Defining parameters
Level: | \( N \) | \(=\) | \( 1968 = 2^{4} \cdot 3 \cdot 41 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1968.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 24 \) | ||
Sturm bound: | \(672\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\), \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1968))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 348 | 40 | 308 |
Cusp forms | 325 | 40 | 285 |
Eisenstein series | 23 | 0 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(41\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(38\) | \(4\) | \(34\) | \(36\) | \(4\) | \(32\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(49\) | \(7\) | \(42\) | \(46\) | \(7\) | \(39\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(41\) | \(6\) | \(35\) | \(38\) | \(6\) | \(32\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(46\) | \(3\) | \(43\) | \(43\) | \(3\) | \(40\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(49\) | \(5\) | \(44\) | \(46\) | \(5\) | \(41\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(38\) | \(5\) | \(33\) | \(35\) | \(5\) | \(30\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(46\) | \(5\) | \(41\) | \(43\) | \(5\) | \(38\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(41\) | \(5\) | \(36\) | \(38\) | \(5\) | \(33\) | \(3\) | \(0\) | \(3\) | |||
Plus space | \(+\) | \(168\) | \(17\) | \(151\) | \(157\) | \(17\) | \(140\) | \(11\) | \(0\) | \(11\) | |||||
Minus space | \(-\) | \(180\) | \(23\) | \(157\) | \(168\) | \(23\) | \(145\) | \(12\) | \(0\) | \(12\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1968))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1968))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1968)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(41))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(82))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(123))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(164))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(246))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(328))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(492))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(656))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(984))\)\(^{\oplus 2}\)