Properties

Label 123.2.a.c
Level 123
Weight 2
Character orbit 123.a
Self dual Yes
Analytic conductor 0.982
Analytic rank 0
Dimension 2
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 123 = 3 \cdot 41 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 123.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(0.982159944862\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + q^{3} + ( 2 - \beta ) q^{5} + \beta q^{6} + ( -2 + \beta ) q^{7} -2 \beta q^{8} + q^{9} +O(q^{10})\) \( q + \beta q^{2} + q^{3} + ( 2 - \beta ) q^{5} + \beta q^{6} + ( -2 + \beta ) q^{7} -2 \beta q^{8} + q^{9} + ( -2 + 2 \beta ) q^{10} + ( 1 - \beta ) q^{11} + ( 2 - 3 \beta ) q^{13} + ( 2 - 2 \beta ) q^{14} + ( 2 - \beta ) q^{15} -4 q^{16} + ( 1 + \beta ) q^{17} + \beta q^{18} + ( -4 + \beta ) q^{19} + ( -2 + \beta ) q^{21} + ( -2 + \beta ) q^{22} + \beta q^{23} -2 \beta q^{24} + ( 1 - 4 \beta ) q^{25} + ( -6 + 2 \beta ) q^{26} + q^{27} + ( 1 + 5 \beta ) q^{29} + ( -2 + 2 \beta ) q^{30} -3 q^{31} + ( 1 - \beta ) q^{33} + ( 2 + \beta ) q^{34} + ( -6 + 4 \beta ) q^{35} + ( -1 + 6 \beta ) q^{37} + ( 2 - 4 \beta ) q^{38} + ( 2 - 3 \beta ) q^{39} + ( 4 - 4 \beta ) q^{40} - q^{41} + ( 2 - 2 \beta ) q^{42} -5 q^{43} + ( 2 - \beta ) q^{45} + 2 q^{46} + ( 9 - \beta ) q^{47} -4 q^{48} + ( -1 - 4 \beta ) q^{49} + ( -8 + \beta ) q^{50} + ( 1 + \beta ) q^{51} + ( 4 - 2 \beta ) q^{53} + \beta q^{54} + ( 4 - 3 \beta ) q^{55} + ( -4 + 4 \beta ) q^{56} + ( -4 + \beta ) q^{57} + ( 10 + \beta ) q^{58} + 6 \beta q^{59} + ( 1 + 4 \beta ) q^{61} -3 \beta q^{62} + ( -2 + \beta ) q^{63} + 8 q^{64} + ( 10 - 8 \beta ) q^{65} + ( -2 + \beta ) q^{66} + ( 2 - 6 \beta ) q^{67} + \beta q^{69} + ( 8 - 6 \beta ) q^{70} + ( 3 - 5 \beta ) q^{71} -2 \beta q^{72} + ( 1 + 8 \beta ) q^{73} + ( 12 - \beta ) q^{74} + ( 1 - 4 \beta ) q^{75} + ( -4 + 3 \beta ) q^{77} + ( -6 + 2 \beta ) q^{78} + ( -2 + 4 \beta ) q^{79} + ( -8 + 4 \beta ) q^{80} + q^{81} -\beta q^{82} + ( -6 - 5 \beta ) q^{83} + \beta q^{85} -5 \beta q^{86} + ( 1 + 5 \beta ) q^{87} + ( 4 - 2 \beta ) q^{88} + ( -6 + 4 \beta ) q^{89} + ( -2 + 2 \beta ) q^{90} + ( -10 + 8 \beta ) q^{91} -3 q^{93} + ( -2 + 9 \beta ) q^{94} + ( -10 + 6 \beta ) q^{95} + ( 12 + 3 \beta ) q^{97} + ( -8 - \beta ) q^{98} + ( 1 - \beta ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{3} + 4q^{5} - 4q^{7} + 2q^{9} + O(q^{10}) \) \( 2q + 2q^{3} + 4q^{5} - 4q^{7} + 2q^{9} - 4q^{10} + 2q^{11} + 4q^{13} + 4q^{14} + 4q^{15} - 8q^{16} + 2q^{17} - 8q^{19} - 4q^{21} - 4q^{22} + 2q^{25} - 12q^{26} + 2q^{27} + 2q^{29} - 4q^{30} - 6q^{31} + 2q^{33} + 4q^{34} - 12q^{35} - 2q^{37} + 4q^{38} + 4q^{39} + 8q^{40} - 2q^{41} + 4q^{42} - 10q^{43} + 4q^{45} + 4q^{46} + 18q^{47} - 8q^{48} - 2q^{49} - 16q^{50} + 2q^{51} + 8q^{53} + 8q^{55} - 8q^{56} - 8q^{57} + 20q^{58} + 2q^{61} - 4q^{63} + 16q^{64} + 20q^{65} - 4q^{66} + 4q^{67} + 16q^{70} + 6q^{71} + 2q^{73} + 24q^{74} + 2q^{75} - 8q^{77} - 12q^{78} - 4q^{79} - 16q^{80} + 2q^{81} - 12q^{83} + 2q^{87} + 8q^{88} - 12q^{89} - 4q^{90} - 20q^{91} - 6q^{93} - 4q^{94} - 20q^{95} + 24q^{97} - 16q^{98} + 2q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−1.41421 1.00000 0 3.41421 −1.41421 −3.41421 2.82843 1.00000 −4.82843
1.2 1.41421 1.00000 0 0.585786 1.41421 −0.585786 −2.82843 1.00000 0.828427
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(41\) \(1\)

Hecke kernels

This newform can be constructed as the kernel of the linear operator \( T_{2}^{2} - 2 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(123))\).