Properties

Label 196.3.c.h.99.3
Level $196$
Weight $3$
Character 196.99
Analytic conductor $5.341$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [196,3,Mod(99,196)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(196, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("196.99"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 196.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,2,0,4,-2,6,0,-4,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.34061318146\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.15582448.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 13x^{4} - 21x^{3} + 20x^{2} - 10x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.3
Root \(0.500000 + 0.759064i\) of defining polynomial
Character \(\chi\) \(=\) 196.99
Dual form 196.3.c.h.99.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.789608 - 1.83753i) q^{2} +2.15693i q^{3} +(-2.75304 - 2.90186i) q^{4} +6.50608 q^{5} +(3.96343 + 1.70313i) q^{6} +(-7.50608 + 2.76746i) q^{8} +4.34764 q^{9} +(5.13725 - 11.9551i) q^{10} -0.610527i q^{11} +(6.25911 - 5.93812i) q^{12} +10.6645 q^{13} +14.0332i q^{15} +(-0.841567 + 15.9779i) q^{16} +11.9814 q^{17} +(3.43293 - 7.98893i) q^{18} -12.2180i q^{19} +(-17.9115 - 18.8797i) q^{20} +(-1.12186 - 0.482077i) q^{22} -40.1286i q^{23} +(-5.96922 - 16.1901i) q^{24} +17.3290 q^{25} +(8.42078 - 19.5964i) q^{26} +28.7900i q^{27} -9.04293 q^{29} +(25.7864 + 11.0807i) q^{30} +34.9190i q^{31} +(28.6953 + 14.1626i) q^{32} +1.31687 q^{33} +(9.46059 - 22.0161i) q^{34} +(-11.9692 - 12.6162i) q^{36} -50.8165 q^{37} +(-22.4509 - 9.64740i) q^{38} +23.0026i q^{39} +(-48.8351 + 18.0053i) q^{40} -25.7382 q^{41} +19.8107i q^{43} +(-1.77166 + 1.68080i) q^{44} +28.2861 q^{45} +(-73.7375 - 31.6859i) q^{46} +47.0968i q^{47} +(-34.4631 - 1.81520i) q^{48} +(13.6831 - 31.8426i) q^{50} +25.8430i q^{51} +(-29.3598 - 30.9469i) q^{52} -26.8780 q^{53} +(52.9024 + 22.7328i) q^{54} -3.97214i q^{55} +26.3533 q^{57} +(-7.14037 + 16.6167i) q^{58} +46.0315i q^{59} +(40.7223 - 38.6338i) q^{60} -42.2070 q^{61} +(64.1648 + 27.5724i) q^{62} +(48.6823 - 41.5455i) q^{64} +69.3841 q^{65} +(1.03981 - 2.41978i) q^{66} +27.7812i q^{67} +(-32.9852 - 34.7683i) q^{68} +86.5547 q^{69} -57.1882i q^{71} +(-32.6337 + 12.0319i) q^{72} -56.3290 q^{73} +(-40.1251 + 93.3768i) q^{74} +37.3775i q^{75} +(-35.4548 + 33.6365i) q^{76} +(42.2680 + 18.1631i) q^{78} -18.3938i q^{79} +(-5.47530 + 103.953i) q^{80} -22.9692 q^{81} +(-20.3231 + 47.2948i) q^{82} +37.3775i q^{83} +77.9517 q^{85} +(36.4027 + 15.6427i) q^{86} -19.5050i q^{87} +(1.68961 + 4.58266i) q^{88} +24.7074 q^{89} +(22.3349 - 51.9766i) q^{90} +(-116.448 + 110.476i) q^{92} -75.3180 q^{93} +(86.5418 + 37.1880i) q^{94} -79.4910i q^{95} +(-30.5479 + 61.8938i) q^{96} -109.895 q^{97} -2.65435i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + 4 q^{4} - 2 q^{5} + 6 q^{6} - 4 q^{8} - 4 q^{9} - 2 q^{10} - 24 q^{12} + 12 q^{13} - 16 q^{16} - 2 q^{17} - 56 q^{18} - 76 q^{20} + 22 q^{22} - 44 q^{24} + 56 q^{26} + 36 q^{29} + 74 q^{30}+ \cdots - 372 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.789608 1.83753i 0.394804 0.918765i
\(3\) 2.15693i 0.718977i 0.933149 + 0.359489i \(0.117049\pi\)
−0.933149 + 0.359489i \(0.882951\pi\)
\(4\) −2.75304 2.90186i −0.688259 0.725465i
\(5\) 6.50608 1.30122 0.650608 0.759414i \(-0.274514\pi\)
0.650608 + 0.759414i \(0.274514\pi\)
\(6\) 3.96343 + 1.70313i 0.660572 + 0.283855i
\(7\) 0 0
\(8\) −7.50608 + 2.76746i −0.938259 + 0.345932i
\(9\) 4.34764 0.483071
\(10\) 5.13725 11.9551i 0.513725 1.19551i
\(11\) 0.610527i 0.0555025i −0.999615 0.0277512i \(-0.991165\pi\)
0.999615 0.0277512i \(-0.00883463\pi\)
\(12\) 6.25911 5.93812i 0.521593 0.494843i
\(13\) 10.6645 0.820347 0.410173 0.912008i \(-0.365468\pi\)
0.410173 + 0.912008i \(0.365468\pi\)
\(14\) 0 0
\(15\) 14.0332i 0.935544i
\(16\) −0.841567 + 15.9779i −0.0525979 + 0.998616i
\(17\) 11.9814 0.704787 0.352393 0.935852i \(-0.385368\pi\)
0.352393 + 0.935852i \(0.385368\pi\)
\(18\) 3.43293 7.98893i 0.190719 0.443829i
\(19\) 12.2180i 0.643051i −0.946901 0.321525i \(-0.895804\pi\)
0.946901 0.321525i \(-0.104196\pi\)
\(20\) −17.9115 18.8797i −0.895574 0.943986i
\(21\) 0 0
\(22\) −1.12186 0.482077i −0.0509937 0.0219126i
\(23\) 40.1286i 1.74472i −0.488862 0.872361i \(-0.662588\pi\)
0.488862 0.872361i \(-0.337412\pi\)
\(24\) −5.96922 16.1901i −0.248718 0.674587i
\(25\) 17.3290 0.693161
\(26\) 8.42078 19.5964i 0.323876 0.753706i
\(27\) 28.7900i 1.06629i
\(28\) 0 0
\(29\) −9.04293 −0.311825 −0.155913 0.987771i \(-0.549832\pi\)
−0.155913 + 0.987771i \(0.549832\pi\)
\(30\) 25.7864 + 11.0807i 0.859546 + 0.369357i
\(31\) 34.9190i 1.12642i 0.826314 + 0.563210i \(0.190434\pi\)
−0.826314 + 0.563210i \(0.809566\pi\)
\(32\) 28.6953 + 14.1626i 0.896728 + 0.442583i
\(33\) 1.31687 0.0399050
\(34\) 9.46059 22.0161i 0.278253 0.647534i
\(35\) 0 0
\(36\) −11.9692 12.6162i −0.332478 0.350451i
\(37\) −50.8165 −1.37342 −0.686709 0.726932i \(-0.740945\pi\)
−0.686709 + 0.726932i \(0.740945\pi\)
\(38\) −22.4509 9.64740i −0.590813 0.253879i
\(39\) 23.0026i 0.589811i
\(40\) −48.8351 + 18.0053i −1.22088 + 0.450133i
\(41\) −25.7382 −0.627761 −0.313881 0.949462i \(-0.601629\pi\)
−0.313881 + 0.949462i \(0.601629\pi\)
\(42\) 0 0
\(43\) 19.8107i 0.460713i 0.973106 + 0.230357i \(0.0739893\pi\)
−0.973106 + 0.230357i \(0.926011\pi\)
\(44\) −1.77166 + 1.68080i −0.0402651 + 0.0382001i
\(45\) 28.2861 0.628580
\(46\) −73.7375 31.6859i −1.60299 0.688823i
\(47\) 47.0968i 1.00206i 0.865430 + 0.501030i \(0.167045\pi\)
−0.865430 + 0.501030i \(0.832955\pi\)
\(48\) −34.4631 1.81520i −0.717982 0.0378167i
\(49\) 0 0
\(50\) 13.6831 31.8426i 0.273663 0.636852i
\(51\) 25.8430i 0.506726i
\(52\) −29.3598 30.9469i −0.564611 0.595133i
\(53\) −26.8780 −0.507132 −0.253566 0.967318i \(-0.581604\pi\)
−0.253566 + 0.967318i \(0.581604\pi\)
\(54\) 52.9024 + 22.7328i 0.979675 + 0.420978i
\(55\) 3.97214i 0.0722207i
\(56\) 0 0
\(57\) 26.3533 0.462339
\(58\) −7.14037 + 16.6167i −0.123110 + 0.286494i
\(59\) 46.0315i 0.780194i 0.920774 + 0.390097i \(0.127559\pi\)
−0.920774 + 0.390097i \(0.872441\pi\)
\(60\) 40.7223 38.6338i 0.678704 0.643897i
\(61\) −42.2070 −0.691919 −0.345959 0.938250i \(-0.612446\pi\)
−0.345959 + 0.938250i \(0.612446\pi\)
\(62\) 64.1648 + 27.5724i 1.03492 + 0.444715i
