Properties

Label 195.2.k.a.148.3
Level $195$
Weight $2$
Character 195.148
Analytic conductor $1.557$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [195,2,Mod(112,195)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("195.112"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(195, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 195 = 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 195.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.55708283941\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 148.3
Character \(\chi\) \(=\) 195.148
Dual form 195.2.k.a.112.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.97160i q^{2} +(-0.707107 - 0.707107i) q^{3} -1.88719 q^{4} +(0.644677 - 2.14112i) q^{5} +(-1.39413 + 1.39413i) q^{6} -0.616758 q^{7} -0.222418i q^{8} +1.00000i q^{9} +(-4.22142 - 1.27104i) q^{10} +(1.14213 + 1.14213i) q^{11} +(1.33444 + 1.33444i) q^{12} +(-3.56264 - 0.554621i) q^{13} +1.21600i q^{14} +(-1.96986 + 1.05814i) q^{15} -4.21290 q^{16} +(0.816014 + 0.816014i) q^{17} +1.97160 q^{18} +(4.26977 + 4.26977i) q^{19} +(-1.21663 + 4.04070i) q^{20} +(0.436114 + 0.436114i) q^{21} +(2.25182 - 2.25182i) q^{22} +(5.27080 - 5.27080i) q^{23} +(-0.157273 + 0.157273i) q^{24} +(-4.16878 - 2.76066i) q^{25} +(-1.09349 + 7.02408i) q^{26} +(0.707107 - 0.707107i) q^{27} +1.16394 q^{28} -2.25597i q^{29} +(2.08623 + 3.88376i) q^{30} +(4.04241 - 4.04241i) q^{31} +7.86129i q^{32} -1.61522i q^{33} +(1.60885 - 1.60885i) q^{34} +(-0.397610 + 1.32055i) q^{35} -1.88719i q^{36} +3.21038 q^{37} +(8.41825 - 8.41825i) q^{38} +(2.12699 + 2.91134i) q^{39} +(-0.476223 - 0.143388i) q^{40} +(-1.89994 + 1.89994i) q^{41} +(0.859840 - 0.859840i) q^{42} +(0.687115 - 0.687115i) q^{43} +(-2.15542 - 2.15542i) q^{44} +(2.14112 + 0.644677i) q^{45} +(-10.3919 - 10.3919i) q^{46} +9.07993 q^{47} +(2.97897 + 2.97897i) q^{48} -6.61961 q^{49} +(-5.44291 + 8.21915i) q^{50} -1.15402i q^{51} +(6.72337 + 1.04667i) q^{52} +(-2.76736 - 2.76736i) q^{53} +(-1.39413 - 1.39413i) q^{54} +(3.18175 - 1.70913i) q^{55} +0.137178i q^{56} -6.03836i q^{57} -4.44785 q^{58} +(4.05498 - 4.05498i) q^{59} +(3.71749 - 1.99692i) q^{60} +12.5604 q^{61} +(-7.97000 - 7.97000i) q^{62} -0.616758i q^{63} +7.07349 q^{64} +(-3.48426 + 7.27048i) q^{65} -3.18456 q^{66} -1.67100i q^{67} +(-1.53997 - 1.53997i) q^{68} -7.45404 q^{69} +(2.60360 + 0.783926i) q^{70} +(-2.76337 + 2.76337i) q^{71} +0.222418 q^{72} +15.5003i q^{73} -6.32956i q^{74} +(0.995692 + 4.89986i) q^{75} +(-8.05786 - 8.05786i) q^{76} +(-0.704419 - 0.704419i) q^{77} +(5.73999 - 4.19356i) q^{78} +15.4528i q^{79} +(-2.71596 + 9.02031i) q^{80} -1.00000 q^{81} +(3.74591 + 3.74591i) q^{82} -4.88302 q^{83} +(-0.823029 - 0.823029i) q^{84} +(2.27325 - 1.22112i) q^{85} +(-1.35471 - 1.35471i) q^{86} +(-1.59521 + 1.59521i) q^{87} +(0.254031 - 0.254031i) q^{88} +(-7.34335 + 7.34335i) q^{89} +(1.27104 - 4.22142i) q^{90} +(2.19729 + 0.342067i) q^{91} +(-9.94700 + 9.94700i) q^{92} -5.71683 q^{93} -17.9019i q^{94} +(11.8947 - 6.38946i) q^{95} +(5.55877 - 5.55877i) q^{96} +13.3663i q^{97} +13.0512i q^{98} +(-1.14213 + 1.14213i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 28 q^{4} + 8 q^{5} - 8 q^{11} + 8 q^{12} - 12 q^{13} + 4 q^{15} + 28 q^{16} - 28 q^{17} - 4 q^{18} + 8 q^{21} - 32 q^{22} + 8 q^{23} - 4 q^{25} - 16 q^{31} + 28 q^{34} + 32 q^{37} + 8 q^{39} - 48 q^{40}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/195\mathbb{Z}\right)^\times\).

\(n\) \(106\) \(131\) \(157\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.97160i 1.39413i −0.717009 0.697064i \(-0.754489\pi\)
0.717009 0.697064i \(-0.245511\pi\)
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) −1.88719 −0.943594
\(5\) 0.644677 2.14112i 0.288308 0.957538i
\(6\) −1.39413 + 1.39413i −0.569151 + 0.569151i
\(7\) −0.616758 −0.233113 −0.116556 0.993184i \(-0.537186\pi\)
−0.116556 + 0.993184i \(0.537186\pi\)
\(8\) 0.222418i 0.0786366i
\(9\) 1.00000i 0.333333i
\(10\) −4.22142 1.27104i −1.33493 0.401939i
\(11\) 1.14213 + 1.14213i 0.344366 + 0.344366i 0.858006 0.513640i \(-0.171703\pi\)
−0.513640 + 0.858006i \(0.671703\pi\)
\(12\) 1.33444 + 1.33444i 0.385221 + 0.385221i
\(13\) −3.56264 0.554621i −0.988098 0.153824i
\(14\) 1.21600i 0.324989i
\(15\) −1.96986 + 1.05814i −0.508615 + 0.273212i
\(16\) −4.21290 −1.05322
\(17\) 0.816014 + 0.816014i 0.197912 + 0.197912i 0.799105 0.601192i \(-0.205307\pi\)
−0.601192 + 0.799105i \(0.705307\pi\)
\(18\) 1.97160 0.464710
\(19\) 4.26977 + 4.26977i 0.979552 + 0.979552i 0.999795 0.0202433i \(-0.00644408\pi\)
−0.0202433 + 0.999795i \(0.506444\pi\)
\(20\) −1.21663 + 4.04070i −0.272046 + 0.903527i
\(21\) 0.436114 + 0.436114i 0.0951678 + 0.0951678i
\(22\) 2.25182 2.25182i 0.480090 0.480090i
\(23\) 5.27080 5.27080i 1.09904 1.09904i 0.104516 0.994523i \(-0.466671\pi\)
0.994523 0.104516i \(-0.0333292\pi\)
