Properties

Label 1950.2.b.i
Level $1950$
Weight $2$
Character orbit 1950.b
Analytic conductor $15.571$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1950,2,Mod(1351,1950)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1950, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1950.1351"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1950 = 2 \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1950.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-4,-4,0,0,0,0,4,0,0,4,6,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.5708283941\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{17})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} - q^{3} - q^{4} - \beta_{2} q^{6} + (3 \beta_{2} + \beta_1) q^{7} - \beta_{2} q^{8} + q^{9} + ( - \beta_{2} - \beta_1) q^{11} + q^{12} + ( - \beta_{3} + 2 \beta_{2} + \beta_1 + 2) q^{13}+ \cdots + ( - \beta_{2} - \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 4 q^{4} + 4 q^{9} + 4 q^{12} + 6 q^{13} - 10 q^{14} + 4 q^{16} - 2 q^{17} + 2 q^{22} + 4 q^{23} - 6 q^{26} - 4 q^{27} - 4 q^{29} - 4 q^{36} + 6 q^{38} - 6 q^{39} + 10 q^{42} - 28 q^{43}+ \cdots - 16 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 9x^{2} + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 5\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 4\beta_{2} - 5\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1950\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(1301\) \(1327\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1351.1
1.56155i
2.56155i
2.56155i
1.56155i
1.00000i −1.00000 −1.00000 0 1.00000i 4.56155i 1.00000i 1.00000 0
1351.2 1.00000i −1.00000 −1.00000 0 1.00000i 0.438447i 1.00000i 1.00000 0
1351.3 1.00000i −1.00000 −1.00000 0 1.00000i 0.438447i 1.00000i 1.00000 0
1351.4 1.00000i −1.00000 −1.00000 0 1.00000i 4.56155i 1.00000i 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1950.2.b.i 4
5.b even 2 1 1950.2.b.j yes 4
5.c odd 4 1 1950.2.f.k 4
5.c odd 4 1 1950.2.f.p 4
13.b even 2 1 inner 1950.2.b.i 4
65.d even 2 1 1950.2.b.j yes 4
65.h odd 4 1 1950.2.f.k 4
65.h odd 4 1 1950.2.f.p 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1950.2.b.i 4 1.a even 1 1 trivial
1950.2.b.i 4 13.b even 2 1 inner
1950.2.b.j yes 4 5.b even 2 1
1950.2.b.j yes 4 65.d even 2 1
1950.2.f.k 4 5.c odd 4 1
1950.2.f.k 4 65.h odd 4 1
1950.2.f.p 4 5.c odd 4 1
1950.2.f.p 4 65.h odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1950, [\chi])\):

\( T_{7}^{4} + 21T_{7}^{2} + 4 \) Copy content Toggle raw display
\( T_{11}^{4} + 9T_{11}^{2} + 16 \) Copy content Toggle raw display
\( T_{17}^{2} + T_{17} - 38 \) Copy content Toggle raw display
\( T_{19}^{4} + 81T_{19}^{2} + 1296 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 21T^{2} + 4 \) Copy content Toggle raw display
$11$ \( T^{4} + 9T^{2} + 16 \) Copy content Toggle raw display
$13$ \( T^{4} - 6 T^{3} + \cdots + 169 \) Copy content Toggle raw display
$17$ \( (T^{2} + T - 38)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 81T^{2} + 1296 \) Copy content Toggle raw display
$23$ \( (T^{2} - 2 T - 16)^{2} \) Copy content Toggle raw display
$29$ \( (T + 1)^{4} \) Copy content Toggle raw display
$31$ \( T^{4} + 33T^{2} + 64 \) Copy content Toggle raw display
$37$ \( T^{4} + 21T^{2} + 4 \) Copy content Toggle raw display
$41$ \( T^{4} + 21T^{2} + 4 \) Copy content Toggle raw display
$43$ \( (T^{2} + 14 T + 32)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 66T^{2} + 1 \) Copy content Toggle raw display
$53$ \( (T + 5)^{4} \) Copy content Toggle raw display
$59$ \( T^{4} + 121T^{2} + 2704 \) Copy content Toggle raw display
$61$ \( (T^{2} - 11 T - 8)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 17)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 417 T^{2} + 43264 \) Copy content Toggle raw display
$73$ \( T^{4} + 52T^{2} + 64 \) Copy content Toggle raw display
$79$ \( (T^{2} + 17 T + 34)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 417 T^{2} + 43264 \) Copy content Toggle raw display
$89$ \( T^{4} + 36T^{2} + 256 \) Copy content Toggle raw display
$97$ \( T^{4} + 196T^{2} + 4096 \) Copy content Toggle raw display
show more
show less