Properties

Label 196.3.g.i.79.5
Level $196$
Weight $3$
Character 196.79
Analytic conductor $5.341$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [196,3,Mod(67,196)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(196, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("196.67"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 196.g (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-2,0,-4,2,12,0,-8,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.34061318146\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} - 4 x^{10} + 3 x^{9} + 86 x^{8} - 163 x^{7} + 155 x^{6} - 166 x^{5} + 164 x^{4} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 79.5
Root \(0.907369 - 0.0534805i\) of defining polynomial
Character \(\chi\) \(=\) 196.79
Dual form 196.3.g.i.67.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.19654 + 1.60259i) q^{2} +(1.86796 - 1.07847i) q^{3} +(-1.13656 + 3.83513i) q^{4} +(-3.25304 + 5.63443i) q^{5} +(3.96343 + 1.70313i) q^{6} +(-7.50608 + 2.76746i) q^{8} +(-2.17382 + 3.76517i) q^{9} +(-12.9221 + 1.52857i) q^{10} +(-0.528732 + 0.305264i) q^{11} +(2.01300 + 8.38961i) q^{12} +10.6645 q^{13} +14.0332i q^{15} +(-13.4164 - 8.71774i) q^{16} +(-5.99069 - 10.3762i) q^{17} +(-8.63508 + 1.02145i) q^{18} +(10.5811 + 6.10898i) q^{19} +(-17.9115 - 18.8797i) q^{20} +(-1.12186 - 0.482077i) q^{22} +(34.7524 + 20.0643i) q^{23} +(-11.0364 + 13.2645i) q^{24} +(-8.66451 - 15.0074i) q^{25} +(12.7606 + 17.0908i) q^{26} +28.7900i q^{27} -9.04293 q^{29} +(-22.4894 + 16.7913i) q^{30} +(30.2408 - 17.4595i) q^{31} +(-2.08243 - 31.9322i) q^{32} +(-0.658433 + 1.14044i) q^{33} +(9.46059 - 22.0161i) q^{34} +(-11.9692 - 12.6162i) q^{36} +(25.4082 - 44.0084i) q^{37} +(2.87054 + 24.2667i) q^{38} +(19.9209 - 11.5013i) q^{39} +(8.82450 - 51.2951i) q^{40} -25.7382 q^{41} +19.8107i q^{43} +(-0.569787 - 2.37471i) q^{44} +(-14.1430 - 24.4965i) q^{45} +(9.42799 + 79.7015i) q^{46} +(-40.7870 - 23.5484i) q^{47} +(-34.4631 - 1.81520i) q^{48} +(13.6831 - 31.8426i) q^{50} +(-22.3807 - 12.9215i) q^{51} +(-12.1209 + 40.8998i) q^{52} +(13.4390 + 23.2770i) q^{53} +(-46.1384 + 34.4485i) q^{54} -3.97214i q^{55} +26.3533 q^{57} +(-10.8203 - 14.4921i) q^{58} +(39.8644 - 23.0157i) q^{59} +(-53.8190 - 15.9496i) q^{60} +(21.1035 - 36.5524i) q^{61} +(64.1648 + 27.5724i) q^{62} +(48.6823 - 41.5455i) q^{64} +(-34.6920 + 60.0884i) q^{65} +(-2.61550 + 0.309390i) q^{66} +(24.0592 - 13.8906i) q^{67} +(46.6028 - 11.1819i) q^{68} +86.5547 q^{69} -57.1882i q^{71} +(5.89691 - 34.2776i) q^{72} +(28.1645 + 48.7824i) q^{73} +(100.929 - 11.9391i) q^{74} +(-32.3699 - 18.6888i) q^{75} +(-35.4548 + 33.6365i) q^{76} +(42.2680 + 18.1631i) q^{78} +(15.9295 + 9.19688i) q^{79} +(92.7637 - 47.2348i) q^{80} +(11.4846 + 19.8919i) q^{81} +(-30.7969 - 41.2477i) q^{82} +37.3775i q^{83} +77.9517 q^{85} +(-31.7483 + 23.7043i) q^{86} +(-16.8918 + 9.75249i) q^{87} +(3.12390 - 3.75458i) q^{88} +(-12.3537 + 21.3973i) q^{89} +(22.3349 - 51.9766i) q^{90} +(-116.448 + 110.476i) q^{92} +(37.6590 - 65.2273i) q^{93} +(-11.0651 - 93.5415i) q^{94} +(-68.8412 + 39.7455i) q^{95} +(-38.3277 - 57.4021i) q^{96} -109.895 q^{97} -2.65435i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{2} - 4 q^{4} + 2 q^{5} + 12 q^{6} - 8 q^{8} + 4 q^{9} + 2 q^{10} + 24 q^{12} + 24 q^{13} + 16 q^{16} + 2 q^{17} + 56 q^{18} - 152 q^{20} + 44 q^{22} + 44 q^{24} - 56 q^{26} + 72 q^{29} - 74 q^{30}+ \cdots - 744 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.19654 + 1.60259i 0.598272 + 0.801293i
\(3\) 1.86796 1.07847i 0.622653 0.359489i −0.155248 0.987875i \(-0.549618\pi\)
0.777901 + 0.628387i \(0.216284\pi\)
\(4\) −1.13656 + 3.83513i −0.284141 + 0.958782i
\(5\) −3.25304 + 5.63443i −0.650608 + 1.12689i 0.332368 + 0.943150i \(0.392152\pi\)
−0.982976 + 0.183736i \(0.941181\pi\)
\(6\) 3.96343 + 1.70313i 0.660572 + 0.283855i
\(7\) 0 0
\(8\) −7.50608 + 2.76746i −0.938259 + 0.345932i
\(9\) −2.17382 + 3.76517i −0.241536 + 0.418352i
\(10\) −12.9221 + 1.52857i −1.29221 + 0.152857i
\(11\) −0.528732 + 0.305264i −0.0480665 + 0.0277512i −0.523841 0.851816i \(-0.675501\pi\)
0.475774 + 0.879567i \(0.342168\pi\)
\(12\) 2.01300 + 8.38961i 0.167750 + 0.699134i
\(13\) 10.6645 0.820347 0.410173 0.912008i \(-0.365468\pi\)
0.410173 + 0.912008i \(0.365468\pi\)
\(14\) 0 0
\(15\) 14.0332i 0.935544i
\(16\) −13.4164 8.71774i −0.838528 0.544859i
\(17\) −5.99069 10.3762i −0.352393 0.610363i 0.634275 0.773108i \(-0.281299\pi\)
−0.986668 + 0.162744i \(0.947965\pi\)
\(18\) −8.63508 + 1.02145i −0.479727 + 0.0567475i
\(19\) 10.5811 + 6.10898i 0.556898 + 0.321525i 0.751900 0.659278i \(-0.229138\pi\)
−0.195001 + 0.980803i \(0.562471\pi\)
\(20\) −17.9115 18.8797i −0.895574 0.943986i
\(21\) 0 0
\(22\) −1.12186 0.482077i −0.0509937 0.0219126i
\(23\) 34.7524 + 20.0643i 1.51097 + 0.872361i 0.999918 + 0.0128131i \(0.00407865\pi\)
0.511055 + 0.859548i \(0.329255\pi\)
\(24\) −11.0364 + 13.2645i −0.459851 + 0.552689i
\(25\) −8.66451 15.0074i −0.346580 0.600295i
\(26\) 12.7606 + 17.0908i 0.490791 + 0.657338i
\(27\) 28.7900i 1.06629i
\(28\) 0 0
\(29\) −9.04293 −0.311825 −0.155913 0.987771i \(-0.549832\pi\)
−0.155913 + 0.987771i \(0.549832\pi\)
\(30\) −22.4894 + 16.7913i −0.749645 + 0.559710i
\(31\) 30.2408 17.4595i 0.975509 0.563210i 0.0745975 0.997214i \(-0.476233\pi\)
0.900911 + 0.434004i \(0.142899\pi\)
\(32\) −2.08243 31.9322i −0.0650759 0.997880i
\(33\) −0.658433 + 1.14044i −0.0199525 + 0.0345588i
\(34\) 9.46059 22.0161i 0.278253 0.647534i
\(35\) 0 0
\(36\) −11.9692 12.6162i −0.332478 0.350451i
\(37\) 25.4082 44.0084i 0.686709 1.18941i −0.286187 0.958174i \(-0.592388\pi\)
0.972896 0.231241i \(-0.0742787\pi\)
\(38\) 2.87054 + 24.2667i 0.0755406 + 0.638598i
\(39\) 19.9209 11.5013i 0.510791 0.294905i
\(40\) 8.82450 51.2951i 0.220612 1.28238i
\(41\) −25.7382 −0.627761 −0.313881 0.949462i \(-0.601629\pi\)
−0.313881 + 0.949462i \(0.601629\pi\)
\(42\) 0 0
\(43\) 19.8107i 0.460713i 0.973106 + 0.230357i \(0.0739893\pi\)
−0.973106 + 0.230357i \(0.926011\pi\)
\(44\) −0.569787 2.37471i −0.0129497 0.0539706i
\(45\) −14.1430 24.4965i −0.314290 0.544366i
\(46\) 9.42799 + 79.7015i 0.204956 + 1.73264i
\(47\) −40.7870 23.5484i −0.867809 0.501030i −0.00118973 0.999999i \(-0.500379\pi\)
−0.866620 + 0.498969i \(0.833712\pi\)
\(48\) −34.4631 1.81520i −0.717982 0.0378167i
\(49\) 0 0
\(50\) 13.6831 31.8426i 0.273663 0.636852i
\(51\) −22.3807 12.9215i −0.438837 0.253363i
\(52\) −12.1209 + 40.8998i −0.233094 + 0.786534i
\(53\) 13.4390 + 23.2770i 0.253566 + 0.439190i 0.964505 0.264064i \(-0.0850631\pi\)
−0.710939 + 0.703254i \(0.751730\pi\)
\(54\) −46.1384 + 34.4485i −0.854415 + 0.637934i
\(55\) 3.97214i 0.0722207i
\(56\) 0 0
\(57\) 26.3533 0.462339
\(58\) −10.8203 14.4921i −0.186556 0.249863i
\(59\) 39.8644 23.0157i 0.675668 0.390097i −0.122553 0.992462i \(-0.539108\pi\)
0.798221 + 0.602365i \(0.205775\pi\)
\(60\) −53.8190 15.9496i −0.896984 0.265827i
\(61\) 21.1035 36.5524i 0.345959 0.599219i −0.639568 0.768734i \(-0.720887\pi\)
0.985528 + 0.169515i \(0.0542202\pi\)
\(62\) 64.1648 + 27.5724i 1.03492 + 0.444715i
\(63\) 0 0