\(63\) 0 0
\(64\) 48.6823 41.5455i 0.760661 0.649149i
\(65\) 69.3841 1.06745
\(66\) 1.03981 2.41978i 0.0157547 0.0366634i
\(67\) 27.7812i 0.414644i 0.978273 + 0.207322i \(0.0664748\pi\)
−0.978273 + 0.207322i \(0.933525\pi\)
\(68\) −32.9852 34.7683i −0.485076 0.511298i
\(69\) 86.5547 1.25442
\(70\) 0 0
\(71\) 57.1882i 0.805467i −0.915317 0.402734i \(-0.868060\pi\)
0.915317 0.402734i \(-0.131940\pi\)
\(72\) −32.6337 + 12.0319i −0.453246 + 0.167110i
\(73\) −56.3290 −0.771630 −0.385815 0.922576i \(-0.626080\pi\)
−0.385815 + 0.922576i \(0.626080\pi\)
\(74\) −40.1251 + 93.3768i −0.542231 + 1.26185i
\(75\) 37.3775i 0.498367i
\(76\) −35.4548 + 33.6365i −0.466510 + 0.442586i
\(77\) 0 0
\(78\) 42.2680 + 18.1631i 0.541898 + 0.232860i
\(79\) 18.3938i 0.232832i −0.993201 0.116416i \(-0.962859\pi\)
0.993201 0.116416i \(-0.0371406\pi\)
\(80\) −5.47530 + 103.953i −0.0684412 + 1.29941i
\(81\) −22.9692 −0.283571
\(82\) −20.3231 + 47.2948i −0.247843 + 0.576765i
\(83\) 37.3775i 0.450332i 0.974320 + 0.225166i \(0.0722924\pi\)
−0.974320 + 0.225166i \(0.927708\pi\)
\(84\) 0 0
\(85\) 77.9517 0.917079
\(86\) 36.4027 + 15.6427i 0.423287 + 0.181892i
\(87\) 19.5050i 0.224195i
\(88\) 1.68961 + 4.58266i 0.0192001 + 0.0520757i
\(89\) 24.7074 0.277612 0.138806 0.990320i \(-0.455674\pi\)
0.138806 + 0.990320i \(0.455674\pi\)
\(90\) 22.3349 51.9766i 0.248166 0.577517i
\(91\) 0 0
\(92\) −116.448 + 110.476i −1.26573 + 1.20082i
\(93\) −75.3180 −0.809871
\(94\) 86.5418 + 37.1880i 0.920658 + 0.395617i
\(95\) 79.4910i 0.836747i
\(96\) −30.5479 + 61.8938i −0.318207 + 0.644727i
\(97\) −109.895 −1.13294 −0.566468 0.824084i \(-0.691690\pi\)
−0.566468 + 0.824084i \(0.691690\pi\)
\(98\) 0 0
\(99\) 2.65435i 0.0268117i
\(100\) −47.7074 50.2864i −0.477074 0.502864i
\(101\) −43.1512 −0.427239 −0.213620 0.976917i \(-0.568525\pi\)
−0.213620 + 0.976917i \(0.568525\pi\)
\(102\) 47.4873 + 20.4059i 0.465562 + 0.200057i
\(103\) 150.616i 1.46229i −0.682223 0.731144i \(-0.738987\pi\)
0.682223 0.731144i \(-0.261013\pi\)
\(104\) −80.0486 + 29.5136i −0.769698 + 0.283785i
\(105\) 0 0
\(106\) −21.2231 + 49.3892i −0.200218 + 0.465936i
\(107\) 40.5909i 0.379354i 0.981847 + 0.189677i \(0.0607440\pi\)
−0.981847 + 0.189677i \(0.939256\pi\)
\(108\) 83.5444 79.2599i 0.773559 0.733888i
\(109\) 66.5304 0.610370 0.305185 0.952293i \(-0.401282\pi\)
0.305185 + 0.952293i \(0.401282\pi\)
\(110\) −7.29892 3.13643i −0.0663538 0.0285130i
\(111\) 109.608i 0.987457i
\(112\) 0 0
\(113\) −143.395 −1.26899 −0.634493 0.772929i \(-0.718791\pi\)
−0.634493 + 0.772929i \(0.718791\pi\)
\(114\) 20.8088 48.4250i 0.182533 0.424781i
\(115\) 261.080i 2.27026i
\(116\) 24.8955 + 26.2413i 0.214617 + 0.226218i
\(117\) 46.3655 0.396286
\(118\) 84.5842 + 36.3468i 0.716815 + 0.308024i
\(119\) 0 0
\(120\) −38.8362 105.334i −0.323635 0.877783i
\(121\) 120.627 0.996919
\(122\) −33.3270 + 77.5567i −0.273172 + 0.635711i
\(123\) 55.5156i 0.451346i
\(124\) 101.330 96.1334i 0.817178 0.775269i
\(125\) −49.9080 −0.399264
\(126\) 0 0
\(127\) 83.0059i 0.653590i −0.945095 0.326795i \(-0.894031\pi\)
0.945095 0.326795i \(-0.105969\pi\)
\(128\) −37.9012 122.260i −0.296103 0.955156i
\(129\) −42.7303 −0.331243
\(130\) 54.7863 127.495i 0.421433 0.980734i
\(131\) 29.4874i 0.225095i 0.993646 + 0.112547i \(0.0359010\pi\)
−0.993646 + 0.112547i \(0.964099\pi\)
\(132\) −3.62538 3.82136i −0.0274650 0.0289497i
\(133\) 0 0
\(134\) 51.0487 + 21.9362i 0.380961 + 0.163703i
\(135\) 187.310i 1.38748i
\(136\) −89.9331 + 33.1580i −0.661273 + 0.243809i
\(137\) −23.5171 −0.171658 −0.0858288 0.996310i \(-0.527354\pi\)
−0.0858288 + 0.996310i \(0.527354\pi\)
\(138\) 68.3443 159.047i 0.495248 1.15251i
\(139\) 256.175i 1.84299i −0.388396 0.921493i \(-0.626971\pi\)
0.388396 0.921493i \(-0.373029\pi\)
\(140\) 0 0
\(141\) −101.585 −0.720459
\(142\) −105.085 45.1563i −0.740036 0.318002i
\(143\) 6.51097i 0.0455313i
\(144\) −3.65883 + 69.4660i −0.0254086 + 0.482403i
\(145\) −58.8340 −0.405751
\(146\) −44.4779 + 103.506i −0.304643 + 0.708947i
\(147\) 0 0
\(148\) 139.900 + 147.462i 0.945268 + 0.996366i
\(149\) 89.5652 0.601109 0.300554 0.953765i \(-0.402828\pi\)
0.300554 + 0.953765i \(0.402828\pi\)
\(150\) 68.6823 + 29.5136i 0.457882 + 0.196757i
\(151\) 47.1444i 0.312215i 0.987740 + 0.156107i \(0.0498946\pi\)
−0.987740 + 0.156107i \(0.950105\pi\)
\(152\) 33.8127 + 91.7089i 0.222452 + 0.603348i
\(153\) 52.0907 0.340462
\(154\) 0 0
\(155\) 227.186i 1.46572i
\(156\) 66.7504 63.3271i 0.427887 0.405943i
\(157\) 287.794 1.83308 0.916540 0.399943i \(-0.130970\pi\)
0.916540 + 0.399943i \(0.130970\pi\)
\(158\) −33.7991 14.5239i −0.213918 0.0919232i
\(159\) 57.9741i 0.364617i
\(160\) 186.694 + 92.1433i 1.16684 + 0.575895i
\(161\) 0 0
\(162\) −18.1367 + 42.2067i −0.111955 + 0.260535i
\(163\) 13.6185i 0.0835491i −0.999127 0.0417746i \(-0.986699\pi\)
0.999127 0.0417746i \(-0.0133011\pi\)
\(164\) 70.8583 + 74.6887i 0.432063 + 0.455419i
\(165\) 8.56763 0.0519250
\(166\) 68.6823 + 29.5136i 0.413749 + 0.177793i
\(167\) 241.587i 1.44663i 0.690519 + 0.723314i \(0.257382\pi\)
−0.690519 + 0.723314i \(0.742618\pi\)
\(168\) 0 0
\(169\) −55.2683 −0.327031
\(170\) 61.5513 143.239i 0.362067 0.842580i
\(171\) 53.1193i 0.310639i
\(172\) 57.4878 54.5395i 0.334231 0.317090i
\(173\) 114.755 0.663323 0.331662 0.943398i \(-0.392391\pi\)
0.331662 + 0.943398i \(0.392391\pi\)
\(174\) −35.8410 15.4013i −0.205983 0.0885132i
\(175\) 0 0
\(176\) 9.75491 + 0.513800i 0.0554256 + 0.00291932i
\(177\) −99.2867 −0.560942
\(178\) 19.5092 45.4007i 0.109602 0.255060i
\(179\) 26.8330i 0.149905i −0.997187 0.0749526i \(-0.976119\pi\)
0.997187 0.0749526i \(-0.0238806\pi\)
\(180\) −77.8727 82.0822i −0.432626 0.456012i
\(181\) 46.5388 0.257120 0.128560 0.991702i \(-0.458964\pi\)
0.128560 + 0.991702i \(0.458964\pi\)
\(182\) 0 0
\(183\) 91.0377i 0.497474i
\(184\) 111.054 + 301.208i 0.603556 + 1.63700i
\(185\) −330.616 −1.78711
\(186\) −59.4717 + 138.399i −0.319740 + 0.744081i
\(187\) 7.31495i 0.0391174i
\(188\) 136.668 129.659i 0.726959 0.689677i
\(189\) 0 0
\(190\) −146.067 62.7667i −0.768774 0.330351i
\(191\) 75.4221i 0.394880i −0.980315 0.197440i \(-0.936737\pi\)
0.980315 0.197440i \(-0.0632628\pi\)
\(192\) 89.6109 + 105.005i 0.466723 + 0.546898i
\(193\) −166.069 −0.860464 −0.430232 0.902718i \(-0.641568\pi\)
