990614i \(-0.543646\pi\)
−0.136689 + 0.990614i \(0.543646\pi\)
\(878\) −2.27963e19 −1.67939
\(879\) −4.83678e17 −0.0353695
\(880\) 3.53534e17 0.0256622
\(881\) −4.70489e17 −0.0339005 −0.0169502 0.999856i \(-0.505396\pi\)
−0.0169502 + 0.999856i \(0.505396\pi\)
\(882\) −1.38750e19 −0.992402
\(883\) 2.53314e18 0.179851 0.0899257 0.995948i \(-0.471337\pi\)
0.0899257 + 0.995948i \(0.471337\pi\)
\(884\) 1.50755e19 1.06251
\(885\) 3.72324e17 0.0260490
\(886\) −1.74420e18 −0.121137
\(887\) 1.68924e19 1.16463 0.582315 0.812964i \(-0.302147\pi\)
0.582315 + 0.812964i \(0.302147\pi\)
\(888\) −3.52098e17 −0.0240979
\(889\) −1.97890e17 −0.0134450
\(890\) −2.64857e17 −0.0178639
\(891\) −8.47458e17 −0.0567431
\(892\) −8.37464e18 −0.556666
\(893\) −1.00768e19 −0.664951
\(894\) −7.62662e17 −0.0499618
\(895\) −1.45115e18 −0.0943762
\(896\) 4.34929e18 0.280812
\(897\) −6.42073e17 −0.0411561
\(898\) 3.88887e19 2.47472
\(899\) 1.74832e19 1.10454
\(900\) 1.27695e19 0.800937
\(901\) −2.55965e19 −1.59393
\(902\) 1.77067e18 0.109470
\(903\) −6.66071e17 −0.0408837
\(904\) 3.76150e18 0.229227
\(905\) 9.63170e17 0.0582757
\(906\) 1.16118e18 0.0697537
\(907\) −1.44478e19 −0.861694 −0.430847 0.902425i \(-0.641785\pi\)
−0.430847 + 0.902425i \(0.641785\pi\)
\(908\) −6.62438e18 −0.392272
\(909\) −3.98175e18 −0.234104
\(910\) −6.56168e18 −0.383041
\(911\) −2.55988e19 −1.48371 −0.741857 0.670558i \(-0.766055\pi\)
−0.741857 + 0.670558i \(0.766055\pi\)
\(912\) 4.08411e17 0.0235034
\(913\) 2.54862e17 0.0145628
\(914\) 1.78004e19 1.00990
\(915\) 4.74167e17 0.0267113
\(916\) −1.41127e19 −0.789385
\(917\) −1.35859e17 −0.00754551
\(918\) 3.02941e18 0.167063
\(919\) 2.18967e18 0.119902 0.0599511 0.998201i \(-0.480906\pi\)
0.0599511 + 0.998201i \(0.480906\pi\)
\(920\) 2.55102e18 0.138705
\(921\) 7.32987e17 0.0395739
\(922\) −5.01377e19 −2.68790
\(923\) 2.46158e19 1.31040
\(924\) −3.67415e16 −0.00194218
\(925\) −2.47288e19 −1.29802
\(926\) −1.54275e19 −0.804128
\(927\) −2.61530e19 −1.35364
\(928\) −2.99480e19 −1.53924
\(929\) −3.72441e19 −1.90088 −0.950441 0.310906i \(-0.899368\pi\)
−0.950441 + 0.310906i \(0.899368\pi\)
\(930\) 8.51374e17 0.0431501
\(931\) 7.72327e18 0.388712
\(932\) 1.10693e19 0.553244
\(933\) 1.02198e18 0.0507235
\(934\) −2.34970e19 −1.15813
\(935\) −7.28897e17 −0.0356772
\(936\) 4.18324e18 0.203339
\(937\) −3.34630e19 −1.61532 −0.807659 0.589650i \(-0.799266\pi\)
−0.807659 + 0.589650i \(0.799266\pi\)
\(938\) −1.26276e19 −0.605343
\(939\) 1.08765e18 0.0517801
\(940\) 1.60080e19 0.756842