\(64\) 48.6823 41.5455i 0.760661 0.649149i
\(65\) −34.6920 + 60.0884i −0.533724 + 0.924437i
\(66\) −2.61550 + 0.309390i −0.0396287 + 0.00468773i
\(67\) 24.0592 13.8906i 0.359092 0.207322i −0.309590 0.950870i \(-0.600192\pi\)
0.668683 + 0.743548i \(0.266859\pi\)
\(68\) 46.6028 11.1819i 0.685335 0.164439i
\(69\) 86.5547 1.25442
\(70\) 0 0
\(71\) 57.1882i 0.805467i −0.915317 0.402734i \(-0.868060\pi\)
0.915317 0.402734i \(-0.131940\pi\)
\(72\) 5.89691 34.2776i 0.0819016 0.476078i
\(73\) 28.1645 + 48.7824i 0.385815 + 0.668251i 0.991882 0.127162i \(-0.0405869\pi\)
−0.606067 + 0.795414i \(0.707254\pi\)
\(74\) 100.929 11.9391i 1.36391 0.161339i
\(75\) −32.3699 18.6888i −0.431598 0.249183i
\(76\) −35.4548 + 33.6365i −0.466510 + 0.442586i
\(77\) 0 0
\(78\) 42.2680 + 18.1631i 0.541898 + 0.232860i
\(79\) 15.9295 + 9.19688i 0.201639 + 0.116416i 0.597420 0.801929i \(-0.296193\pi\)
−0.395781 + 0.918345i \(0.629526\pi\)
\(80\) 92.7637 47.2348i 1.15955 0.590435i
\(81\) 11.4846 + 19.8919i 0.141785 + 0.245579i
\(82\) −30.7969 41.2477i −0.375572 0.503021i
\(83\) 37.3775i 0.450332i 0.974320 + 0.225166i \(0.0722924\pi\)
−0.974320 + 0.225166i \(0.927708\pi\)
\(84\) 0 0
\(85\) 77.9517 0.917079
\(86\) −31.7483 + 23.7043i −0.369166 + 0.275632i
\(87\) −16.8918 + 9.75249i −0.194159 + 0.112098i
\(88\) 3.12390 3.75458i 0.0354988 0.0426656i
\(89\) −12.3537 + 21.3973i −0.138806 + 0.240419i −0.927045 0.374950i \(-0.877660\pi\)
0.788239 + 0.615369i \(0.210993\pi\)
\(90\) 22.3349 51.9766i 0.248166 0.577517i
\(91\) 0 0
\(92\) −116.448 + 110.476i −1.26573 + 1.20082i
\(93\) 37.6590 65.2273i 0.404935 0.701369i
\(94\) −11.0651 93.5415i −0.117714 0.995122i
\(95\) −68.8412 + 39.7455i −0.724644 + 0.418374i
\(96\) −38.3277 57.4021i −0.399246 0.597939i
\(97\) −109.895 −1.13294 −0.566468 0.824084i \(-0.691690\pi\)
−0.566468 + 0.824084i \(0.691690\pi\)
\(98\) 0 0
\(99\) 2.65435i 0.0268117i
\(100\) 67.4030 16.1727i 0.674030 0.161727i
\(101\) 21.5756 + 37.3700i 0.213620 + 0.370000i 0.952845 0.303458i \(-0.0981414\pi\)
−0.739225 + 0.673458i \(0.764808\pi\)
\(102\) −6.07167 51.3282i −0.0595262 0.503217i
\(103\) 130.437 + 75.3078i 1.26638 + 0.731144i 0.974301 0.225251i \(-0.0723202\pi\)
0.292077 + 0.956395i \(0.405654\pi\)
\(104\) −80.0486 + 29.5136i −0.769698 + 0.283785i
\(105\) 0 0
\(106\) −21.2231 + 49.3892i −0.200218 + 0.465936i
\(107\) −35.1527 20.2954i −0.328530 0.189677i 0.326658 0.945143i \(-0.394077\pi\)
−0.655188 + 0.755466i \(0.727411\pi\)
\(108\) −110.413 32.7216i −1.02234 0.302978i
\(109\) −33.2652 57.6170i −0.305185 0.528596i 0.672117 0.740445i \(-0.265385\pi\)
−0.977303 + 0.211848i \(0.932052\pi\)
\(110\) 6.36569 4.75284i 0.0578699 0.0432076i
\(111\) 109.608i 0.987457i
\(112\) 0 0
\(113\) −143.395 −1.26899 −0.634493 0.772929i \(-0.718791\pi\)
−0.634493 + 0.772929i \(0.718791\pi\)
\(114\) 31.5329 + 42.2335i 0.276604 + 0.370469i
\(115\) −226.102 + 130.540i −1.96610 + 1.13513i
\(116\) 10.2779 34.6808i 0.0886023 0.298972i
\(117\) −23.1827 + 40.1537i −0.198143 + 0.343194i
\(118\) 84.5842 + 36.3468i 0.716815 + 0.308024i
\(119\) 0 0
\(120\) −38.8362 105.334i −0.323635 0.877783i
\(121\) −60.3136 + 104.466i −0.498460 + 0.863358i
\(122\) 83.8296 9.91631i 0.687128 0.0812812i
\(123\) −48.0779 + 27.7578i −0.390877 + 0.225673i
\(124\) 32.5889 + 135.821i 0.262814 + 1.09533i
\(125\) −49.9080 −0.399264
\(126\) 0 0
\(127\) 83.0059i 0.653590i −0.945095 0.326795i \(-0.894031\pi\)
0.945095 0.326795i \(-0.105969\pi\)
\(128\) 124.831 + 28.3066i 0.975241 + 0.221145i
\(129\) 21.3651 + 37.0055i 0.165621 + 0.286864i
\(130\) −137.807 + 16.3014i −1.06006 + 0.125395i
\(131\) −25.5368 14.7437i −0.194938 0.112547i 0.399354 0.916797i \(-0.369234\pi\)
−0.594292 + 0.804249i \(0.702568\pi\)
\(132\) −3.62538 3.82136i −0.0274650 0.0289497i
\(133\) 0 0
\(134\) 51.0487 + 21.9362i 0.380961 + 0.163703i
\(135\) −162.215 93.6548i −1.20159 0.693740i
\(136\) 73.6822 + 61.3054i 0.541781 + 0.450775i
\(137\) 11.7586 + 20.3664i 0.0858288 + 0.148660i 0.905744 0.423825i \(-0.139313\pi\)
−0.819915 + 0.572485i \(0.805980\pi\)
\(138\) 103.566 + 138.711i 0.750482 + 1.00515i
\(139\) 256.175i 1.84299i −0.388396 0.921493i \(-0.626971\pi\)
0.388396 0.921493i \(-0.373029\pi\)
\(140\) 0 0
\(141\) −101.585 −0.720459
\(142\) 91.6490 68.4282i 0.645416 0.481889i
\(143\) −5.63867 + 3.25549i −0.0394312 + 0.0227656i
\(144\) 61.9887 31.5644i 0.430477 0.219197i
\(145\) 29.4170 50.9517i 0.202876 0.351391i
\(146\) −44.4779 + 103.506i −0.304643 + 0.708947i
\(147\) 0 0
\(148\) 139.900 + 147.462i 0.945268 + 0.996366i
\(149\) −44.7826 + 77.5658i −0.300554 + 0.520576i −0.976262 0.216595i \(-0.930505\pi\)
0.675707 + 0.737170i \(0.263838\pi\)
\(150\) −8.78164 74.2374i −0.0585443 0.494916i
\(151\) 40.8283 23.5722i 0.270386 0.156107i −0.358677 0.933462i \(-0.616772\pi\)
0.629063 + 0.777354i \(0.283439\pi\)
\(152\) −96.3286 16.5718i −0.633741 0.109025i
\(153\) 52.0907 0.340462
\(154\) 0 0
\(155\) 227.186i 1.46572i
\(156\) 21.4677 + 89.4711i 0.137613 + 0.573532i
\(157\) −143.897 249.237i −0.916540 1.58749i −0.804631 0.593776i \(-0.797637\pi\)
−0.111910 0.993718i \(-0.535697\pi\)
\(158\) 4.32151 + 36.5328i 0.0273513 + 0.231220i
\(159\) 50.2070 + 28.9870i 0.315767 + 0.182308i
\(160\) 186.694 + 92.1433i 1.16684 + 0.575895i
\(161\) 0 0
\(162\) −18.1367 + 42.2067i −0.111955 + 0.260535i
\(163\) 11.7940 + 6.80925i 0.0723557 + 0.0417746i 0.535741 0.844382i \(-0.320032\pi\)
−0.463386 + 0.886157i \(0.653366\pi\)
\(164\) 29.2531 98.7094i 0.178373 0.601887i
\(165\) −4.28381 7.41978i −0.0259625 0.0449684i
\(166\) −59.9007 + 44.7238i −0.360848 + 0.269421i
\(167\) 241.587i 1.44663i 0.690519 + 0.723314i \(0.257382\pi\)
−0.690519 + 0.723314i \(0.742618\pi\)
\(168\) 0 0
\(169\) −55.2683 −0.327031
\(170\) 93.2727 + 124.924i 0.548663 + 0.734849i
\(171\) −46.0027 + 26.5597i −0.269022 + 0.155320i
\(172\) −75.9765 22.5161i −0.441724 0.130908i
\(173\) −57.3775 + 99.3807i −0.331662 + 0.574455i −0.982838 0.184472i \(-0.940943\pi\)
0.651176 + 0.758927i \(0.274276\pi\)
\(174\) −35.8410 15.4013i −0.205983 0.0885132i
\(175\) 0 0
\(176\) 9.75491 + 0.513800i 0.0554256 + 0.00291932i
\(177\) 49.6434 85.9848i 0.280471 0.485790i
\(178\) −49.0727 + 5.80488i −0.275689 + 0.0326117i
\(179\) −23.2381 + 13.4165i −0.129822 + 0.0749526i −0.563504 0.826113i \(-0.690547\pi\)
0.433683 + 0.901066i \(0.357214\pi\)
\(180\) 110.022 26.3986i 0.611231 0.146659i
\(181\) 46.5388 0.257120 0.128560 0.991702i \(-0.458964\pi\)
0.128560 + 0.991702i \(0.458964\pi\)
\(182\) 0 0
\(183\) 91.0377i 0.497474i
\(184\) −316.381 54.4283i −1.71946 0.295806i
\(185\) 165.308 + 286.322i 0.893556 + 1.54768i
\(186\) 149.593 17.6956i 0.804263 0.0951374i
\(187\) 6.33494 + 3.65748i 0.0338767 + 0.0195587i
\(188\) 136.668 129.659i 0.726959 0.689677i
\(189\) 0 0
\(190\) −146.067 62.7667i −0.768774 0.330351i
\(191\) 65.3175 + 37.7111i 0.341976 + 0.197440i 0.661146 0.750258i \(-0.270071\pi\)
−0.319169 + 0.947698i \(0.603404\pi\)
\(192\) 46.1311 130.108i 0.240266 0.677644i
\(193\) 83.0347 + 143.820i 0.430232 + 0.745183i 0.996893 0.0787675i \(-0.0250985\pi\)
−0.566661 + 0.823951i \(0.691765\pi\)