−0.430232 + 0.902718i \(0.641568\pi\)
\(194\) −86.7738 + 201.935i −0.447288 + 1.04090i
\(195\) 149.657i 0.767471i
\(196\) 0 0
\(197\) 279.737 1.41998 0.709991 0.704210i \(-0.248699\pi\)
0.709991 + 0.704210i \(0.248699\pi\)
\(198\) −4.87746 2.09590i −0.0246336 0.0105854i
\(199\) 0.275346i 0.00138365i 1.00000 0.000691824i \(0.000220215\pi\)
−1.00000 0.000691824i \(0.999780\pi\)
\(200\) −130.073 + 47.9574i −0.650365 + 0.239787i
\(201\) −59.9221 −0.298120
\(202\) −34.0725 + 79.2916i −0.168676 + 0.392533i
\(203\) 0 0
\(204\) 74.9928 71.1468i 0.367612 0.348759i
\(205\) −167.455 −0.816852
\(206\) −276.761 118.927i −1.34350 0.577317i
\(207\) 174.465i 0.842825i
\(208\) −8.97490 + 170.396i −0.0431486 + 0.819211i
\(209\) −7.45940 −0.0356909
\(210\) 0 0
\(211\) 301.264i 1.42779i −0.700252 0.713896i \(-0.746929\pi\)
0.700252 0.713896i \(-0.253071\pi\)
\(212\) 73.9962 + 77.9962i 0.349039 + 0.367907i
\(213\) 123.351 0.579113
\(214\) 74.5869 + 32.0509i 0.348537 + 0.149770i
\(215\) 128.890i 0.599487i
\(216\) −79.6751 216.100i −0.368866 1.00046i
\(217\) 0 0
\(218\) 52.5329 122.252i 0.240977 0.560787i
\(219\) 121.498i 0.554785i
\(220\) −11.5266 + 10.9354i −0.0523935 + 0.0497065i
\(221\) 127.775 0.578170
\(222\) −201.407 86.5471i −0.907241 0.389852i
\(223\) 215.034i 0.964279i −0.876094 0.482140i \(-0.839860\pi\)
0.876094 0.482140i \(-0.160140\pi\)
\(224\) 0 0
\(225\) 75.3404 0.334846
\(226\) −113.226 + 263.494i −0.501001 + 1.16590i
\(227\) 421.401i 1.85639i 0.372094 + 0.928195i \(0.378640\pi\)
−0.372094 + 0.928195i \(0.621360\pi\)
\(228\) −72.5517 76.4736i −0.318209 0.335411i
\(229\) −45.5273 −0.198809 −0.0994046 0.995047i \(-0.531694\pi\)
−0.0994046 + 0.995047i \(0.531694\pi\)
\(230\) −479.742 206.151i −2.08583 0.896307i
\(231\) 0 0
\(232\) 67.8769 25.0259i 0.292573 0.107870i
\(233\) 151.446 0.649985 0.324992 0.945717i \(-0.394638\pi\)
0.324992 + 0.945717i \(0.394638\pi\)
\(234\) 36.6106 85.1980i 0.156455 0.364094i
\(235\) 306.415i 1.30390i
\(236\) 133.577 126.726i 0.566003 0.536976i
\(237\) 39.6741 0.167401
\(238\) 0 0
\(239\) 200.986i 0.840944i 0.907306 + 0.420472i \(0.138135\pi\)
−0.907306 + 0.420472i \(0.861865\pi\)
\(240\) −224.220 11.8098i −0.934249 0.0492077i
\(241\) −248.637 −1.03169 −0.515844 0.856683i \(-0.672522\pi\)
−0.515844 + 0.856683i \(0.672522\pi\)
\(242\) 95.2483 221.656i 0.393588 0.915935i
\(243\) 209.567i 0.862414i
\(244\) 116.198 + 122.479i 0.476220 + 0.501963i
\(245\) 0 0
\(246\) −102.012 43.8356i −0.414681 0.178193i
\(247\) 130.299i 0.527525i
\(248\) −96.6370 262.105i −0.389665 1.05687i
\(249\) −80.6208 −0.323778
\(250\) −39.4078 + 91.7075i −0.157631 + 0.366830i
\(251\) 226.888i 0.903938i 0.892034 + 0.451969i \(0.149278\pi\)
−0.892034 + 0.451969i \(0.850722\pi\)
\(252\) 0 0
\(253\) −24.4996 −0.0968364
\(254\) −152.526 65.5421i −0.600495 0.258040i
\(255\) 168.137i 0.659359i
\(256\) −254.584 26.8929i −0.994467 0.105050i
\(257\) −355.166 −1.38197 −0.690984 0.722870i \(-0.742823\pi\)
−0.690984 + 0.722870i \(0.742823\pi\)
\(258\) −33.7402 + 78.5182i −0.130776 + 0.304334i
\(259\) 0 0
\(260\) −191.017 201.343i −0.734681 0.774396i
\(261\) −39.3154 −0.150634
\(262\) 54.1840 + 23.2835i 0.206809 + 0.0888683i
\(263\) 390.604i 1.48519i 0.669743 + 0.742593i \(0.266404\pi\)
−0.669743 + 0.742593i \(0.733596\pi\)
\(264\) −9.88449 + 3.64437i −0.0374413 + 0.0138044i
\(265\) −174.870 −0.659888
\(266\) 0 0
\(267\) 53.2923i 0.199597i
\(268\) 80.6170 76.4826i 0.300810 0.285383i
\(269\) 374.742 1.39309 0.696546 0.717512i \(-0.254719\pi\)
0.696546 + 0.717512i \(0.254719\pi\)
\(270\) 344.187 + 147.901i 1.27477 + 0.547782i
\(271\) 153.297i 0.565672i 0.959168 + 0.282836i \(0.0912752\pi\)
−0.959168 + 0.282836i \(0.908725\pi\)
\(272\) −10.0831 + 191.437i −0.0370703 + 0.703811i
\(273\) 0 0
\(274\) −18.5693 + 43.2134i −0.0677712 + 0.157713i
\(275\) 10.5798i 0.0384721i
\(276\) −238.288 251.169i −0.863363 0.910034i
\(277\) 449.775 1.62374 0.811869 0.583840i \(-0.198451\pi\)
0.811869 + 0.583840i \(0.198451\pi\)
\(278\) −470.729 202.278i −1.69327 0.727618i
\(279\) 151.815i 0.544141i
\(280\) 0 0
\(281\) −3.27554 −0.0116567 −0.00582836 0.999983i \(-0.501855\pi\)
−0.00582836 + 0.999983i \(0.501855\pi\)
\(282\) −80.2121 + 186.665i −0.284440 + 0.661932i
\(283\) 342.307i 1.20957i 0.796390 + 0.604783i \(0.206740\pi\)
−0.796390 + 0.604783i \(0.793260\pi\)
\(284\) −165.952 + 157.441i −0.584338 + 0.554371i
\(285\) 171.457 0.601602
\(286\) −11.9641 5.14112i −0.0418326 0.0179759i
\(287\) 0 0
\(288\) 124.757 + 61.5741i 0.433183 + 0.213799i
\(289\) −145.447 −0.503276
\(290\) −46.4558 + 108.109i −0.160192 + 0.372790i
\(291\) 237.035i 0.814555i
\(292\) 155.076 + 163.459i 0.531082 + 0.559791i
\(293\) 243.752 0.831919 0.415959 0.909383i \(-0.363446\pi\)
0.415959 + 0.909383i \(0.363446\pi\)
\(294\) 0 0
\(295\) 299.484i 1.01520i
\(296\) 381.432 140.633i 1.28862 0.475110i
\(297\) 17.5771 0.0591820
\(298\) 70.7214 164.579i 0.237320 0.552278i
\(299\) 427.952i 1.43128i
\(300\) 108.464 102.902i 0.361548 0.343006i
\(301\) 0 0
\(302\) 86.6293 + 37.2256i 0.286852 + 0.123264i
\(303\) 93.0741i 0.307175i
\(304\) 195.217 + 10.2822i 0.642160 + 0.0338231i
\(305\) −274.602 −0.900335
\(306\) 41.1313 95.7183i 0.134416 0.312805i
\(307\) 58.4520i 0.190397i −0.995458 0.0951987i \(-0.969651\pi\)
0.995458 0.0951987i \(-0.0303487\pi\)
\(308\) 0 0
\(309\) 324.868 1.05135
\(310\) 417.461 + 179.388i 1.34665 + 0.578670i
\(311\) 124.387i 0.399957i −0.979800 0.199978i \(-0.935913\pi\)
0.979800 0.199978i \(-0.0640872\pi\)
\(312\) −63.6588 172.659i −0.204035 0.553396i
\(313\) 481.450 1.53818 0.769090 0.639140i \(-0.220710\pi\)
0.769090 + 0.639140i \(0.220710\pi\)
\(314\) 227.244 528.830i 0.723708 1.68417i
\(315\) 0 0
\(316\) −53.3761 + 50.6387i −0.168912 + 0.160249i
\(317\) −359.147 −1.13296 −0.566478 0.824077i \(-0.691694\pi\)
−0.566478 + 0.824077i \(0.691694\pi\)
\(318\) −106.529 45.7768i −0.334997 0.143952i
\(319\) 5.52095i 0.0173071i
\(320\) 316.731 270.298i 0.989784 0.844682i
\(321\) −87.5517 −0.272747
\(322\) 0 0
\(323\) 146.388i 0.453214i
\(324\) 63.2351 + 66.6534i 0.195170 + 0.205720i
\(325\) 184.805 0.568632
\(326\) −25.0244 10.7533i −0.0767620 0.0329855i
\(327\) 143.502i 0.438843i
\(328\) 193.193 71.2295i 0.589003 0.217163i
\(329\) 0 0
\(330\) 6.76507 15.7433i 0.0205002 0.0477069i