\(24\) −0.157273 + 0.157273i −0.0321033 + 0.0321033i
\(25\) −4.16878 2.76066i −0.833757 0.552132i
\(26\) −1.09349 + 7.02408i −0.214451 + 1.37754i
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) 1.16394 0.219964
\(29\) 2.25597i 0.418923i −0.977817 0.209461i \(-0.932829\pi\)
0.977817 0.209461i \(-0.0671710\pi\)
\(30\) 2.08623 + 3.88376i 0.380892 + 0.709074i
\(31\) 4.04241 4.04241i 0.726038 0.726038i −0.243790 0.969828i \(-0.578391\pi\)
0.969828 + 0.243790i \(0.0783907\pi\)
\(32\) 7.86129i 1.38969i
\(33\) 1.61522i 0.281173i
\(34\) 1.60885 1.60885i 0.275915 0.275915i
\(35\) −0.397610 + 1.32055i −0.0672083 + 0.223214i
\(36\) 1.88719i 0.314531i
\(37\) 3.21038 0.527783 0.263891 0.964552i \(-0.414994\pi\)
0.263891 + 0.964552i \(0.414994\pi\)
\(38\) 8.41825 8.41825i 1.36562 1.36562i
\(39\) 2.12699 + 2.91134i 0.340591 + 0.466188i
\(40\) −0.476223 0.143388i −0.0752975 0.0226716i
\(41\) −1.89994 + 1.89994i −0.296721 + 0.296721i −0.839728 0.543007i \(-0.817286\pi\)
0.543007 + 0.839728i \(0.317286\pi\)
\(42\) 0.859840 0.859840i 0.132676 0.132676i
\(43\) 0.687115 0.687115i 0.104784 0.104784i −0.652771 0.757555i \(-0.726394\pi\)
0.757555 + 0.652771i \(0.226394\pi\)
\(44\) −2.15542 2.15542i −0.324941 0.324941i
\(45\) 2.14112 + 0.644677i 0.319179 + 0.0961028i
\(46\) −10.3919 10.3919i −1.53220 1.53220i
\(47\) 9.07993 1.32444 0.662222 0.749308i \(-0.269614\pi\)
0.662222 + 0.749308i \(0.269614\pi\)
\(48\) 2.97897 + 2.97897i 0.429977 + 0.429977i
\(49\) −6.61961 −0.945659
\(50\) −5.44291 + 8.21915i −0.769743 + 1.16236i
\(51\) 1.15402i 0.161595i
\(52\) 6.72337 + 1.04667i 0.932364 + 0.145148i
\(53\) −2.76736 2.76736i −0.380127 0.380127i 0.491021 0.871148i \(-0.336624\pi\)
−0.871148 + 0.491021i \(0.836624\pi\)
\(54\) −1.39413 1.39413i −0.189717 0.189717i
\(55\) 3.18175 1.70913i 0.429026 0.230460i
\(56\) 0.137178i 0.0183312i
\(57\) 6.03836i 0.799801i
\(58\) −4.44785 −0.584032
\(59\) 4.05498 4.05498i 0.527913 0.527913i −0.392037 0.919950i \(-0.628229\pi\)
0.919950 + 0.392037i \(0.128229\pi\)
\(60\) 3.71749 1.99692i 0.479926 0.257801i
\(61\) 12.5604 1.60819 0.804094 0.594502i \(-0.202651\pi\)
0.804094 + 0.594502i \(0.202651\pi\)
\(62\) −7.97000 7.97000i −1.01219 1.01219i
\(63\) 0.616758i 0.0777042i
\(64\) 7.07349 0.884187
\(65\) −3.48426 + 7.27048i −0.432169 + 0.901792i
\(66\) −3.18456 −0.391992
\(67\) 1.67100i 0.204145i −0.994777 0.102073i \(-0.967453\pi\)
0.994777 0.102073i \(-0.0325474\pi\)
\(68\) −1.53997 1.53997i −0.186749 0.186749i
\(69\) −7.45404 −0.897361
\(70\) 2.60360 + 0.783926i 0.311189 + 0.0936970i
\(71\) −2.76337 + 2.76337i −0.327952 + 0.327952i −0.851807 0.523856i \(-0.824493\pi\)
0.523856 + 0.851807i \(0.324493\pi\)
\(72\) 0.222418 0.0262122
\(73\) 15.5003i 1.81417i 0.420945 + 0.907086i \(0.361699\pi\)
−0.420945 + 0.907086i \(0.638301\pi\)
\(74\) 6.32956i 0.735797i
\(75\) 0.995692 + 4.89986i 0.114973 + 0.565787i
\(76\) −8.05786 8.05786i −0.924300 0.924300i
\(77\) −0.704419 0.704419i −0.0802760 0.0802760i
\(78\) 5.73999 4.19356i 0.649926 0.474828i
\(79\) 15.4528i 1.73858i 0.494306 + 0.869288i \(0.335422\pi\)
−0.494306 + 0.869288i \(0.664578\pi\)
\(80\) −2.71596 + 9.02031i −0.303653 + 1.00850i
\(81\) −1.00000 −0.111111
\(82\) 3.74591 + 3.74591i 0.413667 + 0.413667i
\(83\) −4.88302 −0.535981 −0.267990 0.963422i \(-0.586360\pi\)
−0.267990 + 0.963422i \(0.586360\pi\)
\(84\) −0.823029 0.823029i −0.0897998 0.0897998i
\(85\) 2.27325 1.22112i 0.246568 0.132449i
\(86\) −1.35471 1.35471i −0.146082 0.146082i
\(87\) −1.59521 + 1.59521i −0.171024 + 0.171024i
\(88\) 0.254031 0.254031i 0.0270798 0.0270798i
\(89\) −7.34335 + 7.34335i −0.778394 + 0.778394i −0.979558 0.201164i \(-0.935528\pi\)
0.201164 + 0.979558i \(0.435528\pi\)
\(90\) 1.27104 4.22142i 0.133980 0.444977i
\(91\) 2.19729 + 0.342067i 0.230338 + 0.0358583i
\(92\) −9.94700 + 9.94700i −1.03705 + 1.03705i
\(93\) −5.71683 −0.592808
\(94\) 17.9019i 1.84644i
\(95\) 11.8947 6.38946i 1.22037 0.655545i
\(96\) 5.55877 5.55877i 0.567340 0.567340i
\(97\) 13.3663i 1.35715i 0.734533 + 0.678573i \(0.237401\pi\)
−0.734533 + 0.678573i \(0.762599\pi\)
\(98\) 13.0512i 1.31837i
\(99\) −1.14213 + 1.14213i −0.114789 + 0.114789i
\(100\) 7.86728 + 5.20989i 0.786728 + 0.520989i
\(101\) 7.85108i 0.781212i −0.920558 0.390606i \(-0.872266\pi\)
0.920558 0.390606i \(-0.127734\pi\)
\(102\) −2.27526 −0.225284
\(103\) −11.7628 + 11.7628i −1.15902 + 1.15902i −0.174337 + 0.984686i \(0.555778\pi\)
−0.984686 + 0.174337i \(0.944222\pi\)
\(104\) −0.123358 + 0.792395i −0.0120962 + 0.0777007i
\(105\) 1.21492 0.652619i 0.118564 0.0636891i
\(106\) −5.45612 + 5.45612i −0.529945 + 0.529945i
\(107\) −1.18744 + 1.18744i −0.114794 + 0.114794i −0.762171 0.647376i \(-0.775866\pi\)
0.647376 + 0.762171i \(0.275866\pi\)
\(108\) −1.33444 + 1.33444i −0.128407 + 0.128407i
\(109\) 4.90378 + 4.90378i 0.469697 + 0.469697i 0.901816 0.432120i \(-0.142234\pi\)