\(194\) −131.494 176.116i −0.677803 0.907813i
\(195\) 149.657i 0.767471i
\(196\) 0 0
\(197\) 279.737 1.41998 0.709991 0.704210i \(-0.248699\pi\)
0.709991 + 0.704210i \(0.248699\pi\)
\(198\) 4.25383 3.17605i 0.0214840 0.0160407i
\(199\) 0.238457 0.137673i 0.00119828 0.000691824i −0.499401 0.866371i \(-0.666446\pi\)
0.500599 + 0.865679i \(0.333113\pi\)
\(200\) 106.569 + 88.6678i 0.532844 + 0.443339i
\(201\) 29.9610 51.8940i 0.149060 0.258179i
\(202\) −34.0725 + 79.2916i −0.168676 + 0.392533i
\(203\) 0 0
\(204\) 74.9928 71.1468i 0.367612 0.348759i
\(205\) 83.7274 145.020i 0.408426 0.707415i
\(206\) 35.3863 + 299.146i 0.171778 + 1.45216i
\(207\) −151.091 + 87.2324i −0.729908 + 0.421413i
\(208\) −143.080 92.9705i −0.687883 0.446973i
\(209\) −7.45940 −0.0356909
\(210\) 0 0
\(211\) 301.264i 1.42779i −0.700252 0.713896i \(-0.746929\pi\)
0.700252 0.713896i \(-0.253071\pi\)
\(212\) −104.545 + 25.0845i −0.493136 + 0.118323i
\(213\) −61.6755 106.825i −0.289556 0.501527i
\(214\) −9.53660 80.6196i −0.0445635 0.376727i
\(215\) −111.622 64.4449i −0.519171 0.299744i
\(216\) −79.6751 216.100i −0.368866 1.00046i
\(217\) 0 0
\(218\) 52.5329 122.252i 0.240977 0.560787i
\(219\) 105.220 + 60.7489i 0.480458 + 0.277392i
\(220\) 15.2337 + 4.51459i 0.0692439 + 0.0205209i
\(221\) −63.8877 110.657i −0.289085 0.500709i
\(222\) 175.656 131.150i 0.791242 0.590768i
\(223\) 215.034i 0.964279i −0.876094 0.482140i \(-0.839860\pi\)
0.876094 0.482140i \(-0.160140\pi\)
\(224\) 0 0
\(225\) 75.3404 0.334846
\(226\) −171.579 229.804i −0.759199 1.01683i
\(227\) 364.944 210.700i 1.60768 0.928195i 0.617794 0.786340i \(-0.288027\pi\)
0.989887 0.141855i \(-0.0453067\pi\)
\(228\) −29.9522 + 101.068i −0.131369 + 0.443282i
\(229\) 22.7637 39.4278i 0.0994046 0.172174i −0.812034 0.583610i \(-0.801640\pi\)
0.911438 + 0.411437i \(0.134973\pi\)
\(230\) −479.742 206.151i −2.08583 0.896307i
\(231\) 0 0
\(232\) 67.8769 25.0259i 0.292573 0.107870i
\(233\) −75.7232 + 131.156i −0.324992 + 0.562903i −0.981511 0.191407i \(-0.938695\pi\)
0.656518 + 0.754310i \(0.272028\pi\)
\(234\) −92.0889 + 10.8933i −0.393542 + 0.0465526i
\(235\) 265.364 153.208i 1.12921 0.651948i
\(236\) 42.9598 + 179.044i 0.182033 + 0.758661i
\(237\) 39.6741 0.167401
\(238\) 0 0
\(239\) 200.986i 0.840944i 0.907306 + 0.420472i \(0.138135\pi\)
−0.907306 + 0.420472i \(0.861865\pi\)
\(240\) 122.338 188.275i 0.509740 0.784480i
\(241\) 124.318 + 215.326i 0.515844 + 0.893468i 0.999831 + 0.0183927i \(0.00585490\pi\)
−0.483987 + 0.875075i \(0.660812\pi\)
\(242\) −239.584 + 28.3407i −0.990017 + 0.117110i
\(243\) −181.490 104.783i −0.746872 0.431207i
\(244\) 116.198 + 122.479i 0.476220 + 0.501963i
\(245\) 0 0
\(246\) −102.012 43.8356i −0.414681 0.178193i
\(247\) 112.842 + 65.1493i 0.456850 + 0.263762i
\(248\) −178.671 + 214.743i −0.720448 + 0.865897i
\(249\) 40.3104 + 69.8196i 0.161889 + 0.280400i
\(250\) −59.7171 79.9819i −0.238868 0.319927i
\(251\) 226.888i 0.903938i 0.892034 + 0.451969i \(0.149278\pi\)
−0.892034 + 0.451969i \(0.850722\pi\)
\(252\) 0 0
\(253\) −24.4996 −0.0968364
\(254\) 133.024 99.3202i 0.523717 0.391024i
\(255\) 145.611 84.0683i 0.571022 0.329680i
\(256\) 104.002 + 233.922i 0.406257 + 0.913759i
\(257\) 177.583 307.583i 0.690984 1.19682i −0.280532 0.959845i \(-0.590511\pi\)
0.971516 0.236975i \(-0.0761559\pi\)
\(258\) −33.7402 + 78.5182i −0.130776 + 0.304334i
\(259\) 0 0
\(260\) −191.017 201.343i −0.734681 0.774396i
\(261\) 19.6577 34.0481i 0.0753169 0.130453i
\(262\) −6.92790 58.5664i −0.0264424 0.223536i
\(263\) 338.273 195.302i 1.28621 0.742593i 0.308232 0.951311i \(-0.400263\pi\)
0.977976 + 0.208718i \(0.0669292\pi\)
\(264\) 1.78613 10.3824i 0.00676563 0.0393273i
\(265\) −174.870 −0.659888
\(266\) 0 0
\(267\) 53.2923i 0.199597i
\(268\) 25.9274 + 108.058i 0.0967439 + 0.403200i
\(269\) −187.371 324.536i −0.696546 1.20645i −0.969657 0.244471i \(-0.921386\pi\)
0.273110 0.961983i \(-0.411948\pi\)
\(270\) −44.0074 372.026i −0.162990 1.37787i
\(271\) −132.759 76.6485i −0.489886 0.282836i 0.234641 0.972082i \(-0.424608\pi\)
−0.724527 + 0.689246i \(0.757942\pi\)
\(272\) −10.0831 + 191.437i −0.0370703 + 0.703811i
\(273\) 0 0
\(274\) −18.5693 + 43.2134i −0.0677712 + 0.157713i
\(275\) 9.16241 + 5.28992i 0.0333178 + 0.0192361i
\(276\) −98.3750 + 331.948i −0.356431 + 1.20271i
\(277\) −224.888 389.517i −0.811869 1.40620i −0.911555 0.411179i \(-0.865117\pi\)
0.0996861 0.995019i \(-0.468216\pi\)
\(278\) 410.542 306.525i 1.47677 1.10261i
\(279\) 151.815i 0.544141i
\(280\) 0 0
\(281\) −3.27554 −0.0116567 −0.00582836 0.999983i \(-0.501855\pi\)
−0.00582836 + 0.999983i \(0.501855\pi\)
\(282\) −121.551 162.798i −0.431030 0.577298i
\(283\) 296.447 171.154i 1.04752 0.604783i 0.125562 0.992086i \(-0.459926\pi\)
0.921953 + 0.387303i \(0.126593\pi\)
\(284\) 219.324 + 64.9981i 0.772268 + 0.228866i
\(285\) −85.7283 + 148.486i −0.300801 + 0.521003i
\(286\) −11.9641 5.14112i −0.0418326 0.0179759i
\(287\) 0 0
\(288\) 124.757 + 61.5741i 0.433183 + 0.213799i
\(289\) 72.7233 125.961i 0.251638 0.435850i
\(290\) 116.853 13.8227i 0.402942 0.0476645i
\(291\) −205.279 + 118.518i −0.705425 + 0.407277i
\(292\) −219.097 + 52.5703i −0.750334 + 0.180035i
\(293\) 243.752 0.831919 0.415959 0.909383i \(-0.363446\pi\)
0.415959 + 0.909383i \(0.363446\pi\)
\(294\) 0 0
\(295\) 299.484i 1.01520i
\(296\) −68.9248 + 400.646i −0.232854 + 1.35353i
\(297\) −8.78853 15.2222i −0.0295910 0.0512531i
\(298\) −177.890 + 21.0429i −0.596947 + 0.0706136i
\(299\) 370.617 + 213.976i 1.23952 + 0.715638i
\(300\) 108.464 102.902i 0.361548 0.343006i
\(301\) 0 0
\(302\) 86.6293 + 37.2256i 0.286852 + 0.123264i
\(303\) 80.6046 + 46.5371i 0.266022 + 0.153588i
\(304\) −88.7037 174.204i −0.291789 0.573039i
\(305\) 137.301 + 237.812i 0.450167 + 0.779713i
\(306\) 62.3289 + 83.4799i 0.203689 + 0.272810i
\(307\) 58.4520i 0.190397i −0.995458 0.0951987i \(-0.969651\pi\)
0.995458 0.0951987i \(-0.0303487\pi\)
\(308\) 0 0
\(309\) 324.868 1.05135
\(310\) −364.085 + 271.838i −1.17447 + 0.876896i
\(311\) −107.722 + 62.1933i −0.346373 + 0.199978i −0.663086 0.748543i \(-0.730754\pi\)
0.316714 + 0.948521i \(0.397421\pi\)
\(312\) −117.698 + 141.460i −0.377237 + 0.453397i
\(313\) −240.725 + 416.948i −0.769090 + 1.33210i 0.168967 + 0.985622i \(0.445957\pi\)
−0.938057 + 0.346481i \(0.887376\pi\)
\(314\) 227.244 528.830i 0.723708 1.68417i
\(315\) 0 0
\(316\) −53.3761 + 50.6387i −0.168912 + 0.160249i
\(317\) 179.573 311.030i 0.566478 0.981168i −0.430433 0.902623i \(-0.641639\pi\)
0.996911 0.0785457i \(-0.0250276\pi\)
\(318\) 13.6207 + 115.145i 0.0428324 + 0.362092i
\(319\) 4.78129 2.76048i 0.0149884 0.00865353i
\(320\) 75.7197 + 409.446i 0.236624 + 1.27952i
\(321\) −87.5517 −0.272747
\(322\) 0 0
\(323\) 146.388i 0.453214i
\(324\) −89.3411 + 21.4365i −0.275744 + 0.0661621i
\(325\) −92.4027 160.046i −0.284316 0.492450i
\(326\) 3.19959 + 27.0484i 0.00981470 + 0.0829706i
\(327\) −124.276 71.7508i −0.380049 0.219421i
\(328\) 193.193 71.2295i 0.589003 0.217163i
\(329\) 0 0
\(330\) 6.76507 15.7433i 0.0205002 0.0477069i
\(331\) 109.721 + 63.3476i 0.331484 + 0.191383i 0.656500 0.754326i \(-0.272036\pi\)