\(331\) 126.695i 0.382765i −0.981516 0.191383i \(-0.938703\pi\)
0.981516 0.191383i \(-0.0612971\pi\)
\(332\) 108.464 102.902i 0.326700 0.309945i
\(333\) −220.932 −0.663459
\(334\) 443.923 + 190.759i 1.32911 + 0.571135i
\(335\) 180.746i 0.539541i
\(336\) 0 0
\(337\) −551.430 −1.63629 −0.818146 0.575011i \(-0.804998\pi\)
−0.818146 + 0.575011i \(0.804998\pi\)
\(338\) −43.6403 + 101.557i −0.129113 + 0.300465i
\(339\) 309.294i 0.912373i
\(340\) −214.604 226.205i −0.631188 0.665308i
\(341\) 21.3190 0.0625191
\(342\) −97.6084 41.9435i −0.285405 0.122642i
\(343\) 0 0
\(344\) −54.8252 148.700i −0.159376 0.432269i
\(345\) 563.131 1.63226
\(346\) 90.6114 210.866i 0.261883 0.609438i
\(347\) 411.284i 1.18526i −0.805476 0.592628i \(-0.798090\pi\)
0.805476 0.592628i \(-0.201910\pi\)
\(348\) −56.6007 + 53.6980i −0.162646 + 0.154304i
\(349\) 402.535 1.15340 0.576698 0.816957i \(-0.304341\pi\)
0.576698 + 0.816957i \(0.304341\pi\)
\(350\) 0 0
\(351\) 307.031i 0.874732i
\(352\) 8.64668 17.5193i 0.0245644 0.0497706i
\(353\) 59.9189 0.169742 0.0848709 0.996392i \(-0.472952\pi\)
0.0848709 + 0.996392i \(0.472952\pi\)
\(354\) −78.3976 + 182.442i −0.221462 + 0.515374i
\(355\) 372.071i 1.04809i
\(356\) −68.0205 71.6975i −0.191069 0.201397i
\(357\) 0 0
\(358\) −49.3065 21.1876i −0.137728 0.0591832i
\(359\) 140.712i 0.391955i −0.980608 0.195977i \(-0.937212\pi\)
0.980608 0.195977i \(-0.0627879\pi\)
\(360\) −212.318 + 78.2806i −0.589771 + 0.217446i
\(361\) 211.721 0.586486
\(362\) 36.7474 85.5164i 0.101512 0.236233i
\(363\) 260.185i 0.716763i
\(364\) 0 0
\(365\) −366.481 −1.00406
\(366\) −167.285 71.8841i −0.457062 0.196405i
\(367\) 333.378i 0.908387i −0.890903 0.454193i \(-0.849928\pi\)
0.890903 0.454193i \(-0.150072\pi\)
\(368\) 641.169 + 33.7709i 1.74231 + 0.0917688i
\(369\) −111.901 −0.303254
\(370\) −261.057 + 607.517i −0.705559 + 1.64194i
\(371\) 0 0
\(372\) 207.353 + 218.562i 0.557401 + 0.587533i
\(373\) −257.441 −0.690191 −0.345095 0.938568i \(-0.612153\pi\)
−0.345095 + 0.938568i \(0.612153\pi\)
\(374\) −13.4415 5.77595i −0.0359397 0.0154437i
\(375\) 107.648i 0.287062i
\(376\) −130.339 353.512i −0.346645 0.940192i
\(377\) −96.4384 −0.255805
\(378\) 0 0
\(379\) 122.957i 0.324426i −0.986756 0.162213i \(-0.948137\pi\)
0.986756 0.162213i \(-0.0518631\pi\)
\(380\) −230.672 + 218.842i −0.607030 + 0.575899i
\(381\) 179.038 0.469916
\(382\) −138.590 59.5539i −0.362802 0.155900i
\(383\) 348.730i 0.910522i 0.890358 + 0.455261i \(0.150454\pi\)
−0.890358 + 0.455261i \(0.849546\pi\)
\(384\) 263.706 81.7503i 0.686736 0.212891i
\(385\) 0 0
\(386\) −131.130 + 305.158i −0.339715 + 0.790564i
\(387\) 86.1297i 0.222557i
\(388\) 302.544 + 318.899i 0.779753 + 0.821904i
\(389\) −353.379 −0.908429 −0.454215 0.890892i \(-0.650080\pi\)
−0.454215 + 0.890892i \(0.650080\pi\)
\(390\) 274.999 + 118.170i 0.705126 + 0.303001i
\(391\) 480.796i 1.22966i
\(392\) 0 0
\(393\) −63.6023 −0.161838
\(394\) 220.882 514.025i 0.560615 1.30463i
\(395\) 119.671i 0.302965i
\(396\) −7.70256 + 7.30754i −0.0194509 + 0.0184534i
\(397\) −182.332 −0.459274 −0.229637 0.973276i \(-0.573754\pi\)
−0.229637 + 0.973276i \(0.573754\pi\)
\(398\) 0.505957 + 0.217416i 0.00127125 + 0.000546270i
\(399\) 0 0
\(400\) −14.5835 + 276.880i −0.0364588 + 0.692201i
\(401\) 345.868 0.862514 0.431257 0.902229i \(-0.358070\pi\)
0.431257 + 0.902229i \(0.358070\pi\)
\(402\) −47.3150 + 110.109i −0.117699 + 0.273902i
\(403\) 372.394i 0.924055i
\(404\) 118.797 + 125.219i 0.294051 + 0.309947i
\(405\) −149.439 −0.368986
\(406\) 0 0
\(407\) 31.0248i 0.0762281i
\(408\) −71.5195 193.980i −0.175293 0.475440i
\(409\) −305.791 −0.747656 −0.373828 0.927498i \(-0.621955\pi\)
−0.373828 + 0.927498i \(0.621955\pi\)
\(410\) −132.224 + 307.703i −0.322497 + 0.750496i
\(411\) 50.7248i 0.123418i
\(412\) −437.065 + 414.650i −1.06084 + 1.00643i
\(413\) 0 0
\(414\) −320.584 137.759i −0.774358 0.332751i
\(415\) 243.181i 0.585978i
\(416\) 306.021 + 151.038i 0.735628 + 0.363071i
\(417\) 552.552 1.32506
\(418\) −5.89000 + 13.7069i −0.0140909 + 0.0327916i
\(419\) 749.709i 1.78928i −0.446786 0.894641i \(-0.647431\pi\)
0.446786 0.894641i \(-0.352569\pi\)
\(420\) 0 0
\(421\) 356.196 0.846070 0.423035 0.906113i \(-0.360965\pi\)
0.423035 + 0.906113i \(0.360965\pi\)
\(422\) −553.582 237.881i −1.31181 0.563698i
\(423\) 204.760i 0.484066i
\(424\) 201.748 74.3838i 0.475822 0.175434i
\(425\) 207.625 0.488530
\(426\) 97.3990 226.661i 0.228636 0.532069i
\(427\) 0 0
\(428\) 117.789 111.748i 0.275208 0.261094i
\(429\) 14.0437 0.0327360
\(430\) 236.839 + 101.772i 0.550788 + 0.236680i
\(431\) 189.284i 0.439174i −0.975593 0.219587i \(-0.929529\pi\)
0.975593 0.219587i \(-0.0704710\pi\)
\(432\) −460.002 24.2287i −1.06482 0.0560849i
\(433\) −771.353 −1.78142 −0.890708 0.454575i \(-0.849791\pi\)
−0.890708 + 0.454575i \(0.849791\pi\)
\(434\) 0 0
\(435\) 126.901i 0.291726i
\(436\) −183.161 193.062i −0.420093 0.442802i
\(437\) −490.290 −1.12194
\(438\) −223.256 95.9357i −0.509717 0.219031i
\(439\) 803.234i 1.82969i −0.403804 0.914845i \(-0.632312\pi\)
0.403804 0.914845i \(-0.367688\pi\)
\(440\) 10.9927 + 29.8152i 0.0249835 + 0.0677617i
\(441\) 0 0
\(442\) 100.893 234.791i 0.228264 0.531202i
\(443\) 724.505i 1.63545i 0.575607 + 0.817726i \(0.304766\pi\)
−0.575607 + 0.817726i \(0.695234\pi\)
\(444\) −318.066 + 301.754i −0.716365 + 0.679626i
\(445\) 160.748 0.361232
\(446\) −395.132 169.793i −0.885946 0.380701i
\(447\) 193.186i 0.432184i
\(448\) 0 0
\(449\) 675.025 1.50340 0.751698 0.659507i \(-0.229235\pi\)
0.751698 + 0.659507i \(0.229235\pi\)
\(450\) 59.4894 138.440i 0.132199 0.307645i
\(451\) 15.7139i 0.0348423i
\(452\) 394.773 + 416.113i 0.873392 + 0.920605i
\(453\) −101.687 −0.224475
\(454\) 774.337 + 332.741i 1.70559 + 0.732911i
\(455\) 0 0
\(456\) −197.810 + 72.9317i −0.433794 + 0.159938i
\(457\) 363.890 0.796258 0.398129 0.917330i \(-0.369660\pi\)
0.398129 + 0.917330i \(0.369660\pi\)
\(458\) −35.9488 + 83.6579i −0.0784907 + 0.182659i
\(459\) 344.943i 0.751510i
\(460\) −757.616 + 718.762i −1.64699 + 1.56253i
\(461\) 233.360 0.506205 0.253102 0.967439i \(-0.418549\pi\)
0.253102 + 0.967439i \(0.418549\pi\)
\(462\) 0 0
\(463\) 872.151i 1.88370i −0.336040 0.941848i \(-0.609088\pi\)
0.336040 0.941848i \(-0.390912\pi\)
\(464\) 7.61023 144.487i 0.0164014 0.311393i