−0.432120 + 0.901816i \(0.642234\pi\)
\(110\) −3.36972 6.27312i −0.321290 0.598118i
\(111\) −2.27008 2.27008i −0.215466 0.215466i
\(112\) 2.59834 0.245520
\(113\) −12.0427 12.0427i −1.13288 1.13288i −0.989695 0.143189i \(-0.954264\pi\)
−0.143189 0.989695i \(-0.545736\pi\)
\(114\) −11.9052 −1.11502
\(115\) −7.88745 14.6834i −0.735509 1.36923i
\(116\) 4.25744i 0.395293i
\(117\) 0.554621 3.56264i 0.0512747 0.329366i
\(118\) −7.99478 7.99478i −0.735979 0.735979i
\(119\) −0.503283 0.503283i −0.0461359 0.0461359i
\(120\) 0.235350 + 0.438131i 0.0214844 + 0.0399957i
\(121\) 8.39107i 0.762825i
\(122\) 24.7639i 2.24202i
\(123\) 2.68692 0.242271
\(124\) −7.62879 + 7.62879i −0.685086 + 0.685086i
\(125\) −8.59842 + 7.14613i −0.769066 + 0.639169i
\(126\) −1.21600 −0.108330
\(127\) 4.87707 + 4.87707i 0.432770 + 0.432770i 0.889569 0.456800i \(-0.151004\pi\)
−0.456800 + 0.889569i \(0.651004\pi\)
\(128\) 1.77651i 0.157023i
\(129\) −0.971727 −0.0855558
\(130\) 14.3345 + 6.86955i 1.25721 + 0.602500i
\(131\) 22.3622 1.95380 0.976898 0.213705i \(-0.0685532\pi\)
0.976898 + 0.213705i \(0.0685532\pi\)
\(132\) 3.04822i 0.265314i
\(133\) −2.63341 2.63341i −0.228346 0.228346i
\(134\) −3.29454 −0.284605
\(135\) −1.05814 1.96986i −0.0910706 0.169538i
\(136\) 0.181496 0.181496i 0.0155632 0.0155632i
\(137\) 0.867850 0.0741455 0.0370727 0.999313i \(-0.488197\pi\)
0.0370727 + 0.999313i \(0.488197\pi\)
\(138\) 14.6964i 1.25104i
\(139\) 12.2315i 1.03746i −0.854937 0.518732i \(-0.826404\pi\)
0.854937 0.518732i \(-0.173596\pi\)
\(140\) 0.750365 2.49213i 0.0634174 0.210624i
\(141\) −6.42048 6.42048i −0.540702 0.540702i
\(142\) 5.44825 + 5.44825i 0.457207 + 0.457207i
\(143\) −3.43555 4.70245i −0.287295 0.393239i
\(144\) 4.21290i 0.351075i
\(145\) −4.83029 1.45437i −0.401134 0.120779i
\(146\) 30.5603 2.52919
\(147\) 4.68077 + 4.68077i 0.386063 + 0.386063i
\(148\) −6.05859 −0.498013
\(149\) −0.122919 0.122919i −0.0100699 0.0100699i 0.702054 0.712124i \(-0.252267\pi\)
−0.712124 + 0.702054i \(0.752267\pi\)
\(150\) 9.66054 1.96310i 0.788779 0.160287i
\(151\) −3.40378 3.40378i −0.276996 0.276996i 0.554913 0.831908i \(-0.312752\pi\)
−0.831908 + 0.554913i \(0.812752\pi\)
\(152\) 0.949673 0.949673i 0.0770287 0.0770287i
\(153\) −0.816014 + 0.816014i −0.0659708 + 0.0659708i
\(154\) −1.38883 + 1.38883i −0.111915 + 0.111915i
\(155\) −6.04923 11.2613i −0.485886 0.904532i
\(156\) −4.01403 5.49425i −0.321380 0.439892i
\(157\) −4.75071 + 4.75071i −0.379148 + 0.379148i −0.870795 0.491647i \(-0.836395\pi\)
0.491647 + 0.870795i \(0.336395\pi\)
\(158\) 30.4667 2.42380
\(159\) 3.91364i 0.310372i
\(160\) 16.8320 + 5.06799i 1.33068 + 0.400660i
\(161\) −3.25081 + 3.25081i −0.256200 + 0.256200i
\(162\) 1.97160i 0.154903i
\(163\) 0.624871i 0.0489437i −0.999701 0.0244719i \(-0.992210\pi\)
0.999701 0.0244719i \(-0.00779041\pi\)
\(164\) 3.58554 3.58554i 0.279984 0.279984i
\(165\) −3.45837 1.04129i −0.269234 0.0810646i
\(166\) 9.62734i 0.747226i
\(167\) −15.2581 −1.18070 −0.590352 0.807146i \(-0.701011\pi\)
−0.590352 + 0.807146i \(0.701011\pi\)
\(168\) 0.0969996 0.0969996i 0.00748368 0.00748368i
\(169\) 12.3848 + 3.95183i 0.952676 + 0.303987i
\(170\) −2.40755 4.48193i −0.184651 0.343748i
\(171\) −4.26977 + 4.26977i −0.326517 + 0.326517i
\(172\) −1.29672 + 1.29672i −0.0988736 + 0.0988736i
\(173\) 6.24191 6.24191i 0.474564 0.474564i −0.428824 0.903388i \(-0.641072\pi\)
0.903388 + 0.428824i \(0.141072\pi\)
\(174\) 3.14511 + 3.14511i 0.238430 + 0.238430i
\(175\) 2.57113 + 1.70266i 0.194359 + 0.128709i
\(176\) −4.81168 4.81168i −0.362694 0.362694i
\(177\) −5.73460 −0.431039
\(178\) 14.4781 + 14.4781i 1.08518 + 1.08518i
\(179\) 9.48145 0.708677 0.354338 0.935117i \(-0.384706\pi\)
0.354338 + 0.935117i \(0.384706\pi\)
\(180\) −4.04070 1.21663i −0.301176 0.0906821i
\(181\) 13.2402i 0.984134i 0.870557 + 0.492067i \(0.163759\pi\)
−0.870557 + 0.492067i \(0.836241\pi\)
\(182\) 0.674417 4.33216i 0.0499911 0.321121i
\(183\) −8.88151 8.88151i −0.656540 0.656540i
\(184\) −1.17232 1.17232i −0.0864247 0.0864247i
\(185\) 2.06966 6.87380i 0.152164 0.505372i
\(186\) 11.2713i 0.826450i
\(187\) 1.86399i 0.136308i
\(188\) −17.1355 −1.24974
\(189\) −0.436114 + 0.436114i −0.0317226 + 0.0317226i
\(190\) −12.5974 23.4515i −0.913914 1.70135i
\(191\) −16.7819 −1.21430 −0.607149 0.794588i \(-0.707687\pi\)
−0.607149 + 0.794588i \(0.707687\pi\)
\(192\) −5.00172 5.00172i −0.360968 0.360968i
\(193\) 9.58754i 0.690126i −0.938580 0.345063i \(-0.887858\pi\)
0.938580 0.345063i \(-0.112142\pi\)
\(194\) 26.3530 1.89204
\(195\) 7.60475 2.67726i 0.544588 0.191723i
\(196\) 12.4925 0.892318
\(197\) 12.3175i 0.877588i −0.898588 0.438794i \(-0.855406\pi\)
0.898588 0.438794i \(-0.144594\pi\)
\(198\) 2.25182 + 2.25182i 0.160030 + 0.160030i
\(199\) −1.71900 −0.121856 −0.0609282 0.998142i \(-0.519406\pi\)
−0.0609282 + 0.998142i \(0.519406\pi\)