−0.325016 + 0.945709i \(0.605370\pi\)
\(332\) −143.348 42.4820i −0.431770 0.127958i
\(333\) 110.466 + 191.333i 0.331729 + 0.574572i
\(334\) −387.164 + 289.069i −1.15917 + 0.865477i
\(335\) 180.746i 0.539541i
\(336\) 0 0
\(337\) −551.430 −1.63629 −0.818146 0.575011i \(-0.804998\pi\)
−0.818146 + 0.575011i \(0.804998\pi\)
\(338\) −66.1309 88.5722i −0.195654 0.262048i
\(339\) −267.857 + 154.647i −0.790138 + 0.456186i
\(340\) −88.5972 + 298.955i −0.260580 + 0.879279i
\(341\) −10.6595 + 18.4628i −0.0312596 + 0.0541431i
\(342\) −97.6084 41.9435i −0.285405 0.122642i
\(343\) 0 0
\(344\) −54.8252 148.700i −0.159376 0.432269i
\(345\) −281.566 + 487.686i −0.816132 + 1.41358i
\(346\) −227.921 + 26.9610i −0.658730 + 0.0779221i
\(347\) −356.182 + 205.642i −1.02646 + 0.592628i −0.915969 0.401249i \(-0.868576\pi\)
−0.110493 + 0.993877i \(0.535243\pi\)
\(348\) −18.2034 75.8666i −0.0523087 0.218008i
\(349\) 402.535 1.15340 0.576698 0.816957i \(-0.304341\pi\)
0.576698 + 0.816957i \(0.304341\pi\)
\(350\) 0 0
\(351\) 307.031i 0.874732i
\(352\) 10.8488 + 16.2479i 0.0308204 + 0.0461587i
\(353\) −29.9594 51.8913i −0.0848709 0.147001i 0.820465 0.571696i \(-0.193714\pi\)
−0.905336 + 0.424696i \(0.860381\pi\)
\(354\) 197.199 23.3269i 0.557058 0.0658951i
\(355\) 322.223 + 186.035i 0.907669 + 0.524043i
\(356\) −68.0205 71.6975i −0.191069 0.201397i
\(357\) 0 0
\(358\) −49.3065 21.1876i −0.137728 0.0591832i
\(359\) 121.860 + 70.3559i 0.339443 + 0.195977i 0.660026 0.751243i \(-0.270545\pi\)
−0.320583 + 0.947221i \(0.603879\pi\)
\(360\) 173.952 + 144.732i 0.483199 + 0.402033i
\(361\) −105.861 183.356i −0.293243 0.507912i
\(362\) 55.6857 + 74.5824i 0.153828 + 0.206029i
\(363\) 260.185i 0.716763i
\(364\) 0 0
\(365\) −366.481 −1.00406
\(366\) 145.896 108.931i 0.398622 0.297625i
\(367\) −288.714 + 166.689i −0.786686 + 0.454193i −0.838795 0.544448i \(-0.816739\pi\)
0.0521085 + 0.998641i \(0.483406\pi\)
\(368\) −291.338 572.154i −0.791679 1.55477i
\(369\) 55.9503 96.9087i 0.151627 0.262625i
\(370\) −261.057 + 607.517i −0.705559 + 1.64194i
\(371\) 0 0
\(372\) 207.353 + 218.562i 0.557401 + 0.587533i
\(373\) 128.721 222.951i 0.345095 0.597723i −0.640276 0.768145i \(-0.721180\pi\)
0.985371 + 0.170423i \(0.0545133\pi\)
\(374\) 1.71861 + 14.5286i 0.00459521 + 0.0388466i
\(375\) −93.2261 + 53.8241i −0.248603 + 0.143531i
\(376\) 371.320 + 63.8796i 0.987553 + 0.169893i
\(377\) −96.4384 −0.255805
\(378\) 0 0
\(379\) 122.957i 0.324426i −0.986756 0.162213i \(-0.948137\pi\)
0.986756 0.162213i \(-0.0518631\pi\)
\(380\) −74.1866 309.188i −0.195228 0.813653i
\(381\) −89.5190 155.052i −0.234958 0.406959i
\(382\) 17.7200 + 149.800i 0.0463875 + 0.392146i
\(383\) −302.009 174.365i −0.788535 0.455261i 0.0509116 0.998703i \(-0.483787\pi\)
−0.839446 + 0.543442i \(0.817121\pi\)
\(384\) 263.706 81.7503i 0.686736 0.212891i
\(385\) 0 0
\(386\) −131.130 + 305.158i −0.339715 + 0.790564i
\(387\) −74.5905 43.0649i −0.192740 0.111279i
\(388\) 124.902 421.461i 0.321913 1.08624i
\(389\) 176.689 + 306.035i 0.454215 + 0.786723i 0.998643 0.0520848i \(-0.0165866\pi\)
−0.544428 + 0.838808i \(0.683253\pi\)
\(390\) −239.838 + 179.071i −0.614969 + 0.459156i
\(391\) 480.796i 1.22966i
\(392\) 0 0
\(393\) −63.6023 −0.161838
\(394\) 334.717 + 448.302i 0.849536 + 1.13782i
\(395\) −103.638 + 59.8356i −0.262375 + 0.151482i
\(396\) 10.1798 + 3.01684i 0.0257065 + 0.00761829i
\(397\) 91.1659 157.904i 0.229637 0.397743i −0.728064 0.685510i \(-0.759579\pi\)
0.957701 + 0.287767i \(0.0929128\pi\)
\(398\) 0.505957 + 0.217416i 0.00127125 + 0.000546270i
\(399\) 0 0
\(400\) −14.5835 + 276.880i −0.0364588 + 0.692201i
\(401\) −172.934 + 299.530i −0.431257 + 0.746959i −0.996982 0.0776352i \(-0.975263\pi\)
0.565725 + 0.824594i \(0.308596\pi\)
\(402\) 119.014 14.0784i 0.296056 0.0350208i
\(403\) 322.503 186.197i 0.800255 0.462028i
\(404\) −167.841 + 40.2717i −0.415448 + 0.0996825i
\(405\) −149.439 −0.368986
\(406\) 0 0
\(407\) 31.0248i 0.0762281i
\(408\) 203.751 + 35.0521i 0.499390 + 0.0859120i
\(409\) 152.896 + 264.823i 0.373828 + 0.647489i 0.990151 0.140005i \(-0.0447117\pi\)
−0.616323 + 0.787494i \(0.711378\pi\)
\(410\) 332.591 39.3426i 0.811197 0.0959575i
\(411\) 43.9290 + 25.3624i 0.106883 + 0.0617090i
\(412\) −437.065 + 414.650i −1.06084 + 1.00643i
\(413\) 0 0
\(414\) −320.584 137.759i −0.774358 0.332751i
\(415\) −210.601 121.590i −0.507472 0.292989i
\(416\) −22.2081 340.541i −0.0533848 0.818608i
\(417\) −276.276 478.524i −0.662532 1.14754i
\(418\) −8.92550 11.9543i −0.0213529 0.0285989i
\(419\) 749.709i 1.78928i −0.446786 0.894641i \(-0.647431\pi\)
0.446786 0.894641i \(-0.352569\pi\)
\(420\) 0 0
\(421\) 356.196 0.846070 0.423035 0.906113i \(-0.360965\pi\)
0.423035 + 0.906113i \(0.360965\pi\)
\(422\) 482.801 360.476i 1.14408 0.854208i
\(423\) 177.327 102.380i 0.419214 0.242033i
\(424\) −165.293 137.527i −0.389841 0.324357i
\(425\) −103.813 + 179.809i −0.244265 + 0.423080i
\(426\) 97.3990 226.661i 0.228636 0.532069i
\(427\) 0 0
\(428\) 117.789 111.748i 0.275208 0.261094i
\(429\) −7.02186 + 12.1622i −0.0163680 + 0.0283502i
\(430\) −30.2819 255.995i −0.0704231 0.595336i
\(431\) −163.925 + 94.6420i −0.380336 + 0.219587i −0.677964 0.735095i \(-0.737138\pi\)
0.297629 + 0.954682i \(0.403804\pi\)
\(432\) 250.984 386.259i 0.580980 0.894118i
\(433\) −771.353 −1.78142 −0.890708 0.454575i \(-0.849791\pi\)
−0.890708 + 0.454575i \(0.849791\pi\)
\(434\) 0 0
\(435\) 126.901i 0.291726i
\(436\) 258.777 62.0909i 0.593525 0.142410i
\(437\) 245.145 + 424.603i 0.560972 + 0.971632i
\(438\) 28.5453 + 241.313i 0.0651718 + 0.550944i
\(439\) 695.621 + 401.617i 1.58456 + 0.914845i 0.994181 + 0.107718i \(0.0343543\pi\)
0.590377 + 0.807127i \(0.298979\pi\)
\(440\) 10.9927 + 29.8152i 0.0249835 + 0.0677617i
\(441\) 0 0
\(442\) 100.893 234.791i 0.228264 0.531202i
\(443\) −627.440 362.253i −1.41634 0.817726i −0.420368 0.907354i \(-0.638099\pi\)
−0.995975 + 0.0896276i \(0.971432\pi\)
\(444\) 420.360 + 124.576i 0.946756 + 0.280577i
\(445\) −80.3742 139.212i −0.180616 0.312836i
\(446\) 344.611 257.298i 0.772670 0.576901i
\(447\) 193.186i 0.432184i
\(448\) 0 0
\(449\) 675.025 1.50340 0.751698 0.659507i \(-0.229235\pi\)
0.751698 + 0.659507i \(0.229235\pi\)
\(450\) 90.1481 + 120.739i 0.200329 + 0.268310i
\(451\) 13.6086 7.85694i 0.0301743 0.0174212i
\(452\) 162.978 549.940i 0.360571 1.21668i
\(453\) 50.8437 88.0638i 0.112238 0.194401i
\(454\) 774.337 + 332.741i 1.70559 + 0.732911i
\(455\) 0 0
\(456\) −197.810 + 72.9317i −0.433794 + 0.159938i
\(457\) −181.945 + 315.138i −0.398129 + 0.689579i −0.993495 0.113875i \(-0.963674\pi\)
0.595366 + 0.803454i \(0.297007\pi\)
\(458\) 90.4242 10.6964i 0.197433 0.0233546i
\(459\) 298.730 172.472i 0.650827 0.375755i
\(460\) −243.658 1015.50i −0.529692 2.20760i
\(461\) 233.360 0.506205 0.253102 0.967439i \(-0.418549\pi\)
0.253102 + 0.967439i \(0.418549\pi\)
\(462\) 0 0
\(463\) 872.151i 1.88370i −0.336040 0.941848i \(-0.609088\pi\)
0.336040 0.941848i \(-0.390912\pi\)
\(464\) 121.324 + 78.8339i 0.261474 + 0.169901i
\(465\) 245.012 + 424.374i 0.526908 + 0.912632i
\(466\) −300.796 + 35.5815i −0.645484 + 0.0763552i