\(465\) −490.025 −1.05382
\(466\) 119.583 278.287i 0.256617 0.597183i
\(467\) 767.807i 1.64413i 0.569396 + 0.822063i \(0.307177\pi\)
−0.569396 + 0.822063i \(0.692823\pi\)
\(468\) −127.646 134.546i −0.272748 0.287492i
\(469\) 0 0
\(470\) 563.048 + 241.948i 1.19797 + 0.514783i
\(471\) 620.751i 1.31794i
\(472\) −127.390 345.516i −0.269894 0.732025i
\(473\) 12.0950 0.0255707
\(474\) 31.3270 72.9023i 0.0660907 0.153802i
\(475\) 211.725i 0.445737i
\(476\) 0 0
\(477\) −116.856 −0.244981
\(478\) 369.317 + 158.700i 0.772630 + 0.332008i
\(479\) 787.730i 1.64453i −0.569105 0.822265i \(-0.692710\pi\)
0.569105 0.822265i \(-0.307290\pi\)
\(480\) −198.747 + 402.686i −0.414056 + 0.838928i
\(481\) −541.933 −1.12668
\(482\) −196.326 + 456.878i −0.407315 + 0.947879i
\(483\) 0 0
\(484\) −332.091 350.043i −0.686139 0.723230i
\(485\) −714.983 −1.47419
\(486\) 385.085 + 165.476i 0.792356 + 0.340485i
\(487\) 36.7668i 0.0754965i −0.999287 0.0377483i \(-0.987981\pi\)
0.999287 0.0377483i \(-0.0120185\pi\)
\(488\) 316.809 116.806i 0.649199 0.239357i
\(489\) 29.3742 0.0600699
\(490\) 0 0
\(491\) 413.002i 0.841145i −0.907259 0.420573i \(-0.861829\pi\)
0.907259 0.420573i \(-0.138171\pi\)
\(492\) −161.098 + 152.836i −0.327436 + 0.310643i
\(493\) −108.347 −0.219770
\(494\) −239.428 102.885i −0.484671 0.208269i
\(495\) 17.2694i 0.0348877i
\(496\) −557.931 29.3867i −1.12486 0.0592474i
\(497\) 0 0
\(498\) −63.6588 + 148.143i −0.127829 + 0.297476i
\(499\) 676.459i 1.35563i −0.735233 0.677814i \(-0.762927\pi\)
0.735233 0.677814i \(-0.237073\pi\)
\(500\) 137.399 + 144.826i 0.274797 + 0.289652i
\(501\) −521.087 −1.04009
\(502\) 416.914 + 179.153i 0.830507 + 0.356878i
\(503\) 88.3032i 0.175553i 0.996140 + 0.0877765i \(0.0279761\pi\)
−0.996140 + 0.0877765i \(0.972024\pi\)
\(504\) 0 0
\(505\) −280.745 −0.555930
\(506\) −19.3451 + 45.0188i −0.0382314 + 0.0889699i
\(507\) 119.210i 0.235128i
\(508\) −240.871 + 228.518i −0.474156 + 0.449839i
\(509\) 260.268 0.511332 0.255666 0.966765i \(-0.417705\pi\)
0.255666 + 0.966765i \(0.417705\pi\)
\(510\) 308.956 + 132.762i 0.605796 + 0.260318i
\(511\) 0 0
\(512\) −250.438 + 446.570i −0.489136 + 0.872207i
\(513\) 351.755 0.685682
\(514\) −280.442 + 652.628i −0.545607 + 1.26970i
\(515\) 979.917i 1.90275i
\(516\) 117.638 + 123.997i 0.227981 + 0.240305i
\(517\) 28.7539 0.0556168
\(518\) 0 0
\(519\) 247.519i 0.476914i
\(520\) −520.802 + 192.018i −1.00154 + 0.369265i
\(521\) 592.291 1.13683 0.568417 0.822740i \(-0.307556\pi\)
0.568417 + 0.822740i \(0.307556\pi\)
\(522\) −31.0438 + 72.2433i −0.0594708 + 0.138397i
\(523\) 482.245i 0.922075i 0.887381 + 0.461038i \(0.152523\pi\)
−0.887381 + 0.461038i \(0.847477\pi\)
\(524\) 85.5682 81.1799i 0.163298 0.154923i
\(525\) 0 0
\(526\) 717.746 + 308.424i 1.36454 + 0.586357i
\(527\) 418.378i 0.793886i
\(528\) −1.10823 + 21.0407i −0.00209892 + 0.0398498i
\(529\) −1081.30 −2.04405
\(530\) −138.079 + 321.330i −0.260527 + 0.606283i
\(531\) 200.128i 0.376889i
\(532\) 0 0
\(533\) −274.485 −0.514982
\(534\) 97.9262 + 42.0800i 0.183382 + 0.0788015i
\(535\) 264.087i 0.493621i
\(536\) −76.8832 208.527i −0.143439 0.389044i
\(537\) 57.8770 0.107778
\(538\) 295.899 688.600i 0.549999 1.27993i
\(539\) 0 0
\(540\) 543.546 515.671i 1.00657 0.954946i
\(541\) 381.660 0.705472 0.352736 0.935723i \(-0.385251\pi\)
0.352736 + 0.935723i \(0.385251\pi\)
\(542\) 281.688 + 121.045i 0.519720 + 0.223330i
\(543\) 100.381i 0.184864i
\(544\) 343.809 + 169.688i 0.632002 + 0.311926i
\(545\) 432.852 0.794223
\(546\) 0 0
\(547\) 826.228i 1.51047i 0.655453 + 0.755236i \(0.272478\pi\)
−0.655453 + 0.755236i \(0.727522\pi\)
\(548\) 64.7435 + 68.2433i 0.118145 + 0.124532i
\(549\) −183.501 −0.334246
\(550\) −19.4408 8.35393i −0.0353469 0.0151890i
\(551\) 110.486i 0.200519i
\(552\) −649.686 + 239.537i −1.17697 + 0.433943i
\(553\) 0 0
\(554\) 355.146 826.476i 0.641058 1.49183i
\(555\) 713.116i 1.28489i
\(556\) −743.384 + 705.259i −1.33702 + 1.26845i
\(557\) 358.892 0.644330 0.322165 0.946683i \(-0.395589\pi\)
0.322165 + 0.946683i \(0.395589\pi\)
\(558\) 278.966 + 119.875i 0.499938 + 0.214829i
\(559\) 211.271i 0.377945i
\(560\) 0 0
\(561\) 15.7779 0.0281245
\(562\) −2.58639 + 6.01890i −0.00460212 + 0.0107098i
\(563\) 92.7643i 0.164768i −0.996601 0.0823839i \(-0.973747\pi\)
0.996601 0.0823839i \(-0.0262534\pi\)
\(564\) 279.666 + 294.784i 0.495862 + 0.522667i
\(565\) −932.942 −1.65122
\(566\) 629.000 + 270.289i 1.11131 + 0.477542i
\(567\) 0 0
\(568\) 158.266 + 429.259i 0.278637 + 0.755737i
\(569\) −377.886 −0.664124 −0.332062 0.943258i \(-0.607744\pi\)
−0.332062 + 0.943258i \(0.607744\pi\)
\(570\) 135.384 315.057i 0.237515 0.552731i
\(571\) 792.937i 1.38868i 0.719646 + 0.694341i \(0.244304\pi\)
−0.719646 + 0.694341i \(0.755696\pi\)
\(572\) −18.8939 + 17.9250i −0.0330313 + 0.0313373i
\(573\) 162.680 0.283910
\(574\) 0 0
\(575\) 695.389i 1.20937i
\(576\) 211.653 180.625i 0.367454 0.313585i
\(577\) −404.295 −0.700684 −0.350342 0.936622i \(-0.613935\pi\)
−0.350342 + 0.936622i \(0.613935\pi\)
\(578\) −114.846 + 267.263i −0.198695 + 0.462392i
\(579\) 358.201i 0.618654i
\(580\) 161.972 + 170.728i 0.279262 + 0.294358i
\(581\) 0 0
\(582\) −435.560 187.165i −0.748385 0.321590i
\(583\) 16.4098i 0.0281471i
\(584\) 422.810 155.888i 0.723989 0.266932i
\(585\) 301.657 0.515653
\(586\) 192.469 447.902i 0.328445 0.764338i
\(587\) 252.412i 0.430003i 0.976614 + 0.215002i \(0.0689756\pi\)
−0.976614 + 0.215002i \(0.931024\pi\)
\(588\) 0 0
\(589\) 426.639 0.724345
\(590\) 550.311 + 236.475i 0.932731 + 0.400805i
\(591\) 603.373i 1.02094i
\(592\) 42.7655 811.938i 0.0722390 1.37152i
\(593\) 442.666 0.746486 0.373243 0.927734i \(-0.378246\pi\)
0.373243 + 0.927734i \(0.378246\pi\)
\(594\) 13.8790 32.2984i 0.0233653 0.0543744i
\(595\) 0 0
\(596\) −246.576 259.906i −0.413719 0.436083i
\(597\) −0.593903 −0.000994812
\(598\) −786.375 337.914i −1.31501 0.565074i
\(599\) 232.189i 0.387628i −0.981038 0.193814i \(-0.937914\pi\)
0.981038 0.193814i \(-0.0620858\pi\)
\(600\) −103.441 280.558i −0.172401 0.467597i
\(601\) −127.875 −0.212770 −0.106385 0.994325i \(-0.533928\pi\)
−0.106385 + 0.994325i \(0.533928\pi\)
\(602\) 0 0
\(603\) 120.783i 0.200303i
\(604\) 136.806 129.790i 0.226501 0.214885i
\(605\) 784.810 1.29721
\(606\) −171.027 73.4921i −0.282222 0.121274i