\(200\) −0.614021 + 0.927212i −0.0434178 + 0.0655638i
\(201\) −1.18158 + 1.18158i −0.0833419 + 0.0833419i
\(202\) −15.4792 −1.08911
\(203\) 1.39139i 0.0976561i
\(204\) 2.17785i 0.152480i
\(205\) 2.84315 + 5.29284i 0.198574 + 0.369668i
\(206\) 23.1915 + 23.1915i 1.61583 + 1.61583i
\(207\) 5.27080 + 5.27080i 0.366346 + 0.366346i
\(208\) 15.0090 + 2.33656i 1.04069 + 0.162011i
\(209\) 9.75327i 0.674648i
\(210\) −1.28670 2.39534i −0.0887908 0.165294i
\(211\) 1.43543 0.0988190 0.0494095 0.998779i \(-0.484266\pi\)
0.0494095 + 0.998779i \(0.484266\pi\)
\(212\) 5.22254 + 5.22254i 0.358685 + 0.358685i
\(213\) 3.90799 0.267771
\(214\) 2.34115 + 2.34115i 0.160038 + 0.160038i
\(215\) −1.02823 1.91416i −0.0701245 0.130545i
\(216\) −0.157273 0.157273i −0.0107011 0.0107011i
\(217\) −2.49319 + 2.49319i −0.169249 + 0.169249i
\(218\) 9.66826 9.66826i 0.654818 0.654818i
\(219\) 10.9604 10.9604i 0.740633 0.740633i
\(220\) −6.00455 + 3.22546i −0.404827 + 0.217460i
\(221\) −2.45458 3.35974i −0.165113 0.226001i
\(222\) −4.47568 + 4.47568i −0.300388 + 0.300388i
\(223\) 22.6123 1.51423 0.757115 0.653281i \(-0.226608\pi\)
0.757115 + 0.653281i \(0.226608\pi\)
\(224\) 4.84851i 0.323955i
\(225\) 2.76066 4.16878i 0.184044 0.277919i
\(226\) −23.7434 + 23.7434i −1.57939 + 1.57939i
\(227\) 24.6499i 1.63607i 0.575166 + 0.818037i \(0.304938\pi\)
−0.575166 + 0.818037i \(0.695062\pi\)
\(228\) 11.3955i 0.754687i
\(229\) 0.422937 0.422937i 0.0279485 0.0279485i −0.692994 0.720943i \(-0.743709\pi\)
0.720943 + 0.692994i \(0.243709\pi\)
\(230\) −28.9497 + 15.5509i −1.90889 + 1.02539i
\(231\) 0.996199i 0.0655450i
\(232\) −0.501768 −0.0329427
\(233\) −12.1713 + 12.1713i −0.797370 + 0.797370i −0.982680 0.185310i \(-0.940671\pi\)
0.185310 + 0.982680i \(0.440671\pi\)
\(234\) −7.02408 1.09349i −0.459179 0.0714835i
\(235\) 5.85362 19.4412i 0.381848 1.26820i
\(236\) −7.65251 + 7.65251i −0.498136 + 0.498136i
\(237\) 10.9268 10.9268i 0.709771 0.709771i
\(238\) −0.992271 + 0.992271i −0.0643193 + 0.0643193i
\(239\) 8.24673 + 8.24673i 0.533437 + 0.533437i 0.921593 0.388157i \(-0.126888\pi\)
−0.388157 + 0.921593i \(0.626888\pi\)
\(240\) 8.29880 4.45785i 0.535685 0.287753i
\(241\) −3.53345 3.53345i −0.227610 0.227610i 0.584084 0.811693i \(-0.301454\pi\)
−0.811693 + 0.584084i \(0.801454\pi\)
\(242\) −16.5438 −1.06348
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) −23.7038 −1.51748
\(245\) −4.26751 + 14.1734i −0.272641 + 0.905504i
\(246\) 5.29752i 0.337757i
\(247\) −12.8435 17.5797i −0.817215 1.11857i
\(248\) −0.899105 0.899105i −0.0570932 0.0570932i
\(249\) 3.45281 + 3.45281i 0.218813 + 0.218813i
\(250\) 14.0893 + 16.9526i 0.891084 + 1.07218i
\(251\) 29.1666i 1.84098i 0.390769 + 0.920489i \(0.372209\pi\)
−0.390769 + 0.920489i \(0.627791\pi\)
\(252\) 1.16394i 0.0733213i
\(253\) 12.0399 0.756942
\(254\) 9.61560 9.61560i 0.603336 0.603336i
\(255\) −2.47089 0.743969i −0.154733 0.0465891i
\(256\) 17.6496 1.10310
\(257\) −4.74387 4.74387i −0.295914 0.295914i 0.543497 0.839411i \(-0.317100\pi\)
−0.839411 + 0.543497i \(0.817100\pi\)
\(258\) 1.91585i 0.119276i
\(259\) −1.98003 −0.123033
\(260\) 6.57546 13.7208i 0.407793 0.850926i
\(261\) 2.25597 0.139641
\(262\) 44.0893i 2.72384i
\(263\) −1.87371 1.87371i −0.115538 0.115538i 0.646974 0.762512i \(-0.276034\pi\)
−0.762512 + 0.646974i \(0.776034\pi\)
\(264\) −0.359254 −0.0221105
\(265\) −7.70931 + 4.14120i −0.473579 + 0.254392i
\(266\) −5.19203 + 5.19203i −0.318344 + 0.318344i
\(267\) 10.3851 0.635556
\(268\) 3.15349i 0.192630i
\(269\) 22.0866i 1.34664i −0.739350 0.673321i \(-0.764867\pi\)
0.739350 0.673321i \(-0.235133\pi\)
\(270\) −3.88376 + 2.08623i −0.236358 + 0.126964i
\(271\) 9.96038 + 9.96038i 0.605050 + 0.605050i 0.941648 0.336598i \(-0.109276\pi\)
−0.336598 + 0.941648i \(0.609276\pi\)
\(272\) −3.43778 3.43778i −0.208446 0.208446i
\(273\) −1.31184 1.79559i −0.0793961 0.108674i
\(274\) 1.71105i 0.103368i
\(275\) −1.60826 7.91434i −0.0969817 0.477252i
\(276\) 14.0672 0.846745
\(277\) −22.8459 22.8459i −1.37268 1.37268i −0.856452 0.516226i \(-0.827336\pi\)
−0.516226 0.856452i \(-0.672664\pi\)
\(278\) −24.1156 −1.44636
\(279\) 4.04241 + 4.04241i 0.242013 + 0.242013i
\(280\) 0.293715 + 0.0884356i 0.0175528 + 0.00528504i
\(281\) −20.0201 20.0201i −1.19430 1.19430i −0.975847 0.218454i \(-0.929899\pi\)
−0.218454 0.975847i \(-0.570101\pi\)
\(282\) −12.6586 + 12.6586i −0.753808 + 0.753808i
\(283\) 3.65399 3.65399i 0.217207 0.217207i −0.590113 0.807321i \(-0.700917\pi\)
0.807321 + 0.590113i \(0.200917\pi\)
\(284\) 5.21500 5.21500i 0.309453 0.309453i
\(285\) −12.9289 3.89279i −0.765839 0.230589i
\(286\) −9.27133 + 6.77352i −0.548225 + 0.400527i
\(287\) 1.17180 1.17180i 0.0691693 0.0691693i
\(288\) −7.86129 −0.463231
\(289\) 15.6682i 0.921661i
\(290\) −2.86743 + 9.52339i −0.168381 + 0.559232i
\(291\) 9.45143 9.45143i 0.554053 0.554053i
\(292\) 29.2520i 1.71184i