\(467\) −664.940 383.903i −1.42386 0.822063i −0.427229 0.904143i \(-0.640510\pi\)
−0.996626 + 0.0820802i \(0.973844\pi\)
\(468\) −127.646 134.546i −0.272748 0.287492i
\(469\) 0 0
\(470\) 563.048 + 241.948i 1.19797 + 0.514783i
\(471\) −537.586 310.376i −1.14137 0.658972i
\(472\) −235.530 + 283.081i −0.499005 + 0.599748i
\(473\) −6.04748 10.4745i −0.0127854 0.0221449i
\(474\) 47.4718 + 63.5811i 0.100151 + 0.134137i
\(475\) 211.725i 0.445737i
\(476\) 0 0
\(477\) −116.856 −0.244981
\(478\) −322.097 + 240.488i −0.673843 + 0.503113i
\(479\) −682.194 + 393.865i −1.42421 + 0.822265i −0.996655 0.0817264i \(-0.973957\pi\)
−0.427550 + 0.903992i \(0.640623\pi\)
\(480\) 448.109 29.2231i 0.933561 0.0608814i
\(481\) 270.966 469.327i 0.563340 0.975733i
\(482\) −196.326 + 456.878i −0.407315 + 0.947879i
\(483\) 0 0
\(484\) −332.091 350.043i −0.686139 0.723230i
\(485\) 357.492 619.194i 0.737096 1.27669i
\(486\) −49.2365 416.231i −0.101310 0.856443i
\(487\) −31.8410 + 18.3834i −0.0653819 + 0.0377483i −0.532335 0.846534i \(-0.678685\pi\)
0.466953 + 0.884282i \(0.345352\pi\)
\(488\) −57.2474 + 332.768i −0.117310 + 0.681902i
\(489\) 29.3742 0.0600699
\(490\) 0 0
\(491\) 413.002i 0.841145i −0.907259 0.420573i \(-0.861829\pi\)
0.907259 0.420573i \(-0.138171\pi\)
\(492\) −51.8111 215.934i −0.105307 0.438889i
\(493\) 54.1733 + 93.8310i 0.109885 + 0.190327i
\(494\) 30.6129 + 258.793i 0.0619695 + 0.523872i
\(495\) 14.9558 + 8.63471i 0.0302137 + 0.0174439i
\(496\) −557.931 29.3867i −1.12486 0.0592474i
\(497\) 0 0
\(498\) −63.6588 + 148.143i −0.127829 + 0.297476i
\(499\) 585.830 + 338.229i 1.17401 + 0.677814i 0.954621 0.297824i \(-0.0962607\pi\)
0.219388 + 0.975638i \(0.429594\pi\)
\(500\) 56.7237 191.404i 0.113447 0.382807i
\(501\) 260.543 + 451.274i 0.520047 + 0.900747i
\(502\) −363.608 + 271.482i −0.724319 + 0.540801i
\(503\) 88.3032i 0.175553i 0.996140 + 0.0877765i \(0.0279761\pi\)
−0.996140 + 0.0877765i \(0.972024\pi\)
\(504\) 0 0
\(505\) −280.745 −0.555930
\(506\) −29.3149 39.2627i −0.0579345 0.0775943i
\(507\) −103.239 + 59.6050i −0.203627 + 0.117564i
\(508\) 318.338 + 94.3415i 0.626650 + 0.185712i
\(509\) −130.134 + 225.399i −0.255666 + 0.442827i −0.965076 0.261969i \(-0.915628\pi\)
0.709410 + 0.704796i \(0.248961\pi\)
\(510\) 308.956 + 132.762i 0.605796 + 0.260318i
\(511\) 0 0
\(512\) −250.438 + 446.570i −0.489136 + 0.872207i
\(513\) −175.877 + 304.628i −0.342841 + 0.593818i
\(514\) 705.414 83.4443i 1.37240 0.162343i
\(515\) −848.633 + 489.958i −1.64783 + 0.951375i
\(516\) −166.204 + 39.8789i −0.322100 + 0.0772848i
\(517\) 28.7539 0.0556168
\(518\) 0 0
\(519\) 247.519i 0.476914i
\(520\) 94.1089 547.037i 0.180979 1.05199i
\(521\) −296.145 512.939i −0.568417 0.984528i −0.996723 0.0808936i \(-0.974223\pi\)
0.428305 0.903634i \(-0.359111\pi\)
\(522\) 78.0864 9.23694i 0.149591 0.0176953i
\(523\) −417.637 241.123i −0.798541 0.461038i 0.0444199 0.999013i \(-0.485856\pi\)
−0.842961 + 0.537975i \(0.819189\pi\)
\(524\) 85.5682 81.1799i 0.163298 0.154923i
\(525\) 0 0
\(526\) 717.746 + 308.424i 1.36454 + 0.586357i
\(527\) −362.326 209.189i −0.687526 0.396943i
\(528\) 18.7759 9.56059i 0.0355604 0.0181072i
\(529\) 540.652 + 936.437i 1.02203 + 1.77020i
\(530\) −209.240 280.245i −0.394793 0.528764i
\(531\) 200.128i 0.376889i
\(532\) 0 0
\(533\) −274.485 −0.514982
\(534\) −85.4055 + 63.7666i −0.159935 + 0.119413i
\(535\) 228.706 132.044i 0.427488 0.246810i
\(536\) −142.148 + 170.847i −0.265202 + 0.318744i
\(537\) −28.9385 + 50.1230i −0.0538892 + 0.0933389i
\(538\) 295.899 688.600i 0.549999 1.27993i
\(539\) 0 0
\(540\) 543.546 515.671i 1.00657 0.954946i
\(541\) −190.830 + 330.527i −0.352736 + 0.610956i −0.986728 0.162383i \(-0.948082\pi\)
0.633992 + 0.773340i \(0.281415\pi\)
\(542\) −36.0163 304.471i −0.0664507 0.561755i
\(543\) 86.9325 50.1905i 0.160097 0.0924319i
\(544\) −318.859 + 212.903i −0.586137 + 0.391366i
\(545\) 432.852 0.794223
\(546\) 0 0
\(547\) 826.228i 1.51047i 0.655453 + 0.755236i \(0.272478\pi\)
−0.655453 + 0.755236i \(0.727522\pi\)
\(548\) −91.4722 + 21.9478i −0.166920 + 0.0400508i
\(549\) 91.7505 + 158.917i 0.167123 + 0.289466i
\(550\) 2.48567 + 21.0132i 0.00451941 + 0.0382058i
\(551\) −95.6838 55.2431i −0.173655 0.100260i
\(552\) −649.686 + 239.537i −1.17697 + 0.433943i
\(553\) 0 0
\(554\) 355.146 826.476i 0.641058 1.49183i
\(555\) 617.576 + 356.558i 1.11275 + 0.642447i
\(556\) 982.464 + 291.159i 1.76702 + 0.523668i
\(557\) −179.446 310.810i −0.322165 0.558006i 0.658769 0.752345i \(-0.271077\pi\)
−0.980935 + 0.194339i \(0.937744\pi\)
\(558\) −243.297 + 181.654i −0.436017 + 0.325545i
\(559\) 211.271i 0.377945i
\(560\) 0 0
\(561\) 15.7779 0.0281245
\(562\) −3.91933 5.24933i −0.00697389 0.00934045i
\(563\) −80.3362 + 46.3821i −0.142693 + 0.0823839i −0.569647 0.821890i \(-0.692920\pi\)
0.426954 + 0.904273i \(0.359587\pi\)
\(564\) 115.458 389.590i 0.204712 0.690763i
\(565\) 466.471 807.951i 0.825612 1.43000i
\(566\) 629.000 + 270.289i 1.11131 + 0.477542i
\(567\) 0 0
\(568\) 158.266 + 429.259i 0.278637 + 0.755737i
\(569\) 188.943 327.259i 0.332062 0.575148i −0.650854 0.759203i \(-0.725589\pi\)
0.982916 + 0.184055i \(0.0589224\pi\)
\(570\) −340.539 + 40.2828i −0.597437 + 0.0706716i
\(571\) 686.704 396.469i 1.20263 0.694341i 0.241494 0.970402i \(-0.422363\pi\)
0.961140 + 0.276062i \(0.0890294\pi\)
\(572\) −6.07650 25.3251i −0.0106233 0.0442746i
\(573\) 162.680 0.283910
\(574\) 0 0
\(575\) 695.389i 1.20937i
\(576\) 50.5992 + 273.610i 0.0878458 + 0.475017i
\(577\) 202.147 + 350.129i 0.350342 + 0.606810i 0.986309 0.164906i \(-0.0527320\pi\)
−0.635967 + 0.771716i \(0.719399\pi\)
\(578\) 288.879 34.1719i 0.499791 0.0591209i
\(579\) 310.211 + 179.100i 0.535770 + 0.309327i
\(580\) 161.972 + 170.728i 0.279262 + 0.294358i
\(581\) 0 0
\(582\) −435.560 187.165i −0.748385 0.321590i
\(583\) −14.2113 8.20488i −0.0243761 0.0140736i
\(584\) −346.408 288.220i −0.593165 0.493527i
\(585\) −150.829 261.243i −0.257827 0.446569i
\(586\) 291.660 + 390.634i 0.497714 + 0.666611i
\(587\) 252.412i 0.430003i 0.976614 + 0.215002i \(0.0689756\pi\)
−0.976614 + 0.215002i \(0.931024\pi\)
\(588\) 0 0
\(589\) 426.639 0.724345
\(590\) −479.949 + 358.346i −0.813473 + 0.607366i
\(591\) 522.536 301.686i 0.884156 0.510468i
\(592\) −724.542 + 368.933i −1.22389 + 0.623198i
\(593\) −221.333 + 383.360i −0.373243 + 0.646476i −0.990062 0.140629i \(-0.955088\pi\)
0.616819 + 0.787105i \(0.288421\pi\)
\(594\) 13.8790 32.2984i 0.0233653 0.0543744i
\(595\) 0 0
\(596\) −246.576 259.906i −0.413719 0.436083i
\(597\) 0.296952 0.514335i 0.000497406 0.000861533i
\(598\) 100.545 + 849.977i 0.168135 + 1.42137i
\(599\) −201.082 + 116.095i −0.335696 + 0.193814i −0.658367 0.752697i \(-0.728752\pi\)
0.322671 + 0.946511i \(0.395419\pi\)
\(600\) 294.691 + 50.6969i 0.491152 + 0.0844948i
\(601\) −127.875 −0.212770 −0.106385 0.994325i \(-0.533928\pi\)
−0.106385 + 0.994325i \(0.533928\pi\)
\(602\) 0 0
\(603\) 120.783i 0.200303i
\(604\) 43.9985 + 183.373i 0.0728452 + 0.303598i
\(605\) −392.405 679.665i −0.648603 1.12341i
\(606\) 21.8673 + 184.859i 0.0360846 + 0.305049i