\(607\) 191.867i 0.316090i −0.987432 0.158045i \(-0.949481\pi\)
0.987432 0.158045i \(-0.0505192\pi\)
\(608\) 173.039 350.598i 0.284603 0.576641i
\(609\) 0 0
\(610\) −216.828 + 504.590i −0.355456 + 0.827197i
\(611\) 502.264i 0.822037i
\(612\) −143.408 151.160i −0.234326 0.246993i
\(613\) 326.870 0.533229 0.266615 0.963803i \(-0.414095\pi\)
0.266615 + 0.963803i \(0.414095\pi\)
\(614\) −107.407 46.1542i −0.174931 0.0751697i
\(615\) 361.189i 0.587299i
\(616\) 0 0
\(617\) −557.014 −0.902778 −0.451389 0.892327i \(-0.649071\pi\)
−0.451389 + 0.892327i \(0.649071\pi\)
\(618\) 256.518 596.954i 0.415078 0.965946i
\(619\) 468.023i 0.756095i −0.925786 0.378048i \(-0.876596\pi\)
0.925786 0.378048i \(-0.123404\pi\)
\(620\) 659.261 625.451i 1.06332 1.00879i
\(621\) 1155.30 1.86039
\(622\) −228.564 98.2166i −0.367466 0.157905i
\(623\) 0 0
\(624\) −367.533 19.3583i −0.588994 0.0310228i
\(625\) −757.931 −1.21269
\(626\) 380.157 884.680i 0.607280 1.41323i
\(627\) 16.0894i 0.0256610i
\(628\) −792.307 835.136i −1.26163 1.32984i
\(629\) −608.851 −0.967967
\(630\) 0 0
\(631\) 557.865i 0.884096i 0.896991 + 0.442048i \(0.145748\pi\)
−0.896991 + 0.442048i \(0.854252\pi\)
\(632\) 50.9040 + 138.065i 0.0805443 + 0.218457i
\(633\) 649.806 1.02655
\(634\) −283.585 + 659.943i −0.447296 + 1.04092i
\(635\) 540.042i 0.850461i
\(636\) −168.233 + 159.605i −0.264517 + 0.250951i
\(637\) 0 0
\(638\) 10.1449 + 4.35939i 0.0159011 + 0.00683290i
\(639\) 248.634i 0.389098i
\(640\) −246.588 795.433i −0.385294 1.24286i
\(641\) 723.554 1.12879 0.564395 0.825505i \(-0.309110\pi\)
0.564395 + 0.825505i \(0.309110\pi\)
\(642\) −69.1316 + 160.879i −0.107682 + 0.250590i
\(643\) 145.293i 0.225961i −0.993597 0.112980i \(-0.963960\pi\)
0.993597 0.112980i \(-0.0360397\pi\)
\(644\) 0 0
\(645\) −278.006 −0.431018
\(646\) −268.992 115.589i −0.416397 0.178931i
\(647\) 340.305i 0.525973i 0.964799 + 0.262987i \(0.0847075\pi\)
−0.964799 + 0.262987i \(0.915292\pi\)
\(648\) 172.409 63.5664i 0.266063 0.0980963i
\(649\) 28.1035 0.0433027
\(650\) 145.924 339.586i 0.224498 0.522439i
\(651\) 0 0
\(652\) −39.5190 + 37.4923i −0.0606119 + 0.0575035i
\(653\) 813.859 1.24634 0.623169 0.782087i \(-0.285845\pi\)
0.623169 + 0.782087i \(0.285845\pi\)
\(654\) 263.688 + 113.310i 0.403193 + 0.173257i
\(655\) 191.847i 0.292896i
\(656\) 21.6604 411.241i 0.0330190 0.626892i
\(657\) −244.898 −0.372753
\(658\) 0 0
\(659\) 939.024i 1.42492i 0.701711 + 0.712462i \(0.252420\pi\)
−0.701711 + 0.712462i \(0.747580\pi\)
\(660\) −23.5870 24.8620i −0.0357379 0.0376698i
\(661\) 208.296 0.315122 0.157561 0.987509i \(-0.449637\pi\)
0.157561 + 0.987509i \(0.449637\pi\)
\(662\) −232.806 100.040i −0.351671 0.151117i
\(663\) 275.603i 0.415691i
\(664\) −103.441 280.558i −0.155784 0.422528i
\(665\) 0 0
\(666\) −174.450 + 405.969i −0.261936 + 0.609563i
\(667\) 362.880i 0.544048i
\(668\) 701.051 665.098i 1.04948 0.995656i
\(669\) 463.814 0.693295
\(670\) 332.127 + 142.719i 0.495712 + 0.213013i
\(671\) 25.7685i 0.0384032i
\(672\) 0 0
\(673\) 634.671 0.943048 0.471524 0.881853i \(-0.343704\pi\)
0.471524 + 0.881853i \(0.343704\pi\)
\(674\) −435.414 + 1013.27i −0.646015 + 1.50337i
\(675\) 498.902i 0.739114i
\(676\) 152.156 + 160.381i 0.225082 + 0.237250i
\(677\) −290.116 −0.428531 −0.214266 0.976775i \(-0.568736\pi\)
−0.214266 + 0.976775i \(0.568736\pi\)
\(678\) −568.338 244.221i −0.838256 0.360208i
\(679\) 0 0
\(680\) −585.112 + 215.728i −0.860458 + 0.317247i
\(681\) −908.933 −1.33470
\(682\) 16.8337 39.1743i 0.0246828 0.0574404i
\(683\) 712.629i 1.04338i 0.853135 + 0.521691i \(0.174698\pi\)
−0.853135 + 0.521691i \(0.825302\pi\)
\(684\) −154.145 + 146.240i −0.225358 + 0.213800i
\(685\) −153.004 −0.223364
\(686\) 0 0
\(687\) 98.1994i 0.142939i
\(688\) −316.532 16.6720i −0.460076 0.0242326i
\(689\) −286.641 −0.416024
\(690\) 444.653 1034.77i 0.644425 1.49967i
\(691\) 404.171i 0.584907i 0.956280 + 0.292454i \(0.0944717\pi\)
−0.956280 + 0.292454i \(0.905528\pi\)
\(692\) −315.925 333.003i −0.456538 0.481218i
\(693\) 0 0
\(694\) −755.746 324.753i −1.08897 0.467944i
\(695\) 1666.69i 2.39812i
\(696\) 53.9793 + 146.406i 0.0775564 + 0.210353i
\(697\) −308.379 −0.442438
\(698\) 317.845 739.671i 0.455365 1.05970i
\(699\) 326.660i 0.467324i
\(700\) 0 0
\(701\) −111.341 −0.158831 −0.0794156 0.996842i \(-0.525305\pi\)
−0.0794156 + 0.996842i \(0.525305\pi\)
\(702\) 564.178 + 242.434i 0.803673 + 0.345348i
\(703\) 620.874i 0.883177i
\(704\) −25.3647 29.7219i −0.0360294 0.0422186i
\(705\) −660.917 −0.937472
\(706\) 47.3124 110.103i 0.0670148 0.155953i
\(707\) 0 0
\(708\) 273.340 + 288.116i 0.386074 + 0.406944i
\(709\) 772.746 1.08991 0.544955 0.838466i \(-0.316547\pi\)
0.544955 + 0.838466i \(0.316547\pi\)
\(710\) −683.691 293.790i −0.962945 0.413789i
\(711\) 79.9695i 0.112475i
\(712\) −185.456 + 68.3768i −0.260472 + 0.0960349i
\(713\) 1401.25 1.96529
\(714\) 0 0
\(715\) 42.3609i 0.0592460i
\(716\) −77.8657 + 73.8724i −0.108751 + 0.103174i
\(717\) −433.512 −0.604620
\(718\) −258.562 111.107i −0.360115 0.154745i
\(719\) 927.896i 1.29054i −0.763956 0.645269i \(-0.776745\pi\)
0.763956 0.645269i \(-0.223255\pi\)
\(720\) −23.8046 + 451.951i −0.0330620 + 0.627710i
\(721\) 0 0
\(722\) 167.177 389.045i 0.231547 0.538843i
\(723\) 536.293i 0.741760i
\(724\) −128.123 135.049i −0.176965 0.186532i
\(725\) −156.705 −0.216145
\(726\) 478.098 + 205.444i 0.658537 + 0.282981i
\(727\) 811.924i 1.11681i 0.829567 + 0.558407i \(0.188587\pi\)
−0.829567 + 0.558407i \(0.811413\pi\)
\(728\) 0 0
\(729\) −658.744 −0.903627
\(730\) −289.376 + 673.420i −0.396406 + 0.922493i
\(731\) 237.359i 0.324705i
\(732\) −264.179 + 250.630i −0.360900 + 0.342391i
\(733\) 990.793 1.35170 0.675848 0.737041i \(-0.263778\pi\)
0.675848 + 0.737041i \(0.263778\pi\)
\(734\) −612.592 263.238i −0.834594 0.358635i
\(735\) 0 0
\(736\) 568.327 1151.50i 0.772184 1.56454i
\(737\) 16.9611 0.0230138
\(738\) −88.3576 + 205.621i −0.119726 + 0.278619i
\(739\) 1142.78i 1.54638i −0.634173 0.773191i \(-0.718659\pi\)
0.634173 0.773191i \(-0.281341\pi\)
\(740\) 910.198 + 959.400i 1.23000 + 1.29649i
\(741\) 281.045 0.379278
\(742\) 0 0
\(743\) 143.488i 0.193120i 0.995327 + 0.0965601i \(0.0307840\pi\)
−0.995327 + 0.0965601i \(0.969216\pi\)
\(744\) 565.343 208.439i 0.759869 0.280161i
\(745\) 582.718 0.782172