\(293\) 23.4969i 1.37270i 0.727271 + 0.686351i \(0.240788\pi\)
−0.727271 + 0.686351i \(0.759212\pi\)
\(294\) 9.22859 9.22859i 0.538222 0.538222i
\(295\) −6.06804 11.2963i −0.353295 0.657698i
\(296\) 0.714046i 0.0415031i
\(297\) 1.61522 0.0937244
\(298\) −0.242346 + 0.242346i −0.0140387 + 0.0140387i
\(299\) −21.7013 + 15.8547i −1.25502 + 0.916900i
\(300\) −1.87906 9.24696i −0.108488 0.533873i
\(301\) −0.423784 + 0.423784i −0.0244265 + 0.0244265i
\(302\) −6.71087 + 6.71087i −0.386167 + 0.386167i
\(303\) −5.55155 + 5.55155i −0.318928 + 0.318928i
\(304\) −17.9881 17.9881i −1.03169 1.03169i
\(305\) 8.09738 26.8932i 0.463654 1.53990i
\(306\) 1.60885 + 1.60885i 0.0919718 + 0.0919718i
\(307\) −23.1262 −1.31988 −0.659940 0.751318i \(-0.729418\pi\)
−0.659940 + 0.751318i \(0.729418\pi\)
\(308\) 1.32937 + 1.32937i 0.0757480 + 0.0757480i
\(309\) 16.6351 0.946339
\(310\) −22.2028 + 11.9266i −1.26103 + 0.677388i
\(311\) 22.4967i 1.27567i 0.770174 + 0.637834i \(0.220169\pi\)
−0.770174 + 0.637834i \(0.779831\pi\)
\(312\) 0.647535 0.473081i 0.0366594 0.0267829i
\(313\) −18.8706 18.8706i −1.06663 1.06663i −0.997616 0.0690156i \(-0.978014\pi\)
−0.0690156 0.997616i \(-0.521986\pi\)
\(314\) 9.36647 + 9.36647i 0.528581 + 0.528581i
\(315\) −1.32055 0.397610i −0.0744047 0.0224028i
\(316\) 29.1624i 1.64051i
\(317\) 23.3062i 1.30901i 0.756059 + 0.654504i \(0.227123\pi\)
−0.756059 + 0.654504i \(0.772877\pi\)
\(318\) 7.71612 0.432699
\(319\) 2.57661 2.57661i 0.144262 0.144262i
\(320\) 4.56012 15.1452i 0.254918 0.846642i
\(321\) 1.67930 0.0937291
\(322\) 6.40928 + 6.40928i 0.357175 + 0.357175i
\(323\) 6.96838i 0.387731i
\(324\) 1.88719 0.104844
\(325\) 13.3207 + 12.1473i 0.738902 + 0.673813i
\(326\) −1.23199 −0.0682338
\(327\) 6.93499i 0.383506i
\(328\) 0.422581 + 0.422581i 0.0233331 + 0.0233331i
\(329\) −5.60012 −0.308745
\(330\) −2.05301 + 6.81851i −0.113015 + 0.375347i
\(331\) 13.4530 13.4530i 0.739445 0.739445i −0.233026 0.972471i \(-0.574863\pi\)
0.972471 + 0.233026i \(0.0748627\pi\)
\(332\) 9.21518 0.505748
\(333\) 3.21038i 0.175928i
\(334\) 30.0827i 1.64605i
\(335\) −3.57781 1.07726i −0.195477 0.0588567i
\(336\) −1.83730 1.83730i −0.100233 0.100233i
\(337\) 14.7923 + 14.7923i 0.805788 + 0.805788i 0.983993 0.178205i \(-0.0570291\pi\)
−0.178205 + 0.983993i \(0.557029\pi\)
\(338\) 7.79140 24.4178i 0.423796 1.32815i
\(339\) 17.0310i 0.924996i
\(340\) −4.29005 + 2.30448i −0.232661 + 0.124978i
\(341\) 9.23393 0.500045
\(342\) 8.41825 + 8.41825i 0.455207 + 0.455207i
\(343\) 8.40000 0.453558
\(344\) −0.152827 0.152827i −0.00823987 0.00823987i
\(345\) −4.80545 + 15.9600i −0.258717 + 0.859257i
\(346\) −12.3065 12.3065i −0.661603 0.661603i
\(347\) −0.845469 + 0.845469i −0.0453872 + 0.0453872i −0.729436 0.684049i \(-0.760217\pi\)
0.684049 + 0.729436i \(0.260217\pi\)
\(348\) 3.01046 3.01046i 0.161378 0.161378i
\(349\) 1.75292 1.75292i 0.0938316 0.0938316i −0.658633 0.752464i \(-0.728865\pi\)
0.752464 + 0.658633i \(0.228865\pi\)
\(350\) 3.35696 5.06923i 0.179437 0.270962i
\(351\) −2.91134 + 2.12699i −0.155396 + 0.113530i
\(352\) −8.97863 + 8.97863i −0.478562 + 0.478562i
\(353\) 26.6289 1.41731 0.708655 0.705555i \(-0.249302\pi\)
0.708655 + 0.705555i \(0.249302\pi\)
\(354\) 11.3063i 0.600924i
\(355\) 4.13522 + 7.69818i 0.219475 + 0.408577i
\(356\) 13.8583 13.8583i 0.734488 0.734488i
\(357\) 0.711750i 0.0376698i
\(358\) 18.6936i 0.987987i
\(359\) 14.9162 14.9162i 0.787249 0.787249i −0.193793 0.981042i \(-0.562079\pi\)
0.981042 + 0.193793i \(0.0620791\pi\)
\(360\) 0.143388 0.476223i 0.00755720 0.0250992i
\(361\) 17.4618i 0.919043i
\(362\) 26.1043 1.37201
\(363\) −5.93338 + 5.93338i −0.311422 + 0.311422i
\(364\) −4.14669 0.645544i −0.217346 0.0338357i
\(365\) 33.1880 + 9.99269i 1.73714 + 0.523041i
\(366\) −17.5108 + 17.5108i −0.915302 + 0.915302i
\(367\) −18.8082 + 18.8082i −0.981780 + 0.981780i −0.999837 0.0180574i \(-0.994252\pi\)
0.0180574 + 0.999837i \(0.494252\pi\)
\(368\) −22.2054 + 22.2054i −1.15753 + 1.15753i
\(369\) −1.89994 1.89994i −0.0989069 0.0989069i
\(370\) −13.5524 4.08053i −0.704553 0.212136i
\(371\) 1.70679 + 1.70679i 0.0886123 + 0.0886123i
\(372\) 10.7887 0.559370
\(373\) 4.68051 + 4.68051i 0.242348 + 0.242348i 0.817821 0.575473i \(-0.195182\pi\)
−0.575473 + 0.817821i \(0.695182\pi\)
\(374\) 3.67503 0.190032
\(375\) 11.1331 + 1.02693i 0.574910 + 0.0530304i
\(376\) 2.01954i 0.104150i
\(377\) −1.25121 + 8.03719i −0.0644404 + 0.413937i
\(378\) 0.859840 + 0.859840i 0.0442254 + 0.0442254i
\(379\) −0.473536 0.473536i −0.0243239 0.0243239i 0.694840 0.719164i \(-0.255475\pi\)
−0.719164 + 0.694840i \(0.755475\pi\)
\(380\) −22.4475 + 12.0581i −1.15153 + 0.618568i
\(381\) 6.89721i 0.353355i
\(382\) 33.0872i 1.69289i
\(383\) −4.42380 −0.226045 −0.113023 0.993592i \(-0.536053\pi\)
−0.113023 + 0.993592i \(0.536053\pi\)
\(384\) 1.25618 1.25618i 0.0641044 0.0641044i
