# Properties

 Label 1968.2.a.w Level 1968 Weight 2 Character orbit 1968.a Self dual yes Analytic conductor 15.715 Analytic rank 0 Dimension 3 CM no Inner twists 1

# Related objects

## Newspace parameters

 Level: $$N$$ = $$1968 = 2^{4} \cdot 3 \cdot 41$$ Weight: $$k$$ = $$2$$ Character orbit: $$[\chi]$$ = 1968.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$15.7145591178$$ Analytic rank: $$0$$ Dimension: $$3$$ Coefficient field: 3.3.316.1 Coefficient ring: $$\Z[a_1, \ldots, a_{11}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 123) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + q^{3} + ( 1 + \beta_{1} - \beta_{2} ) q^{5} + ( -1 + \beta_{1} + \beta_{2} ) q^{7} + q^{9} +O(q^{10})$$ $$q + q^{3} + ( 1 + \beta_{1} - \beta_{2} ) q^{5} + ( -1 + \beta_{1} + \beta_{2} ) q^{7} + q^{9} + ( 1 + \beta_{1} ) q^{11} + ( 3 - \beta_{1} + \beta_{2} ) q^{13} + ( 1 + \beta_{1} - \beta_{2} ) q^{15} + ( 1 - \beta_{1} + 2 \beta_{2} ) q^{17} + ( -1 + \beta_{1} - \beta_{2} ) q^{19} + ( -1 + \beta_{1} + \beta_{2} ) q^{21} + ( 3 + \beta_{1} - \beta_{2} ) q^{23} + ( 1 + 2 \beta_{1} - 4 \beta_{2} ) q^{25} + q^{27} + ( -1 - 3 \beta_{1} ) q^{29} + ( 2 - 4 \beta_{1} - \beta_{2} ) q^{31} + ( 1 + \beta_{1} ) q^{33} + ( -2 - 2 \beta_{1} + 4 \beta_{2} ) q^{35} + ( 6 + 2 \beta_{1} - \beta_{2} ) q^{37} + ( 3 - \beta_{1} + \beta_{2} ) q^{39} + q^{41} + ( -4 + 2 \beta_{1} - 5 \beta_{2} ) q^{43} + ( 1 + \beta_{1} - \beta_{2} ) q^{45} + ( -1 - \beta_{1} - 2 \beta_{2} ) q^{47} + ( 3 + 2 \beta_{1} ) q^{49} + ( 1 - \beta_{1} + 2 \beta_{2} ) q^{51} + ( 6 - 4 \beta_{1} + 2 \beta_{2} ) q^{53} + ( 3 + \beta_{1} - \beta_{2} ) q^{55} + ( -1 + \beta_{1} - \beta_{2} ) q^{57} + ( 2 + 2 \beta_{1} + 2 \beta_{2} ) q^{59} + ( -2 - 2 \beta_{1} + \beta_{2} ) q^{61} + ( -1 + \beta_{1} + \beta_{2} ) q^{63} + ( -2 + 2 \beta_{1} ) q^{65} + ( -2 - 6 \beta_{1} + 4 \beta_{2} ) q^{67} + ( 3 + \beta_{1} - \beta_{2} ) q^{69} + ( 11 - \beta_{1} ) q^{71} + ( 2 - 2 \beta_{1} - 3 \beta_{2} ) q^{73} + ( 1 + 2 \beta_{1} - 4 \beta_{2} ) q^{75} + ( 3 + \beta_{1} + 3 \beta_{2} ) q^{77} + ( 8 - 4 \beta_{1} + 2 \beta_{2} ) q^{79} + q^{81} + ( 5 - \beta_{1} + 3 \beta_{2} ) q^{83} + ( -7 - \beta_{1} + 5 \beta_{2} ) q^{85} + ( -1 - 3 \beta_{1} ) q^{87} + ( 6 - 4 \beta_{1} ) q^{89} + ( -2 + 6 \beta_{1} ) q^{91} + ( 2 - 4 \beta_{1} - \beta_{2} ) q^{93} + ( 4 - 2 \beta_{2} ) q^{95} + ( -3 - 3 \beta_{1} + \beta_{2} ) q^{97} + ( 1 + \beta_{1} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$3q + 3q^{3} + 4q^{5} - 2q^{7} + 3q^{9} + O(q^{10})$$ $$3q + 3q^{3} + 4q^{5} - 2q^{7} + 3q^{9} + 4q^{11} + 8q^{13} + 4q^{15} + 2q^{17} - 2q^{19} - 2q^{21} + 10q^{23} + 5q^{25} + 3q^{27} - 6q^{29} + 2q^{31} + 4q^{33} - 8q^{35} + 20q^{37} + 8q^{39} + 3q^{41} - 10q^{43} + 4q^{45} - 4q^{47} + 11q^{49} + 2q^{51} + 14q^{53} + 10q^{55} - 2q^{57} + 8q^{59} - 8q^{61} - 2q^{63} - 4q^{65} - 12q^{67} + 10q^{69} + 32q^{71} + 4q^{73} + 5q^{75} + 10q^{77} + 20q^{79} + 3q^{81} + 14q^{83} - 22q^{85} - 6q^{87} + 14q^{89} + 2q^{93} + 12q^{95} - 12q^{97} + 4q^{99} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{3} - x^{2} - 4 x + 2$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu$$ $$\beta_{2}$$ $$=$$ $$\nu^{2} - 3$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$\beta_{1}$$ $$\nu^{2}$$ $$=$$ $$\beta_{2} + 3$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −1.81361 2.34292 0.470683
0 1.00000 0 −1.10278 0 −2.52444 0 1.00000 0
1.2 0 1.00000 0 0.853635 0 3.83221 0 1.00000 0
1.3 0 1.00000 0 4.24914 0 −3.30777 0 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1968.2.a.w 3
3.b odd 2 1 5904.2.a.bd 3
4.b odd 2 1 123.2.a.d 3
8.b even 2 1 7872.2.a.bs 3
8.d odd 2 1 7872.2.a.bx 3
12.b even 2 1 369.2.a.e 3
20.d odd 2 1 3075.2.a.t 3
28.d even 2 1 6027.2.a.s 3
60.h even 2 1 9225.2.a.bx 3
164.d odd 2 1 5043.2.a.n 3