\(746\) −203.278 + 473.056i −0.272490 + 0.634123i
\(747\) 162.504i 0.217542i
\(748\) −21.2270 + 20.1383i −0.0283783 + 0.0269229i
\(749\) 0 0
\(750\) −197.807 84.9999i −0.263742 0.113333i
\(751\) 1388.41i 1.84874i −0.381492 0.924372i \(-0.624590\pi\)
0.381492 0.924372i \(-0.375410\pi\)
\(752\) −752.506 39.6351i −1.00067 0.0527063i
\(753\) −489.383 −0.649911
\(754\) −76.1485 + 177.208i −0.100993 + 0.235024i
\(755\) 306.725i 0.406258i
\(756\) 0 0
\(757\) 206.398 0.272652 0.136326 0.990664i \(-0.456470\pi\)
0.136326 + 0.990664i \(0.456470\pi\)
\(758\) −225.938 97.0882i −0.298071 0.128085i
\(759\) 52.8440i 0.0696232i
\(760\) 219.988 + 596.665i 0.289458 + 0.785086i
\(761\) 569.735 0.748666 0.374333 0.927294i \(-0.377872\pi\)
0.374333 + 0.927294i \(0.377872\pi\)
\(762\) 141.370 328.988i 0.185525 0.431743i
\(763\) 0 0
\(764\) −218.864 + 207.640i −0.286472 + 0.271780i
\(765\) 338.906 0.443015
\(766\) 640.802 + 275.360i 0.836556 + 0.359478i
\(767\) 490.903i 0.640030i
\(768\) 58.0061 549.119i 0.0755288 0.714999i
\(769\) 945.548 1.22958 0.614791 0.788690i \(-0.289240\pi\)
0.614791 + 0.788690i \(0.289240\pi\)
\(770\) 0 0
\(771\) 766.069i 0.993604i
\(772\) 457.196 + 481.910i 0.592222 + 0.624236i
\(773\) −132.943 −0.171984 −0.0859918 0.996296i \(-0.527406\pi\)
−0.0859918 + 0.996296i \(0.527406\pi\)
\(774\) 158.266 + 68.0087i 0.204478 + 0.0878666i
\(775\) 605.112i 0.780790i
\(776\) 824.878 304.129i 1.06299 0.391919i
\(777\) 0 0
\(778\) −279.031 + 649.345i −0.358652 + 0.834633i
\(779\) 314.468i 0.403682i
\(780\) 434.283 412.011i 0.556773 0.528219i
\(781\) −34.9149 −0.0447054
\(782\) −883.477 379.640i −1.12977 0.485474i
\(783\) 260.346i 0.332497i
\(784\) 0 0
\(785\) 1872.41 2.38523
\(786\) −50.2209 + 116.871i −0.0638943 + 0.148691i
\(787\) 233.948i 0.297266i 0.988892 + 0.148633i \(0.0474873\pi\)
−0.988892 + 0.148633i \(0.952513\pi\)
\(788\) −770.125 811.756i −0.977317 1.03015i
\(789\) −842.506 −1.06781
\(790\) −219.899 94.4933i −0.278354 0.119612i
\(791\) 0 0
\(792\) 7.34582 + 19.9238i 0.00927502 + 0.0251563i
\(793\) −450.117 −0.567613
\(794\) −143.971 + 335.040i −0.181323 + 0.421965i
\(795\) 377.184i 0.474445i
\(796\) 0.799016 0.758038i 0.00100379 0.000952309i
\(797\) −1208.00 −1.51569 −0.757843 0.652437i \(-0.773747\pi\)
−0.757843 + 0.652437i \(0.773747\pi\)
\(798\) 0 0
\(799\) 564.285i 0.706239i
\(800\) 497.261 + 245.425i 0.621576 + 0.306781i
\(801\) 107.419 0.134106
\(802\) 273.100 635.543i 0.340524 0.792448i
\(803\) 34.3904i 0.0428274i
\(804\) 164.968 + 173.885i 0.205184 + 0.216275i
\(805\) 0 0
\(806\) 684.286 + 294.046i 0.848990 + 0.364821i
\(807\) 808.293i 1.00160i
\(808\) 323.896 119.419i 0.400861 0.147796i
\(809\) 69.4856 0.0858907 0.0429453 0.999077i \(-0.486326\pi\)
0.0429453 + 0.999077i \(0.486326\pi\)
\(810\) −117.999 + 274.600i −0.145677 + 0.339012i
\(811\) 1095.24i 1.35048i 0.737599 + 0.675239i \(0.235959\pi\)
−0.737599 + 0.675239i \(0.764041\pi\)
\(812\) 0 0
\(813\) −330.651 −0.406705
\(814\) 57.0091 + 24.4975i 0.0700357 + 0.0300952i
\(815\) 88.6030i 0.108715i
\(816\) −412.916 21.7486i −0.506024 0.0266527i
\(817\) 242.046 0.296262
\(818\) −241.455 + 561.901i −0.295178 + 0.686920i
\(819\) 0 0
\(820\) 461.009 + 485.930i 0.562206 + 0.592598i
\(821\) −756.021 −0.920854 −0.460427 0.887698i \(-0.652304\pi\)
−0.460427 + 0.887698i \(0.652304\pi\)
\(822\) −93.2084 40.0527i −0.113392 0.0487259i
\(823\) 320.066i 0.388902i −0.980912 0.194451i \(-0.937707\pi\)
0.980912 0.194451i \(-0.0622925\pi\)
\(824\) 416.823 + 1130.53i 0.505853 + 1.37200i
\(825\) 22.8200 0.0276606
\(826\) 0 0
\(827\) 104.960i 0.126917i −0.997984 0.0634585i \(-0.979787\pi\)
0.997984 0.0634585i \(-0.0202131\pi\)
\(828\) −506.272 + 480.308i −0.611440 + 0.580082i
\(829\) −817.667 −0.986329 −0.493164 0.869936i \(-0.664160\pi\)
−0.493164 + 0.869936i \(0.664160\pi\)
\(830\) 446.852 + 192.018i 0.538376 + 0.231347i
\(831\) 970.135i 1.16743i
\(832\) 519.173 443.063i 0.624006 0.532527i
\(833\) 0 0
\(834\) 436.300 1015.33i 0.523141 1.21742i
\(835\) 1571.78i 1.88237i
\(836\) 20.5360 + 21.6461i 0.0245646 + 0.0258925i
\(837\) −1005.32 −1.20110
\(838\) −1377.61 591.976i −1.64393 0.706416i
\(839\) 1029.02i 1.22648i −0.789896 0.613240i \(-0.789866\pi\)
0.789896 0.613240i \(-0.210134\pi\)
\(840\) 0 0
\(841\) −759.225 −0.902765
\(842\) 281.255 654.520i 0.334032 0.777340i
\(843\) 7.06511i 0.00838092i
\(844\) −874.225 + 829.391i −1.03581 + 0.982691i
\(845\) −359.579 −0.425538
\(846\) 376.253 + 161.680i 0.444744 + 0.191111i
\(847\) 0 0
\(848\) 22.6197 429.453i 0.0266741 0.506430i
\(849\) −738.334 −0.869651
\(850\) 163.943 381.518i 0.192874 0.448845i
\(851\) 2039.19i 2.39623i
\(852\) −339.590 357.947i −0.398580 0.420126i
\(853\) −583.808 −0.684417 −0.342209 0.939624i \(-0.611175\pi\)
−0.342209 + 0.939624i \(0.611175\pi\)
\(854\) 0 0
\(855\) 345.598i 0.404209i
\(856\) −112.334 304.678i −0.131231 0.355932i
\(857\) 1098.14 1.28138 0.640691 0.767799i \(-0.278648\pi\)
0.640691 + 0.767799i \(0.278648\pi\)
\(858\) 11.0890 25.8058i 0.0129243 0.0300767i
\(859\) 299.173i 0.348281i −0.984721 0.174141i \(-0.944285\pi\)
0.984721 0.174141i \(-0.0557147\pi\)
\(860\) 374.020 354.838i 0.434907 0.412603i
\(861\) 0 0
\(862\) −347.815 149.460i −0.403498 0.173388i
\(863\) 941.506i 1.09097i 0.838121 + 0.545485i \(0.183654\pi\)
−0.838121 + 0.545485i \(0.816346\pi\)
\(864\) −407.742 + 826.136i −0.471924 + 0.956176i
\(865\) 746.604 0.863126
\(866\) −609.067 + 1417.39i −0.703311 + 1.63670i
\(867\) 313.719i 0.361844i
\(868\) 0 0
\(869\) −11.2299 −0.0129228
\(870\) −233.184 100.202i −0.268028 0.115175i
\(871\) 296.272i 0.340152i
\(872\) −499.382 + 184.120i −0.572686 + 0.211147i
\(873\) −477.783 −0.547289
\(874\) −387.137 + 900.922i −0.442948 + 1.03080i
\(875\) 0 0
\(876\) −352.570 + 334.488i −0.402477 + 0.381836i
\(877\) 983.390 1.12131 0.560655 0.828049i \(-0.310549\pi\)
0.560655 + 0.828049i \(0.310549\pi\)
\(878\) −1475.97 634.240i −1.68106 0.722369i
\(879\) 525.757i 0.598131i
\(880\) 63.4662 + 3.34282i 0.0721207 + 0.00379866i
\(881\) 155.250 0.176220 0.0881102 0.996111i \(-0.471917\pi\)
0.0881102 + 0.996111i \(0.471917\pi\)
\(882\) 0 0
\(883\) 612.809i 0.694008i −0.937864 0.347004i \(-0.887199\pi\)
0.937864 0.347004i \(-0.112801\pi\)
\(884\) −351.771 370.786i −0.397931 0.419442i
\(885\) −645.967 −0.729906