\(385\) −1.96237 + 1.05412i −0.100011 + 0.0537230i
\(386\) −18.9027 −0.962125
\(387\) 0.687115 + 0.687115i 0.0349280 + 0.0349280i
\(388\) 25.2248i 1.28060i
\(389\) −24.4667 −1.24051 −0.620255 0.784400i \(-0.712971\pi\)
−0.620255 + 0.784400i \(0.712971\pi\)
\(390\) −5.27848 14.9935i −0.267286 0.759225i
\(391\) 8.60210 0.435027
\(392\) 1.47232i 0.0743634i
\(393\) −15.8125 15.8125i −0.797634 0.797634i
\(394\) −24.2852 −1.22347
\(395\) 33.0863 + 9.96207i 1.66475 + 0.501246i
\(396\) 2.15542 2.15542i 0.108314 0.108314i
\(397\) 35.5142 1.78241 0.891204 0.453603i \(-0.149862\pi\)
0.891204 + 0.453603i \(0.149862\pi\)
\(398\) 3.38916i 0.169883i
\(399\) 3.72421i 0.186444i
\(400\) 17.5626 + 11.6304i 0.878132 + 0.581519i
\(401\) −19.7141 19.7141i −0.984476 0.984476i 0.0154049 0.999881i \(-0.495096\pi\)
−0.999881 + 0.0154049i \(0.995096\pi\)
\(402\) 2.32959 + 2.32959i 0.116189 + 0.116189i
\(403\) −16.6437 + 12.1596i −0.829079 + 0.605715i
\(404\) 14.8165i 0.737147i
\(405\) −0.644677 + 2.14112i −0.0320343 + 0.106393i
\(406\) 2.74325 0.136145
\(407\) 3.66667 + 3.66667i 0.181750 + 0.181750i
\(408\) −0.256674 −0.0127073
\(409\) 18.5865 + 18.5865i 0.919045 + 0.919045i 0.996960 0.0779148i \(-0.0248262\pi\)
−0.0779148 + 0.996960i \(0.524826\pi\)
\(410\) 10.4353 5.60554i 0.515365 0.276838i
\(411\) −0.613663 0.613663i −0.0302698 0.0302698i
\(412\) 22.1986 22.1986i 1.09365 1.09365i
\(413\) −2.50094 + 2.50094i −0.123063 + 0.123063i
\(414\) 10.3919 10.3919i 0.510734 0.510734i
\(415\) −3.14797 + 10.4551i −0.154528 + 0.513222i
\(416\) 4.36003 28.0069i 0.213768 1.37315i
\(417\) −8.64899 + 8.64899i −0.423543 + 0.423543i
\(418\) 19.2295 0.940546
\(419\) 14.9331i 0.729531i −0.931099 0.364766i \(-0.881149\pi\)
0.931099 0.364766i \(-0.118851\pi\)
\(420\) −2.29279 + 1.23162i −0.111877 + 0.0600967i
\(421\) 3.10901 3.10901i 0.151524 0.151524i −0.627274 0.778798i \(-0.715830\pi\)
0.778798 + 0.627274i \(0.215830\pi\)
\(422\) 2.83008i 0.137766i
\(423\) 9.07993i 0.441481i
\(424\) −0.615511 + 0.615511i −0.0298919 + 0.0298919i
\(425\) −1.14905 5.65452i −0.0557369 0.274285i
\(426\) 7.70498i 0.373308i
\(427\) −7.74670 −0.374889
\(428\) 2.24093 2.24093i 0.108319 0.108319i
\(429\) −0.895833 + 5.75444i −0.0432512 + 0.277827i
\(430\) −3.77395 + 2.02725i −0.181996 + 0.0977626i
\(431\) −4.51912 + 4.51912i −0.217678 + 0.217678i −0.807519 0.589841i \(-0.799190\pi\)
0.589841 + 0.807519i \(0.299190\pi\)
\(432\) −2.97897 + 2.97897i −0.143326 + 0.143326i
\(433\) −1.03908 + 1.03908i −0.0499352 + 0.0499352i −0.731633 0.681698i \(-0.761242\pi\)
0.681698 + 0.731633i \(0.261242\pi\)
\(434\) 4.91556 + 4.91556i 0.235954 + 0.235954i
\(435\) 2.38714 + 4.44393i 0.114455 + 0.213070i
\(436\) −9.25435 9.25435i −0.443203 0.443203i
\(437\) 45.0102 2.15313
\(438\) −21.6094 21.6094i −1.03254 1.03254i
\(439\) −29.7565 −1.42020 −0.710101 0.704100i \(-0.751351\pi\)
−0.710101 + 0.704100i \(0.751351\pi\)
\(440\) −0.380142 0.707678i −0.0181226 0.0337372i
\(441\) 6.61961i 0.315220i
\(442\) −6.62405 + 4.83945i −0.315074 + 0.230189i
\(443\) −2.16107 2.16107i −0.102675 0.102675i 0.653903 0.756578i \(-0.273130\pi\)
−0.756578 + 0.653903i \(0.773130\pi\)
\(444\) 4.28407 + 4.28407i 0.203313 + 0.203313i
\(445\) 10.9889 + 20.4571i 0.520924 + 0.969759i
\(446\) 44.5823i 2.11103i
\(447\) 0.173833i 0.00822202i
\(448\) −4.36263 −0.206115
\(449\) −7.74049 + 7.74049i −0.365296 + 0.365296i −0.865758 0.500462i \(-0.833163\pi\)
0.500462 + 0.865758i \(0.333163\pi\)
\(450\) −8.21915 5.44291i −0.387455 0.256581i
\(451\) −4.33996 −0.204361
\(452\) 22.7269 + 22.7269i 1.06898 + 1.06898i
\(453\) 4.81367i 0.226166i
\(454\) 48.5997 2.28090
\(455\) 2.14895 4.48413i 0.100744 0.210219i
\(456\) −1.34304 −0.0628936
\(457\) 1.41670i 0.0662706i 0.999451 + 0.0331353i \(0.0105492\pi\)
−0.999451 + 0.0331353i \(0.989451\pi\)
\(458\) −0.833862 0.833862i −0.0389638 0.0389638i
\(459\) 1.15402 0.0538649
\(460\) 14.8851 + 27.7103i 0.694022 + 1.29200i
\(461\) 17.4196 17.4196i 0.811313 0.811313i −0.173517 0.984831i \(-0.555513\pi\)
0.984831 + 0.173517i \(0.0555133\pi\)
\(462\) 1.96410 0.0913782
\(463\) 9.40194i 0.436945i 0.975843 + 0.218473i \(0.0701074\pi\)
−0.975843 + 0.218473i \(0.929893\pi\)
\(464\) 9.50415i 0.441219i
\(465\) −3.68551 + 12.2404i −0.170911 + 0.567636i
\(466\) 23.9969 + 23.9969i 1.11164 + 1.11164i
\(467\) −21.8639 21.8639i −1.01174 1.01174i −0.999930 0.0118107i \(-0.996240\pi\)
−0.0118107 0.999930i \(-0.503760\pi\)
\(468\) −1.04667 + 6.72337i −0.0483825 + 0.310788i
\(469\) 1.03060i 0.0475888i
\(470\) −38.3302 11.5410i −1.76804 0.532346i
\(471\) 6.71851 0.309573
\(472\) −0.901900 0.901900i −0.0415133 0.0415133i
\(473\) 1.56955 0.0721680
\(474\) −21.5432 21.5432i −0.989512 0.989512i
\(475\) −6.01235 29.5871i −0.275866 1.35755i
\(476\) 0.949790 + 0.949790i 0.0435336 + 0.0435336i
\(477\) 2.76736 2.76736i 0.126709 0.126709i
\(478\) 16.2592 16.2592i 0.743679 0.743679i