\(607\) 166.162 + 95.9334i 0.273742 + 0.158045i 0.630587 0.776119i \(-0.282814\pi\)
−0.356845 + 0.934164i \(0.616148\pi\)
\(608\) 173.039 350.598i 0.284603 0.576641i
\(609\) 0 0
\(610\) −216.828 + 504.590i −0.355456 + 0.827197i
\(611\) −434.974 251.132i −0.711905 0.411018i
\(612\) −59.2045 + 199.775i −0.0967393 + 0.326429i
\(613\) −163.435 283.077i −0.266615 0.461790i 0.701371 0.712797i \(-0.252572\pi\)
−0.967985 + 0.251006i \(0.919238\pi\)
\(614\) 93.6744 69.9404i 0.152564 0.113909i
\(615\) 361.189i 0.587299i
\(616\) 0 0
\(617\) −557.014 −0.902778 −0.451389 0.892327i \(-0.649071\pi\)
−0.451389 + 0.892327i \(0.649071\pi\)
\(618\) 388.719 + 520.628i 0.628994 + 0.842441i
\(619\) −405.320 + 234.011i −0.654798 + 0.378048i −0.790292 0.612731i \(-0.790071\pi\)
0.135494 + 0.990778i \(0.456738\pi\)
\(620\) −871.287 258.211i −1.40530 0.416470i
\(621\) −577.650 + 1000.52i −0.930194 + 1.61114i
\(622\) −228.564 98.2166i −0.367466 0.157905i
\(623\) 0 0
\(624\) −367.533 19.3583i −0.588994 0.0310228i
\(625\) 378.965 656.387i 0.606344 1.05022i
\(626\) −956.234 + 113.114i −1.52753 + 0.180694i
\(627\) −13.9338 + 8.04471i −0.0222230 + 0.0128305i
\(628\) 1119.40 268.590i 1.78249 0.427690i
\(629\) −608.851 −0.967967
\(630\) 0 0
\(631\) 557.865i 0.884096i 0.896991 + 0.442048i \(0.145748\pi\)
−0.896991 + 0.442048i \(0.854252\pi\)
\(632\) −145.020 24.9483i −0.229462 0.0394752i
\(633\) −324.903 562.749i −0.513275 0.889018i
\(634\) 713.321 84.3796i 1.12511 0.133091i
\(635\) 467.690 + 270.021i 0.736520 + 0.425230i
\(636\) −168.233 + 159.605i −0.264517 + 0.250951i
\(637\) 0 0
\(638\) 10.1449 + 4.35939i 0.0159011 + 0.00683290i
\(639\) 215.323 + 124.317i 0.336969 + 0.194549i
\(640\) −565.571 + 611.268i −0.883704 + 0.955106i
\(641\) −361.777 626.616i −0.564395 0.977560i −0.997106 0.0760277i \(-0.975776\pi\)
0.432711 0.901533i \(-0.357557\pi\)
\(642\) −104.760 140.309i −0.163177 0.218550i
\(643\) 145.293i 0.225961i −0.993597 0.112980i \(-0.963960\pi\)
0.993597 0.112980i \(-0.0360397\pi\)
\(644\) 0 0
\(645\) −278.006 −0.431018
\(646\) 234.599 175.160i 0.363157 0.271145i
\(647\) 294.712 170.152i 0.455506 0.262987i −0.254647 0.967034i \(-0.581959\pi\)
0.710153 + 0.704048i \(0.248626\pi\)
\(648\) −141.254 117.527i −0.217985 0.181369i
\(649\) −14.0517 + 24.3383i −0.0216514 + 0.0375012i
\(650\) 145.924 339.586i 0.224498 0.522439i
\(651\) 0 0
\(652\) −39.5190 + 37.4923i −0.0606119 + 0.0575035i
\(653\) −406.929 + 704.822i −0.623169 + 1.07936i 0.365723 + 0.930724i \(0.380822\pi\)
−0.988892 + 0.148637i \(0.952512\pi\)
\(654\) −33.7149 285.016i −0.0515518 0.435804i
\(655\) 166.145 95.9236i 0.253656 0.146448i
\(656\) 345.315 + 224.379i 0.526395 + 0.342041i
\(657\) −244.898 −0.372753
\(658\) 0 0
\(659\) 939.024i 1.42492i 0.701711 + 0.712462i \(0.252420\pi\)
−0.701711 + 0.712462i \(0.747580\pi\)
\(660\) 33.3247 7.99592i 0.0504919 0.0121150i
\(661\) −104.148 180.389i −0.157561 0.272904i 0.776428 0.630206i \(-0.217030\pi\)
−0.933989 + 0.357303i \(0.883696\pi\)
\(662\) 29.7664 + 251.636i 0.0449643 + 0.380115i
\(663\) −238.679 137.802i −0.359999 0.207845i
\(664\) −103.441 280.558i −0.155784 0.422528i
\(665\) 0 0
\(666\) −174.450 + 405.969i −0.261936 + 0.609563i
\(667\) −314.263 181.440i −0.471159 0.272024i
\(668\) −926.517 274.579i −1.38700 0.411047i
\(669\) −231.907 401.675i −0.346648 0.600411i
\(670\) −289.661 + 216.271i −0.432331 + 0.322792i
\(671\) 25.7685i 0.0384032i
\(672\) 0 0
\(673\) 634.671 0.943048 0.471524 0.881853i \(-0.343704\pi\)
0.471524 + 0.881853i \(0.343704\pi\)
\(674\) −659.810 883.714i −0.978947 1.31115i
\(675\) 432.062 249.451i 0.640091 0.369557i
\(676\) 62.8159 211.961i 0.0929230 0.313552i
\(677\) 145.058 251.248i 0.214266 0.371119i −0.738780 0.673947i \(-0.764598\pi\)
0.953045 + 0.302828i \(0.0979309\pi\)
\(678\) −568.338 244.221i −0.838256 0.360208i
\(679\) 0 0
\(680\) −585.112 + 215.728i −0.860458 + 0.317247i
\(681\) 454.466 787.159i 0.667351 1.15589i
\(682\) −42.3428 + 5.00879i −0.0620862 + 0.00734426i
\(683\) 617.155 356.315i 0.903595 0.521691i 0.0252299 0.999682i \(-0.491968\pi\)
0.878365 + 0.477991i \(0.158635\pi\)
\(684\) −49.5747 206.613i −0.0724777 0.302066i
\(685\) −153.004 −0.223364
\(686\) 0 0
\(687\) 98.1994i 0.142939i
\(688\) 172.704 265.789i 0.251024 0.386321i
\(689\) 143.320 + 248.238i 0.208012 + 0.360288i
\(690\) −1118.46 + 132.305i −1.62096 + 0.191746i
\(691\) −350.022 202.085i −0.506545 0.292454i 0.224868 0.974389i \(-0.427805\pi\)
−0.731412 + 0.681936i \(0.761138\pi\)
\(692\) −315.925 333.003i −0.456538 0.481218i
\(693\) 0 0
\(694\) −755.746 324.753i −1.08897 0.467944i
\(695\) 1443.40 + 833.347i 2.07683 + 1.19906i
\(696\) 99.8016 119.950i 0.143393 0.172342i
\(697\) 154.190 + 267.064i 0.221219 + 0.383162i
\(698\) 481.651 + 645.097i 0.690045 + 0.924208i
\(699\) 326.660i 0.467324i
\(700\) 0 0
\(701\) −111.341 −0.158831 −0.0794156 0.996842i \(-0.525305\pi\)
−0.0794156 + 0.996842i \(0.525305\pi\)
\(702\) −492.043 + 367.376i −0.700916 + 0.523327i
\(703\) 537.692 310.437i 0.764854 0.441589i
\(704\) −13.0576 + 36.8274i −0.0185477 + 0.0523116i
\(705\) 330.459 572.371i 0.468736 0.811874i
\(706\) 47.3124 110.103i 0.0670148 0.155953i
\(707\) 0 0
\(708\) 273.340 + 288.116i 0.386074 + 0.406944i
\(709\) −386.373 + 669.217i −0.544955 + 0.943889i 0.453655 + 0.891177i \(0.350120\pi\)
−0.998610 + 0.0527117i \(0.983214\pi\)
\(710\) 87.4160 + 738.989i 0.123121 + 1.04083i
\(711\) −69.2556 + 39.9847i −0.0974059 + 0.0562373i
\(712\) 33.5119 194.798i 0.0470672 0.273593i
\(713\) 1401.25 1.96529
\(714\) 0 0
\(715\) 42.3609i 0.0592460i
\(716\) −25.0425 104.370i −0.0349756 0.145768i
\(717\) 216.756 + 375.433i 0.302310 + 0.523616i
\(718\) 33.0595 + 279.475i 0.0460438 + 0.389241i
\(719\) 803.582 + 463.948i 1.11764 + 0.645269i 0.940797 0.338971i \(-0.110079\pi\)
0.176841 + 0.984239i \(0.443412\pi\)
\(720\) −23.8046 + 451.951i −0.0330620 + 0.627710i
\(721\) 0 0
\(722\) 167.177 389.045i 0.231547 0.538843i
\(723\) 464.443 + 268.146i 0.642383 + 0.370880i
\(724\) −52.8943 + 178.482i −0.0730585 + 0.246522i
\(725\) 78.3525 + 135.711i 0.108072 + 0.187187i
\(726\) −416.969 + 311.323i −0.574337 + 0.428819i
\(727\) 811.924i 1.11681i 0.829567 + 0.558407i \(0.188587\pi\)
−0.829567 + 0.558407i \(0.811413\pi\)
\(728\) 0 0
\(729\) −658.744 −0.903627
\(730\) −438.510 587.317i −0.600699 0.804544i
\(731\) 205.559 118.680i 0.281202 0.162352i
\(732\) 349.141 + 103.470i 0.476969 + 0.141353i
\(733\) −495.396 + 858.052i −0.675848 + 1.17060i 0.300373 + 0.953822i \(0.402889\pi\)
−0.976220 + 0.216781i \(0.930444\pi\)
\(734\) −612.592 263.238i −0.834594 0.358635i
\(735\) 0 0
\(736\) 568.327 1151.50i 0.772184 1.56454i
\(737\) −8.48057 + 14.6888i −0.0115069 + 0.0199305i
\(738\) 222.252 26.2904i 0.301154 0.0356239i
\(739\) −989.673 + 571.388i −1.33921 + 0.773191i −0.986690 0.162615i \(-0.948007\pi\)
−0.352516 + 0.935806i \(0.614674\pi\)
\(740\) −1285.96 + 308.554i −1.73779 + 0.416965i
\(741\) 281.045 0.379278
\(742\) 0 0
\(743\) 143.488i 0.193120i 0.995327 + 0.0965601i \(0.0307840\pi\)
−0.995327 + 0.0965601i \(0.969216\pi\)
\(744\) −102.157 + 593.821i −0.137308 + 0.798146i