\(941\) 1.96087e19 0.920696 0.460348 0.887739i \(-0.347725\pi\)
0.460348 + 0.887739i \(0.347725\pi\)
\(942\) 1.09217e18 0.0509285
\(943\) −2.77971e19 −1.28728
\(944\) −1.59063e19 −0.731564
\(945\) −7.10865e17 −0.0324699
\(946\) −2.61502e18 −0.118627
\(947\) −1.87378e18 −0.0844196 −0.0422098 0.999109i \(-0.513440\pi\)
−0.0422098 + 0.999109i \(0.513440\pi\)
\(948\) −1.01577e18 −0.0454510
\(949\) 8.97659e18 0.398916
\(950\) −1.31843e19 −0.581905
\(951\) −1.28539e18 −0.0563459
\(952\) −3.64570e18 −0.158723
\(953\) −8.42229e18 −0.364189 −0.182094 0.983281i \(-0.558288\pi\)
−0.182094 + 0.983281i \(0.558288\pi\)
\(954\) −4.89396e19 −2.10182
\(955\) 2.19000e19 0.934160
\(956\) −2.35534e19 −0.997877
\(957\) 7.45235e16 0.00313592
\(958\) −9.16074e18 −0.382873
\(959\) −2.01288e19 −0.835599
\(960\) −9.03732e17 −0.0372629
\(961\) 1.31409e18 0.0538173
\(962\) −5.58189e19 −2.27061
\(963\) 3.74255e19 1.51216
\(964\) 1.36104e19 0.546223
\(965\) 1.63115e19 0.650231
\(966\) 1.06987e18 0.0423625
\(967\) 6.28151e17 0.0247054 0.0123527 0.999924i \(-0.496068\pi\)
0.0123527 + 0.999924i \(0.496068\pi\)
\(968\) 6.38020e18 0.249255
\(969\) −8.42038e17 −0.0326759
\(970\) 2.76782e18 0.106690
\(971\) −1.77608e19 −0.680045 −0.340023 0.940417i \(-0.610435\pi\)
−0.340023 + 0.940417i \(0.610435\pi\)
\(972\) 4.68603e18 0.178228
\(973\) 1.74495e19 0.659250
\(974\) −5.84165e19 −2.19231
\(975\) −7.65066e17 −0.0285213
\(976\) −2.02572e19 −0.750164
\(977\) 1.51925e19 0.558875 0.279438 0.960164i \(-0.409852\pi\)
0.279438 + 0.960164i \(0.409852\pi\)
\(978\) 2.02433e18 0.0739740
\(979\) −3.41217e16 −0.00123863
\(980\) −1.22691e19 −0.442429
\(981\) −1.72030e19 −0.616250
\(982\) −1.03468e19 −0.368197
\(983\) 5.32971e19 1.88411 0.942054 0.335461i \(-0.108892\pi\)
0.942054 + 0.335461i \(0.108892\pi\)
\(984\) −4.71601e17 −0.0165618
\(985\) 1.14350e18 0.0398933
\(986\) 5.09514e19 1.76586
\(987\) 9.74350e17 0.0335470
\(988\) −1.60443e19 −0.548784
\(989\) 4.10523e19 1.39496
\(990\) −1.39363e18 −0.0470455
\(991\) 5.83926e19 1.95830 0.979150 0.203138i \(-0.0651140\pi\)
0.979150 + 0.203138i \(0.0651140\pi\)
\(992\) −4.40772e19 −1.46855
\(993\) −8.86417e16 −0.00293405
\(994\) −4.10169e19 −1.34881
\(995\) −1.40292e19 −0.458335
\(996\) −4.67716e17 −0.0151809
\(997\) 4.71791e19 1.52136 0.760678 0.649129i \(-0.224867\pi\)
0.760678 + 0.649129i \(0.224867\pi\)
\(998\) −8.09786e19 −2.59431
\(999\) −6.04719e18 −0.192477
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 197.14.a.b.1.18 109
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.14.a.b.1.18 109 1.1 even 1 trivial