\(479\) 23.2067 23.2067i 1.06034 1.06034i 0.0622831 0.998059i \(-0.480162\pi\)
0.998059 0.0622831i \(-0.0198382\pi\)
\(480\) −8.31838 15.4856i −0.379680 0.706818i
\(481\) −11.4374 1.78054i −0.521501 0.0811857i
\(482\) −6.96654 + 6.96654i −0.317317 + 0.317317i
\(483\) 4.59734 0.209186
\(484\) 15.8355i 0.719797i
\(485\) 28.6189 + 8.61698i 1.29952 + 0.391277i
\(486\) 1.39413 1.39413i 0.0632390 0.0632390i
\(487\) 28.9645i 1.31251i −0.754541 0.656253i \(-0.772141\pi\)
0.754541 0.656253i \(-0.227859\pi\)
\(488\) 2.79365i 0.126463i
\(489\) −0.441851 + 0.441851i −0.0199812 + 0.0199812i
\(490\) 27.9442 + 8.41381i 1.26239 + 0.380097i
\(491\) 1.65587i 0.0747282i −0.999302 0.0373641i \(-0.988104\pi\)
0.999302 0.0373641i \(-0.0118961\pi\)
\(492\) −5.07072 −0.228606
\(493\) 1.84090 1.84090i 0.0829100 0.0829100i
\(494\) −34.6601 + 25.3223i −1.55943 + 1.13930i
\(495\) 1.70913 + 3.18175i 0.0768198 + 0.143009i
\(496\) −17.0303 + 17.0303i −0.764681 + 0.764681i
\(497\) 1.70433 1.70433i 0.0764497 0.0764497i
\(498\) 6.80755 6.80755i 0.305054 0.305054i
\(499\) −19.9334 19.9334i −0.892342 0.892342i 0.102401 0.994743i \(-0.467347\pi\)
−0.994743 + 0.102401i \(0.967347\pi\)
\(500\) 16.2268 13.4861i 0.725687 0.603116i
\(501\) 10.7891 + 10.7891i 0.482021 + 0.482021i
\(502\) 57.5047 2.56656
\(503\) 20.4695 + 20.4695i 0.912692 + 0.912692i 0.996483 0.0837917i \(-0.0267030\pi\)
−0.0837917 + 0.996483i \(0.526703\pi\)
\(504\) −0.137178 −0.00611040
\(505\) −16.8101 5.06141i −0.748039 0.225230i
\(506\) 23.7378i 1.05527i
\(507\) −5.96301 11.5517i −0.264826 0.513030i
\(508\) −9.20394 9.20394i −0.408359 0.408359i
\(509\) −16.0097 16.0097i −0.709618 0.709618i 0.256837 0.966455i \(-0.417320\pi\)
−0.966455 + 0.256837i \(0.917320\pi\)
\(510\) −1.46681 + 4.87159i −0.0649513 + 0.215718i
\(511\) 9.55993i 0.422906i
\(512\) 31.2448i 1.38084i
\(513\) 6.03836 0.266600
\(514\) −9.35299 + 9.35299i −0.412543 + 0.412543i
\(515\) 17.6024 + 32.7688i 0.775652 + 1.44396i
\(516\) 1.83383 0.0807300
\(517\) 10.3705 + 10.3705i 0.456093 + 0.456093i
\(518\) 3.90381i 0.171524i
\(519\) −8.82739 −0.387480
\(520\) 1.61709 + 0.774962i 0.0709139 + 0.0339843i
\(521\) −30.6396 −1.34235 −0.671174 0.741300i \(-0.734209\pi\)
−0.671174 + 0.741300i \(0.734209\pi\)
\(522\) 4.44785i 0.194677i
\(523\) −5.29306 5.29306i −0.231449 0.231449i 0.581848 0.813297i \(-0.302330\pi\)
−0.813297 + 0.581848i \(0.802330\pi\)
\(524\) −42.2017 −1.84359
\(525\) −0.614101 3.02203i −0.0268016 0.131892i
\(526\) −3.69420 + 3.69420i −0.161075 + 0.161075i
\(527\) 6.59733 0.287384
\(528\) 6.80474i 0.296138i
\(529\) 32.5628i 1.41577i
\(530\) 8.16477 + 15.1996i 0.354655 + 0.660230i
\(531\) 4.05498 + 4.05498i 0.175971 + 0.175971i
\(532\) 4.96975 + 4.96975i 0.215466 + 0.215466i
\(533\) 7.82254 5.71505i 0.338832 0.247546i
\(534\) 20.4752i 0.886046i
\(535\) 1.77694 + 3.30797i 0.0768237 + 0.143016i
\(536\) −0.371660 −0.0160533
\(537\) −6.70440 6.70440i −0.289316 0.289316i
\(538\) −43.5458 −1.87739
\(539\) −7.56046 7.56046i −0.325652 0.325652i
\(540\) 1.99692 + 3.71749i 0.0859337 + 0.159975i
\(541\) −6.80449 6.80449i −0.292548 0.292548i 0.545538 0.838086i \(-0.316325\pi\)
−0.838086 + 0.545538i \(0.816325\pi\)
\(542\) 19.6378 19.6378i 0.843517 0.843517i
\(543\) 9.36222 9.36222i 0.401771 0.401771i
\(544\) −6.41492 + 6.41492i −0.275038 + 0.275038i
\(545\) 13.6609 7.33822i 0.585170 0.314335i
\(546\) −3.54018 + 2.58641i −0.151506 + 0.110688i
\(547\) 11.7879 11.7879i 0.504014 0.504014i −0.408669 0.912683i \(-0.634007\pi\)
0.912683 + 0.408669i \(0.134007\pi\)
\(548\) −1.63780 −0.0699632
\(549\) 12.5604i 0.536063i
\(550\) −15.6039 + 3.17084i −0.665351 + 0.135205i
\(551\) 9.63245 9.63245i 0.410356 0.410356i
\(552\) 1.65791i 0.0705655i
\(553\) 9.53064i 0.405284i
\(554\) −45.0429 + 45.0429i −1.91369 + 1.91369i
\(555\) −6.32398 + 3.39704i −0.268438 + 0.144196i
\(556\) 23.0832i 0.978945i
\(557\) 2.73586 0.115922 0.0579611 0.998319i \(-0.481540\pi\)
0.0579611 + 0.998319i \(0.481540\pi\)
\(558\) 7.97000 7.97000i 0.337397 0.337397i
\(559\) −2.82903 + 2.06685i −0.119655 + 0.0874186i
\(560\) 1.67509 5.56335i 0.0707854 0.235094i
\(561\) 1.31804 1.31804i 0.0556477 0.0556477i
\(562\) −39.4716 + 39.4716i −1.66501 + 1.66501i
\(563\) 10.7281 10.7281i 0.452135 0.452135i −0.443927 0.896063i \(-0.646415\pi\)
0.896063 + 0.443927i \(0.146415\pi\)
\(564\) 12.1167 + 12.1167i 0.510203 + 0.510203i
\(565\) −33.5486 + 18.0212i −1.41140 + 0.758159i
\(566\) −7.20419 7.20419i −0.302815 0.302815i
\(567\) 0.616758 0.0259014
\(568\) 0.614623 + 0.614623i 0.0257890 + 0.0257890i
\(569\) −1.39618 −0.0585311 −0.0292656 0.999572i \(-0.509317\pi\)
−0.0292656 + 0.999572i \(0.509317\pi\)
\(570\) −7.67502 + 25.4905i −0.321471 + 1.06768i
\(571\) 27.2780i 1.14155i −0.821106 0.570775i \(-0.806643\pi\)
0.821106 0.570775i \(-0.193357\pi\)
\(572\) 6.48354 + 8.87441i 0.271090 + 0.371058i