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
123.2.a.d 3 4.b odd 2 1
369.2.a.e 3 12.b even 2 1
1968.2.a.w 3 1.a even 1 1 trivial
3075.2.a.t 3 20.d odd 2 1
5043.2.a.n 3 164.d odd 2 1
5904.2.a.bd 3 3.b odd 2 1
6027.2.a.s 3 28.d even 2 1
7872.2.a.bs 3 8.b even 2 1
7872.2.a.bx 3 8.d odd 2 1
9225.2.a.bx 3 60.h even 2 1

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$41$$ $$-1$$

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1968))$$:

 $$T_{5}^{3} - 4 T_{5}^{2} - 2 T_{5} + 4$$ $$T_{7}^{3} + 2 T_{7}^{2} - 14 T_{7} - 32$$ $$T_{11}^{3} - 4 T_{11}^{2} + T_{11} + 4$$

## Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ 
$3$ $$( 1 - T )^{3}$$
$5$ $$1 - 4 T + 13 T^{2} - 36 T^{3} + 65 T^{4} - 100 T^{5} + 125 T^{6}$$
$7$ $$1 + 2 T + 7 T^{2} - 4 T^{3} + 49 T^{4} + 98 T^{5} + 343 T^{6}$$
$11$ $$1 - 4 T + 34 T^{2} - 84 T^{3} + 374 T^{4} - 484 T^{5} + 1331 T^{6}$$
$13$ $$1 - 8 T + 53 T^{2} - 204 T^{3} + 689 T^{4} - 1352 T^{5} + 2197 T^{6}$$
$17$ $$1 - 2 T + 28 T^{2} - 6 T^{3} + 476 T^{4} - 578 T^{5} + 4913 T^{6}$$
$19$ $$1 + 2 T + 51 T^{2} + 68 T^{3} + 969 T^{4} + 722 T^{5} + 6859 T^{6}$$
$23$ $$1 - 10 T + 95 T^{2} - 476 T^{3} + 2185 T^{4} - 5290 T^{5} + 12167 T^{6}$$
$29$ $$1 + 6 T + 60 T^{2} + 262 T^{3} + 1740 T^{4} + 5046 T^{5} + 24389 T^{6}$$
$31$ $$1 - 2 T + 2 T^{2} + 132 T^{3} + 62 T^{4} - 1922 T^{5} + 29791 T^{6}$$
$37$ $$1 - 20 T + 228 T^{2} - 1646 T^{3} + 8436 T^{4} - 27380 T^{5} + 50653 T^{6}$$
$41$ $$( 1 - T )^{3}$$
$43$ $$1 + 10 T + 10 T^{2} - 296 T^{3} + 430 T^{4} + 18490 T^{5} + 79507 T^{6}$$
$47$ $$1 + 4 T + 106 T^{2} + 384 T^{3} + 4982 T^{4} + 8836 T^{5} + 103823 T^{6}$$
$53$ $$1 - 14 T + 159 T^{2} - 1452 T^{3} + 8427 T^{4} - 39326 T^{5} + 148877 T^{6}$$
$59$ $$1 - 8 T + 137 T^{2} - 976 T^{3} + 8083 T^{4} - 27848 T^{5} + 205379 T^{6}$$
$61$ $$1 + 8 T + 188 T^{2} + 930 T^{3} + 11468 T^{4} + 29768 T^{5} + 226981 T^{6}$$
$67$ $$1 + 12 T + 77 T^{2} + 632 T^{3} + 5159 T^{4} + 53868 T^{5} + 300763 T^{6}$$
$71$ $$1 - 32 T + 550 T^{2} - 5712 T^{3} + 39050 T^{4} - 161312 T^{5} + 357911 T^{6}$$
$73$ $$1 - 4 T + 120 T^{2} - 130 T^{3} + 8760 T^{4} - 21316 T^{5} + 389017 T^{6}$$
$79$ $$1 - 20 T + 305 T^{2} - 3192 T^{3} + 24095 T^{4} - 124820 T^{5} + 493039 T^{6}$$
$83$ $$1 - 14 T + 259 T^{2} - 2028 T^{3} + 21497 T^{4} - 96446 T^{5} + 571787 T^{6}$$
$89$ $$1 - 14 T + 263 T^{2} - 2308 T^{3} + 23407 T^{4} - 110894 T^{5} + 704969 T^{6}$$
$97$ $$1 + 12 T + 305 T^{2} + 2180 T^{3} + 29585 T^{4} + 112908 T^{5} + 912673 T^{6}$$