\(745\) −291.359 504.649i −0.391086 0.677381i
\(746\) 511.317 60.4844i 0.685412 0.0810783i
\(747\) −140.733 81.2520i −0.188397 0.108771i
\(748\) −21.2270 + 20.1383i −0.0283783 + 0.0269229i
\(749\) 0 0
\(750\) −197.807 84.9999i −0.263742 0.113333i
\(751\) 1202.40 + 694.203i 1.60106 + 0.924372i 0.991276 + 0.131804i \(0.0420769\pi\)
0.609783 + 0.792568i \(0.291256\pi\)
\(752\) 341.928 + 671.507i 0.454691 + 0.892961i
\(753\) 244.692 + 423.818i 0.324956 + 0.562840i
\(754\) −115.393 154.551i −0.153041 0.204975i
\(755\) 306.725i 0.406258i
\(756\) 0 0
\(757\) 206.398 0.272652 0.136326 0.990664i \(-0.456470\pi\)
0.136326 + 0.990664i \(0.456470\pi\)
\(758\) 197.050 147.124i 0.259960 0.194095i
\(759\) −45.7642 + 26.4220i −0.0602954 + 0.0348116i
\(760\) 406.733 488.848i 0.535175 0.643221i
\(761\) −284.867 + 493.405i −0.374333 + 0.648363i −0.990227 0.139466i \(-0.955462\pi\)
0.615894 + 0.787829i \(0.288795\pi\)
\(762\) 141.370 328.988i 0.185525 0.431743i
\(763\) 0 0
\(764\) −218.864 + 207.640i −0.286472 + 0.271780i
\(765\) −169.453 + 293.501i −0.221507 + 0.383662i
\(766\) −81.9322 692.630i −0.106961 0.904217i
\(767\) 425.134 245.451i 0.554282 0.320015i
\(768\) 446.548 + 324.794i 0.581443 + 0.422909i
\(769\) 945.548 1.22958 0.614791 0.788690i \(-0.289240\pi\)
0.614791 + 0.788690i \(0.289240\pi\)
\(770\) 0 0
\(771\) 766.069i 0.993604i
\(772\) −645.944 + 154.988i −0.836715 + 0.200761i
\(773\) 66.4717 + 115.132i 0.0859918 + 0.148942i 0.905813 0.423677i \(-0.139261\pi\)
−0.819822 + 0.572619i \(0.805927\pi\)
\(774\) −20.2357 171.067i −0.0261443 0.221016i
\(775\) −524.043 302.556i −0.676184 0.390395i
\(776\) 824.878 304.129i 1.06299 0.391919i
\(777\) 0 0
\(778\) −279.031 + 649.345i −0.358652 + 0.834633i
\(779\) −272.338 157.234i −0.349599 0.201841i
\(780\) −573.953 170.095i −0.735838 0.218070i
\(781\) 17.4575 + 30.2372i 0.0223527 + 0.0387160i
\(782\) 770.517 575.293i 0.985315 0.735669i
\(783\) 260.346i 0.332497i
\(784\) 0 0
\(785\) 1872.41 2.38523
\(786\) −76.1030 101.928i −0.0968231 0.129680i
\(787\) 202.605 116.974i 0.257440 0.148633i −0.365726 0.930722i \(-0.619179\pi\)
0.623166 + 0.782089i \(0.285846\pi\)
\(788\) −317.939 + 1072.83i −0.403475 + 1.36145i
\(789\) 421.253 729.631i 0.533907 0.924755i
\(790\) −219.899 94.4933i −0.278354 0.119612i
\(791\) 0 0
\(792\) 7.34582 + 19.9238i 0.00927502 + 0.0251563i
\(793\) 225.059 389.813i 0.283807 0.491567i
\(794\) 362.139 42.8379i 0.456094 0.0539520i
\(795\) −326.651 + 188.592i −0.410881 + 0.237222i
\(796\) 0.256973 + 1.07099i 0.000322830 + 0.00134546i
\(797\) −1208.00 −1.51569 −0.757843 0.652437i \(-0.773747\pi\)
−0.757843 + 0.652437i \(0.773747\pi\)
\(798\) 0 0
\(799\) 564.285i 0.706239i
\(800\) −461.175 + 307.928i −0.576468 + 0.384910i
\(801\) −53.7095 93.0277i −0.0670531 0.116139i
\(802\) −686.947 + 81.2598i −0.856542 + 0.101321i
\(803\) −29.7830 17.1952i −0.0370896 0.0214137i
\(804\) 164.968 + 173.885i 0.205184 + 0.216275i
\(805\) 0 0
\(806\) 684.286 + 294.046i 0.848990 + 0.364821i
\(807\) −700.002 404.147i −0.867413 0.500801i
\(808\) −265.368 220.792i −0.328426 0.273258i
\(809\) −34.7428 60.1763i −0.0429453 0.0743835i 0.843754 0.536730i \(-0.180341\pi\)
−0.886699 + 0.462347i \(0.847007\pi\)
\(810\) −178.811 239.490i −0.220754 0.295666i
\(811\) 1095.24i 1.35048i 0.737599 + 0.675239i \(0.235959\pi\)
−0.737599 + 0.675239i \(0.764041\pi\)
\(812\) 0 0
\(813\) −330.651 −0.406705
\(814\) −49.7200 + 37.1226i −0.0610810 + 0.0456051i
\(815\) −76.7325 + 44.3015i −0.0941503 + 0.0543577i
\(816\) 187.623 + 368.470i 0.229930 + 0.451556i
\(817\) −121.023 + 209.618i −0.148131 + 0.256570i
\(818\) −241.455 + 561.901i −0.295178 + 0.686920i
\(819\) 0 0
\(820\) 461.009 + 485.930i 0.562206 + 0.592598i
\(821\) 378.010 654.733i 0.460427 0.797483i −0.538555 0.842590i \(-0.681030\pi\)
0.998982 + 0.0451075i \(0.0143630\pi\)
\(822\) 11.9175 + 100.747i 0.0144982 + 0.122563i
\(823\) −277.186 + 160.033i −0.336799 + 0.194451i −0.658856 0.752269i \(-0.728959\pi\)
0.322057 + 0.946720i \(0.395626\pi\)
\(824\) −1187.48 204.287i −1.44112 0.247921i
\(825\) 22.8200 0.0276606
\(826\) 0 0
\(827\) 104.960i 0.126917i −0.997984 0.0634585i \(-0.979787\pi\)
0.997984 0.0634585i \(-0.0202131\pi\)
\(828\) −162.823 678.599i −0.196646 0.819564i
\(829\) 408.833 + 708.120i 0.493164 + 0.854186i 0.999969 0.00787505i \(-0.00250673\pi\)
−0.506804 + 0.862061i \(0.669173\pi\)
\(830\) −57.1340 482.994i −0.0688362 0.581921i
\(831\) −840.161 485.067i −1.01102 0.583715i
\(832\) 519.173 443.063i 0.624006 0.532527i
\(833\) 0 0
\(834\) 436.300 1015.33i 0.523141 1.21742i
\(835\) −1361.20 785.891i −1.63018 0.941187i
\(836\) 8.47809 28.6078i 0.0101413 0.0342198i
\(837\) 502.659 + 870.631i 0.600548 + 1.04018i
\(838\) 1201.47 897.060i 1.43374 1.07048i
\(839\) 1029.02i 1.22648i −0.789896 0.613240i \(-0.789866\pi\)
0.789896 0.613240i \(-0.210134\pi\)
\(840\) 0 0
\(841\) −759.225 −0.902765
\(842\) 426.204 + 570.834i 0.506180 + 0.677950i
\(843\) −6.11857 + 3.53256i −0.00725809 + 0.00419046i
\(844\) 1155.39 + 342.406i 1.36894 + 0.405694i
\(845\) 179.790 311.405i 0.212769 0.368527i
\(846\) 376.253 + 161.680i 0.444744 + 0.191111i
\(847\) 0 0
\(848\) 22.6197 429.453i 0.0266741 0.506430i
\(849\) 369.167 639.416i 0.434825 0.753140i
\(850\) −412.376 + 48.7805i −0.485148 + 0.0573888i
\(851\) 1765.99 1019.60i 2.07520 1.19812i
\(852\) 479.787 115.120i 0.563130 0.135117i
\(853\) −583.808 −0.684417 −0.342209 0.939624i \(-0.611175\pi\)
−0.342209 + 0.939624i \(0.611175\pi\)
\(854\) 0 0
\(855\) 345.598i 0.404209i
\(856\) 320.026 + 55.0553i 0.373862 + 0.0643169i
\(857\) −549.072 951.020i −0.640691 1.10971i −0.985279 0.170955i \(-0.945315\pi\)
0.344588 0.938754i \(-0.388019\pi\)
\(858\) −27.8930 + 3.29950i −0.0325093 + 0.00384557i
\(859\) 259.092 + 149.587i 0.301620 + 0.174141i 0.643171 0.765723i \(-0.277619\pi\)
−0.341550 + 0.939864i \(0.610952\pi\)
\(860\) 374.020 354.838i 0.434907 0.412603i
\(861\) 0 0
\(862\) −347.815 149.460i −0.403498 0.173388i
\(863\) −815.368 470.753i −0.944807 0.545485i −0.0533431 0.998576i \(-0.516988\pi\)
−0.891464 + 0.453092i \(0.850321\pi\)
\(864\) 919.326 59.9530i 1.06403 0.0693901i
\(865\) −373.302 646.578i −0.431563 0.747489i
\(866\) −922.958 1236.16i −1.06577 1.42744i
\(867\) 313.719i 0.361844i
\(868\) 0 0
\(869\) −11.2299 −0.0129228
\(870\) 203.370 151.843i 0.233758 0.174532i
\(871\) 256.579 148.136i 0.294580 0.170076i
\(872\) 409.144 + 340.417i 0.469202 + 0.390387i
\(873\) 238.891 413.772i 0.273644 0.473966i
\(874\) −387.137 + 900.922i −0.442948 + 1.03080i
\(875\) 0 0
\(876\) −352.570 + 334.488i −0.402477 + 0.381836i
\(877\) −491.695 + 851.640i −0.560655 + 0.971084i 0.436784 + 0.899566i \(0.356117\pi\)
−0.997439 + 0.0715173i \(0.977216\pi\)
\(878\) 188.715 + 1595.35i 0.214938 + 1.81702i
\(879\) 455.319 262.879i 0.517996 0.299065i
\(880\) −34.6281 + 53.2919i −0.0393501 + 0.0605590i
\(881\) 155.250 0.176220 0.0881102 0.996111i \(-0.471917\pi\)
0.0881102 + 0.996111i \(0.471917\pi\)
\(882\) 0 0
\(883\) 612.809i 0.694008i −0.937864 0.347004i \(-0.887199\pi\)
0.937864 0.347004i \(-0.112801\pi\)