\(886\) 1331.30 + 572.075i 1.50260 + 0.645683i
\(887\) 142.947i 0.161158i 0.996748 + 0.0805791i \(0.0256770\pi\)
−0.996748 + 0.0805791i \(0.974323\pi\)
\(888\) 303.335 + 822.724i 0.341593 + 0.926490i
\(889\) 0 0
\(890\) 126.928 295.380i 0.142616 0.331888i
\(891\) 14.0233i 0.0157389i
\(892\) −623.999 + 591.997i −0.699551 + 0.663674i
\(893\) 575.427 0.644375
\(894\) 354.985 + 152.541i 0.397075 + 0.170628i
\(895\) 174.578i 0.195059i
\(896\) 0 0
\(897\) 923.063 1.02906
\(898\) 533.005 1240.38i 0.593547 1.38127i
\(899\) 315.770i 0.351246i
\(900\) −207.415 218.627i −0.230461 0.242919i
\(901\) −322.036 −0.357420
\(902\) 28.8747 + 12.4078i 0.0320119 + 0.0137559i
\(903\) 0 0
\(904\) 1076.34 396.841i 1.19064 0.438984i
\(905\) 302.785 0.334569
\(906\) −80.2931 + 186.854i −0.0886238 + 0.206240i
\(907\) 1350.76i 1.48926i −0.667475 0.744632i \(-0.732625\pi\)
0.667475 0.744632i \(-0.267375\pi\)
\(908\) 1222.85 1160.13i 1.34675 1.27768i
\(909\) −187.606 −0.206387
\(910\) 0 0
\(911\) 215.218i 0.236244i −0.992999 0.118122i \(-0.962313\pi\)
0.992999 0.118122i \(-0.0376874\pi\)
\(912\) −22.1781 + 421.069i −0.0243181 + 0.461699i
\(913\) 22.8200 0.0249945
\(914\) 287.330 668.658i 0.314366 0.731574i
\(915\) 592.298i 0.647321i
\(916\) 125.338 + 132.114i 0.136832 + 0.144229i
\(917\) 0 0
\(918\) 633.844 + 272.370i 0.690462 + 0.296699i
\(919\) 8.84031i 0.00961949i 0.999988 + 0.00480975i \(0.00153100\pi\)
−0.999988 + 0.00480975i \(0.998469\pi\)
\(920\) 722.528 + 1959.68i 0.785356 + 2.13009i
\(921\) 126.077 0.136891
\(922\) 184.263 428.807i 0.199852 0.465083i
\(923\) 609.884i 0.660763i
\(924\) 0 0
\(925\) −880.599 −0.951999
\(926\) −1602.60 688.658i −1.73067 0.743691i
\(927\) 654.823i 0.706389i
\(928\) −259.489 128.072i −0.279622 0.138008i
\(929\) −1424.55 −1.53342 −0.766710 0.641993i \(-0.778108\pi\)
−0.766710 + 0.641993i \(0.778108\pi\)
\(930\) −386.927 + 900.435i −0.416051 + 0.968210i
\(931\) 0 0
\(932\) −416.938 439.476i −0.447358 0.471541i
\(933\) 268.293 0.287560
\(934\) 1410.87 + 606.267i 1.51057 + 0.649108i
\(935\) 47.5916i 0.0509002i
\(936\) −348.023 + 128.315i −0.371819 + 0.137088i
\(937\) −616.709 −0.658174 −0.329087 0.944300i \(-0.606741\pi\)
−0.329087 + 0.944300i \(0.606741\pi\)
\(938\) 0 0
\(939\) 1038.46i 1.10592i
\(940\) 889.174 843.573i 0.945930 0.897418i
\(941\) −935.337 −0.993981 −0.496991 0.867756i \(-0.665562\pi\)
−0.496991 + 0.867756i \(0.665562\pi\)
\(942\) 1140.65 + 490.150i 1.21088 + 0.520330i
\(943\) 1032.84i 1.09527i
\(944\) −735.484 38.7386i −0.779114 0.0410366i
\(945\) 0 0
\(946\) 9.55028 22.2248i 0.0100954 0.0234935i
\(947\) 1140.94i 1.20479i −0.798198 0.602395i \(-0.794213\pi\)
0.798198 0.602395i \(-0.205787\pi\)
\(948\) −109.224 115.129i −0.115215 0.121444i
\(949\) −600.721 −0.633004
\(950\) −389.052 167.180i −0.409528 0.175979i
\(951\) 774.656i 0.814570i
\(952\) 0 0
\(953\) −1265.64 −1.32806 −0.664030 0.747706i \(-0.731155\pi\)
−0.664030 + 0.747706i \(0.731155\pi\)
\(954\) −92.2705 + 214.727i −0.0967196 + 0.225080i
\(955\) 490.702i 0.513824i
\(956\) 583.232 553.321i 0.610075 0.578788i
\(957\) −11.9083 −0.0124434
\(958\) −1447.48 621.998i −1.51094 0.649267i
\(959\) 0 0
\(960\) 583.015 + 683.167i 0.607307 + 0.711633i
\(961\) −258.339 −0.268823
\(962\) −427.914 + 995.818i −0.444818 + 1.03515i
\(963\) 176.475i 0.183255i
\(964\) 684.506 + 721.509i 0.710069 + 0.748453i
\(965\) −1080.46 −1.11965
\(966\) 0 0
\(967\) 1527.55i 1.57968i −0.613313 0.789840i \(-0.710164\pi\)
0.613313 0.789840i \(-0.289836\pi\)
\(968\) −905.437 + 333.831i −0.935369 + 0.344867i
\(969\) 315.749 0.325850
\(970\) −564.557 + 1313.80i −0.582017 + 1.35444i
\(971\) 180.481i 0.185871i 0.995672 + 0.0929356i \(0.0296251\pi\)
−0.995672 + 0.0929356i \(0.970375\pi\)
\(972\) 608.133 576.945i 0.625651 0.593565i
\(973\) 0 0
\(974\) −67.5601 29.0314i −0.0693636 0.0298063i
\(975\) 398.613i 0.408834i
\(976\) 35.5201 674.378i 0.0363935 0.690961i
\(977\) −893.776 −0.914817 −0.457408 0.889257i \(-0.651222\pi\)
−0.457408 + 0.889257i \(0.651222\pi\)
\(978\) 23.1941 53.9760i 0.0237159 0.0551902i
\(979\) 15.0846i 0.0154081i
\(980\) 0 0
\(981\) 289.250 0.294852
\(982\) −758.904 326.110i −0.772815 0.332088i
\(983\) 647.994i 0.659201i −0.944121 0.329600i \(-0.893086\pi\)
0.944121 0.329600i \(-0.106914\pi\)
\(984\) 153.637 + 416.704i 0.156135 + 0.423480i
\(985\) 1819.99 1.84770
\(986\) −85.5514 + 199.090i −0.0867662 + 0.201917i
\(987\) 0 0
\(988\) −378.108 + 358.717i −0.382700 + 0.363074i
\(989\) 794.975 0.803817
\(990\) −31.7331 13.6361i −0.0320536 0.0137738i
\(991\) 1348.08i 1.36032i −0.733062 0.680162i \(-0.761909\pi\)
0.733062 0.680162i \(-0.238091\pi\)
\(992\) −494.546 + 1002.01i −0.498534 + 1.01009i
\(993\) 273.273 0.275199
\(994\) 0 0
\(995\) 1.79142i 0.00180042i
\(996\) 221.952 + 233.950i 0.222843 + 0.234890i
\(997\) −513.572 −0.515117 −0.257559 0.966263i \(-0.582918\pi\)
−0.257559 + 0.966263i \(0.582918\pi\)
\(998\) −1243.01 534.137i −1.24550 0.535208i
\(999\) 1463.00i 1.46447i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 196.3.c.h.99.3 6
4.3 odd 2 inner 196.3.c.h.99.4 6
7.2 even 3 196.3.g.i.67.1 12
7.3 odd 6 28.3.g.a.23.5 yes 12
7.4 even 3 196.3.g.i.79.5 12
7.5 odd 6 28.3.g.a.11.1 12
7.6 odd 2 196.3.c.i.99.3 6
21.5 even 6 252.3.y.c.235.6 12
21.17 even 6 252.3.y.c.163.2 12
28.3 even 6 28.3.g.a.23.1 yes 12
28.11 odd 6 196.3.g.i.79.1 12
28.19 even 6 28.3.g.a.11.5 yes 12
28.23 odd 6 196.3.g.i.67.5 12
28.27 even 2 196.3.c.i.99.4 6
56.3 even 6 448.3.r.h.191.2 12
56.5 odd 6 448.3.r.h.319.2 12
56.19 even 6 448.3.r.h.319.5 12
56.45 odd 6 448.3.r.h.191.5 12
84.47 odd 6 252.3.y.c.235.2 12
84.59 odd 6 252.3.y.c.163.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.3.g.a.11.1 12 7.5 odd 6
28.3.g.a.11.5 yes 12 28.19 even 6
28.3.g.a.23.1 yes 12 28.3 even 6
28.3.g.a.23.5 yes 12 7.3 odd 6
196.3.c.h.99.3 6 1.1 even 1 trivial
196.3.c.h.99.4 6 4.3 odd 2 inner
196.3.c.i.99.3 6 7.6 odd 2
196.3.c.i.99.4 6 28.27 even 2
196.3.g.i.67.1 12 7.2 even 3
196.3.g.i.67.5 12 28.23 odd 6
196.3.g.i.79.1 12 28.11 odd 6
196.3.g.i.79.5 12 7.4 even 3
252.3.y.c.163.2 12 21.17 even 6
252.3.y.c.163.6 12 84.59 odd 6
252.3.y.c.235.2 12 84.47 odd 6
252.3.y.c.235.6 12 21.5 even 6
448.3.r.h.191.2 12 56.3 even 6
448.3.r.h.191.5 12 56.45 odd 6
448.3.r.h.319.2 12 56.5 odd 6
448.3.r.h.319.5 12 56.19 even 6