\(884\) 496.996 119.249i 0.562212 0.134897i
\(885\) 322.984 + 559.424i 0.364953 + 0.632117i
\(886\) −170.219 1438.98i −0.192120 1.62413i
\(887\) −123.796 71.4737i −0.139567 0.0805791i 0.428591 0.903499i \(-0.359010\pi\)
−0.568158 + 0.822920i \(0.692344\pi\)
\(888\) 303.335 + 822.724i 0.341593 + 0.926490i
\(889\) 0 0
\(890\) 126.928 295.380i 0.142616 0.331888i
\(891\) −12.1446 7.01167i −0.0136303 0.00786944i
\(892\) 824.684 + 244.400i 0.924534 + 0.273991i
\(893\) −287.714 498.335i −0.322188 0.558045i
\(894\) −309.597 + 231.156i −0.346306 + 0.258563i
\(895\) 174.578i 0.195059i
\(896\) 0 0
\(897\) 923.063 1.02906
\(898\) 807.697 + 1081.79i 0.899440 + 1.20466i
\(899\) −273.465 + 157.885i −0.304188 + 0.175623i
\(900\) −85.6292 + 288.940i −0.0951435 + 0.321045i
\(901\) 161.018 278.891i 0.178710 0.309535i
\(902\) 28.8747 + 12.4078i 0.0320119 + 0.0137559i
\(903\) 0 0
\(904\) 1076.34 396.841i 1.19064 0.438984i
\(905\) −151.392 + 262.219i −0.167284 + 0.289745i
\(906\) 201.966 23.8909i 0.222921 0.0263696i
\(907\) −1169.79 + 675.381i −1.28974 + 0.744632i −0.978608 0.205735i \(-0.934042\pi\)
−0.311132 + 0.950367i \(0.600708\pi\)
\(908\) 393.281 + 1639.08i 0.433129 + 1.80516i
\(909\) −187.606 −0.206387
\(910\) 0 0
\(911\) 215.218i 0.236244i −0.992999 0.118122i \(-0.962313\pi\)
0.992999 0.118122i \(-0.0376874\pi\)
\(912\) −353.568 229.741i −0.387684 0.251910i
\(913\) −11.4100 19.7627i −0.0124973 0.0216459i
\(914\) −722.740 + 85.4939i −0.790744 + 0.0935382i
\(915\) 512.945 + 296.149i 0.560596 + 0.323660i
\(916\) 125.338 + 132.114i 0.136832 + 0.144229i
\(917\) 0 0
\(918\) 633.844 + 272.370i 0.690462 + 0.296699i
\(919\) −7.65593 4.42016i −0.00833072 0.00480975i 0.495829 0.868420i \(-0.334864\pi\)
−0.504160 + 0.863611i \(0.668198\pi\)
\(920\) 1335.87 1605.57i 1.45204 1.74518i
\(921\) −63.0385 109.186i −0.0684457 0.118551i
\(922\) 279.226 + 373.980i 0.302848 + 0.405618i
\(923\) 609.884i 0.660763i
\(924\) 0 0
\(925\) −880.599 −0.951999
\(926\) 1397.70 1043.57i 1.50939 1.12696i
\(927\) −567.093 + 327.411i −0.611751 + 0.353195i
\(928\) 18.8313 + 288.760i 0.0202923 + 0.311164i
\(929\) 712.274 1233.69i 0.766710 1.32798i −0.172627 0.984987i \(-0.555226\pi\)
0.939338 0.342994i \(-0.111441\pi\)
\(930\) −386.927 + 900.435i −0.416051 + 0.968210i
\(931\) 0 0
\(932\) −416.938 439.476i −0.447358 0.471541i
\(933\) −134.147 + 232.349i −0.143780 + 0.249034i
\(934\) −180.392 1524.98i −0.193139 1.63274i
\(935\) −41.2156 + 23.7958i −0.0440808 + 0.0254501i
\(936\) 62.8877 365.554i 0.0671877 0.390549i
\(937\) −616.709 −0.658174 −0.329087 0.944300i \(-0.606741\pi\)
−0.329087 + 0.944300i \(0.606741\pi\)
\(938\) 0 0
\(939\) 1038.46i 1.10592i
\(940\) 285.969 + 1191.83i 0.304222 + 1.26791i
\(941\) 467.668 + 810.025i 0.496991 + 0.860813i 0.999994 0.00347133i \(-0.00110496\pi\)
−0.503003 + 0.864285i \(0.667772\pi\)
\(942\) −145.842 1232.91i −0.154822 1.30882i
\(943\) −894.464 516.419i −0.948531 0.547634i
\(944\) −735.484 38.7386i −0.779114 0.0410366i
\(945\) 0 0
\(946\) 9.55028 22.2248i 0.0100954 0.0234935i
\(947\) 988.080 + 570.468i 1.04338 + 0.602395i 0.920788 0.390062i \(-0.127547\pi\)
0.122590 + 0.992457i \(0.460880\pi\)
\(948\) −45.0922 + 152.155i −0.0475656 + 0.160501i
\(949\) 300.361 + 520.240i 0.316502 + 0.548198i
\(950\) 339.308 253.339i 0.357166 0.266672i
\(951\) 774.656i 0.814570i
\(952\) 0 0
\(953\) −1265.64 −1.32806 −0.664030 0.747706i \(-0.731155\pi\)
−0.664030 + 0.747706i \(0.731155\pi\)
\(954\) −139.823 187.272i −0.146565 0.196302i
\(955\) −424.960 + 245.351i −0.444985 + 0.256912i
\(956\) −770.806 228.433i −0.806282 0.238947i
\(957\) 5.95416 10.3129i 0.00622169 0.0107763i
\(958\) −1447.48 621.998i −1.51094 0.649267i
\(959\) 0 0
\(960\) 583.015 + 683.167i 0.607307 + 0.711633i
\(961\) 129.169 223.728i 0.134411 0.232807i
\(962\) 1076.36 127.324i 1.11888 0.132354i
\(963\) 152.831 88.2373i 0.158703 0.0916275i
\(964\) −967.098 + 232.046i −1.00321 + 0.240711i
\(965\) −1080.46 −1.11965
\(966\) 0 0
\(967\) 1527.55i 1.57968i −0.613313 0.789840i \(-0.710164\pi\)
0.613313 0.789840i \(-0.289836\pi\)
\(968\) 163.612 951.047i 0.169021 0.982487i
\(969\) −157.874 273.447i −0.162925 0.282195i
\(970\) 1420.07 167.981i 1.46399 0.173177i
\(971\) −156.301 90.2405i −0.160969 0.0929356i 0.417351 0.908745i \(-0.362958\pi\)
−0.578321 + 0.815810i \(0.696292\pi\)
\(972\) 608.133 576.945i 0.625651 0.593565i
\(973\) 0 0
\(974\) −67.5601 29.0314i −0.0693636 0.0298063i
\(975\) −345.209 199.306i −0.354060 0.204417i
\(976\) −601.788 + 306.428i −0.616586 + 0.313963i
\(977\) 446.888 + 774.033i 0.457408 + 0.792255i 0.998823 0.0485011i \(-0.0154444\pi\)
−0.541415 + 0.840756i \(0.682111\pi\)
\(978\) 35.1475 + 47.0747i 0.0359382 + 0.0481336i
\(979\) 15.0846i 0.0154081i
\(980\) 0 0
\(981\) 289.250 0.294852
\(982\) 661.872 494.175i 0.674004 0.503234i
\(983\) −561.180 + 323.997i −0.570885 + 0.329600i −0.757503 0.652832i \(-0.773581\pi\)
0.186618 + 0.982433i \(0.440247\pi\)
\(984\) 284.058 341.406i 0.288677 0.346957i
\(985\) −909.994 + 1576.16i −0.923852 + 1.60016i
\(986\) −85.5514 + 199.090i −0.0867662 + 0.201917i
\(987\) 0 0
\(988\) −378.108 + 358.717i −0.382700 + 0.363074i
\(989\) −397.487 + 688.468i −0.401908 + 0.696126i
\(990\) 4.05736 + 34.2997i 0.00409834 + 0.0346462i
\(991\) −1167.47 + 674.041i −1.17808 + 0.680162i −0.955569 0.294769i \(-0.904757\pi\)
−0.222507 + 0.974931i \(0.571424\pi\)
\(992\) −620.494 929.295i −0.625498 0.936789i
\(993\) 273.273 0.275199
\(994\) 0 0
\(995\) 1.79142i 0.00180042i
\(996\) −313.583 + 75.2411i −0.314842 + 0.0755432i
\(997\) 256.786 + 444.766i 0.257559 + 0.446105i 0.965587 0.260079i \(-0.0837486\pi\)
−0.708029 + 0.706184i \(0.750415\pi\)
\(998\) 158.930 + 1343.55i 0.159249 + 1.34624i
\(999\) 1267.00 + 731.502i 1.26827 + 0.732234i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 196.3.g.i.79.5 12
4.3 odd 2 inner 196.3.g.i.79.1 12
7.2 even 3 196.3.c.h.99.3 6
7.3 odd 6 28.3.g.a.11.1 12
7.4 even 3 inner 196.3.g.i.67.1 12
7.5 odd 6 196.3.c.i.99.3 6
7.6 odd 2 28.3.g.a.23.5 yes 12
21.17 even 6 252.3.y.c.235.6 12
21.20 even 2 252.3.y.c.163.2 12
28.3 even 6 28.3.g.a.11.5 yes 12
28.11 odd 6 inner 196.3.g.i.67.5 12
28.19 even 6 196.3.c.i.99.4 6
28.23 odd 6 196.3.c.h.99.4 6
28.27 even 2 28.3.g.a.23.1 yes 12
56.3 even 6 448.3.r.h.319.5 12
56.13 odd 2 448.3.r.h.191.5 12
56.27 even 2 448.3.r.h.191.2 12
56.45 odd 6 448.3.r.h.319.2 12
84.59 odd 6 252.3.y.c.235.2 12
84.83 odd 2 252.3.y.c.163.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.3.g.a.11.1 12 7.3 odd 6
28.3.g.a.11.5 yes 12 28.3 even 6
28.3.g.a.23.1 yes 12 28.27 even 2
28.3.g.a.23.5 yes 12 7.6 odd 2
196.3.c.h.99.3 6 7.2 even 3
196.3.c.h.99.4 6 28.23 odd 6
196.3.c.i.99.3 6 7.5 odd 6
196.3.c.i.99.4 6 28.19 even 6
196.3.g.i.67.1 12 7.4 even 3 inner
196.3.g.i.67.5 12 28.11 odd 6 inner
196.3.g.i.79.1 12 4.3 odd 2 inner
196.3.g.i.79.5 12 1.1 even 1 trivial
252.3.y.c.163.2 12 21.20 even 2
252.3.y.c.163.6 12 84.83 odd 2
252.3.y.c.235.2 12 84.59 odd 6
252.3.y.c.235.6 12 21.17 even 6
448.3.r.h.191.2 12 56.27 even 2
448.3.r.h.191.5 12 56.13 odd 2
448.3.r.h.319.2 12 56.45 odd 6
448.3.r.h.319.5 12 56.3 even 6