\(573\) 11.8666 + 11.8666i 0.495735 + 0.495735i
\(574\) −2.31032 2.31032i −0.0964309 0.0964309i
\(575\) −36.5237 + 7.42193i −1.52315 + 0.309516i
\(576\) 7.07349i 0.294729i
\(577\) 31.6220i 1.31644i 0.752824 + 0.658221i \(0.228691\pi\)
−0.752824 + 0.658221i \(0.771309\pi\)
\(578\) −30.8914 −1.28491
\(579\) −6.77941 + 6.77941i −0.281743 + 0.281743i
\(580\) 9.11568 + 2.74467i 0.378508 + 0.113966i
\(581\) 3.01164 0.124944
\(582\) −18.6344 18.6344i −0.772421 0.772421i
\(583\) 6.32139i 0.261805i
\(584\) 3.44754 0.142660
\(585\) −7.27048 3.48426i −0.300597 0.144056i
\(586\) 46.3263 1.91372
\(587\) 23.9243i 0.987460i 0.869615 + 0.493730i \(0.164367\pi\)
−0.869615 + 0.493730i \(0.835633\pi\)
\(588\) −8.83350 8.83350i −0.364287 0.364287i
\(589\) 34.5203 1.42238
\(590\) −22.2718 + 11.9637i −0.916916 + 0.492538i
\(591\) −8.70981 + 8.70981i −0.358274 + 0.358274i
\(592\) −13.5250 −0.555873
\(593\) 4.28180i 0.175832i −0.996128 0.0879162i \(-0.971979\pi\)
0.996128 0.0879162i \(-0.0280208\pi\)
\(594\) 3.18456i 0.130664i
\(595\) −1.40204 + 0.753134i −0.0574782 + 0.0308755i
\(596\) 0.231971 + 0.231971i 0.00950189 + 0.00950189i
\(597\) 1.21551 + 1.21551i 0.0497477 + 0.0497477i
\(598\) 31.2590 + 42.7861i 1.27828 + 1.74965i
\(599\) 28.9336i 1.18219i −0.806600 0.591097i \(-0.798695\pi\)
0.806600 0.591097i \(-0.201305\pi\)
\(600\) 1.08982 0.221460i 0.0444916 0.00904106i
\(601\) −42.3729 −1.72843 −0.864214 0.503124i \(-0.832184\pi\)
−0.864214 + 0.503124i \(0.832184\pi\)
\(602\) 0.835530 + 0.835530i 0.0340537 + 0.0340537i
\(603\) 1.67100 0.0680484
\(604\) 6.42357 + 6.42357i 0.261371 + 0.261371i
\(605\) −17.9663 5.40953i −0.730433 0.219929i
\(606\) 10.9454 + 10.9454i 0.444627 + 0.444627i
\(607\) −17.6337 + 17.6337i −0.715728 + 0.715728i −0.967727 0.251999i \(-0.918912\pi\)
0.251999 + 0.967727i \(0.418912\pi\)
\(608\) −33.5659 + 33.5659i −1.36128 + 1.36128i
\(609\) 0.983858 0.983858i 0.0398679 0.0398679i
\(610\) −53.0226 15.9647i −2.14682 0.646394i
\(611\) −32.3485 5.03592i −1.30868 0.203731i
\(612\) 1.53997 1.53997i 0.0622497 0.0622497i
\(613\) 9.49560 0.383524 0.191762 0.981441i \(-0.438580\pi\)
0.191762 + 0.981441i \(0.438580\pi\)
\(614\) 45.5955i 1.84008i
\(615\) 1.73220 5.75301i 0.0698489 0.231984i
\(616\) −0.156675 + 0.156675i −0.00631263 + 0.00631263i
\(617\) 18.3651i 0.739350i 0.929161 + 0.369675i \(0.120531\pi\)
−0.929161 + 0.369675i \(0.879469\pi\)
\(618\) 32.7977i 1.31932i
\(619\) 7.70916 7.70916i 0.309857 0.309857i −0.534997 0.844854i \(-0.679687\pi\)
0.844854 + 0.534997i \(0.179687\pi\)
\(620\) 11.4160 + 21.2523i 0.458479 + 0.853511i
\(621\) 7.45404i 0.299120i
\(622\) 44.3543 1.77845
\(623\) 4.52907 4.52907i 0.181453 0.181453i
\(624\) −8.96079 12.2652i −0.358719 0.491000i
\(625\) 9.75750 + 23.0172i 0.390300 + 0.920688i
\(626\) −37.2053 + 37.2053i −1.48702 + 1.48702i
\(627\) 6.89660 6.89660i 0.275424 0.275424i
\(628\) 8.96548 8.96548i 0.357762 0.357762i
\(629\) 2.61971 + 2.61971i 0.104455 + 0.104455i
\(630\) −0.783926 + 2.60360i −0.0312323 + 0.103730i
\(631\) 6.10664 + 6.10664i 0.243101 + 0.243101i 0.818132 0.575031i \(-0.195010\pi\)
−0.575031 + 0.818132i \(0.695010\pi\)
\(632\) 3.43698 0.136716
\(633\) −1.01500 1.01500i −0.0403427 0.0403427i
\(634\) 45.9504 1.82493
\(635\) 13.5865 7.29824i 0.539164 0.289622i
\(636\) 7.38578i 0.292865i
\(637\) 23.5833 + 3.67137i 0.934404 + 0.145465i
\(638\) −5.08003 5.08003i −0.201120 0.201120i
\(639\) −2.76337 2.76337i −0.109317 0.109317i
\(640\) 3.80373 + 1.14528i 0.150356 + 0.0452711i
\(641\) 4.53786i 0.179235i −0.995976 0.0896174i \(-0.971436\pi\)
0.995976 0.0896174i \(-0.0285644\pi\)
\(642\) 3.31089i 0.130670i
\(643\) −34.3287 −1.35379 −0.676896 0.736078i \(-0.736675\pi\)
−0.676896 + 0.736078i \(0.736675\pi\)
\(644\) 6.13489 6.13489i 0.241749 0.241749i
\(645\) −0.626450 + 2.08058i −0.0246665 + 0.0819229i
\(646\) 13.7388 0.540547
\(647\) −21.2739 21.2739i −0.836365 0.836365i 0.152014 0.988378i \(-0.451424\pi\)
−0.988378 + 0.152014i \(0.951424\pi\)
\(648\) 0.222418i 0.00873740i
\(649\) 9.26263 0.363590
\(650\) 23.9496 26.2631i 0.939382 1.03012i
\(651\) 3.52590 0.138191
\(652\) 1.17925i 0.0461830i
\(653\) −5.83160 5.83160i −0.228208 0.228208i 0.583736 0.811944i \(-0.301590\pi\)
−0.811944 + 0.583736i \(0.801590\pi\)
\(654\) −13.6730 −0.534656
\(655\) 14.4164 47.8802i 0.563296 1.87083i
\(656\) 8.00425 8.00425i 0.312513 0.312513i
\(657\) −15.5003 −0.604724
\(658\) 11.0412i 0.430430i
\(659\) 15.9399i 0.620932i 0.950585 + 0.310466i \(0.100485\pi\)
−0.950585 + 0.310466i \(0.899515\pi\)
\(660\) 6.52660 + 1.96512i 0.254048 + 0.0764921i
\(661\) 17.8217 + 17.8217i 0.693184 + 0.693184i 0.962931 0.269747i \(-0.0869401\pi\)
−0.269747 + 0.962931i \(0.586940\pi\)
\(662\) −26.5239 26.5239i −1.03088 1.03088i
\(663\) −0.640042 + 4.11135i −0.0248572 + 0.159672i
\(664\) 1.08607i 0.0421477i
\(665\) −7.33615 + 3.94075i −0.284484 + 0.152816i
\(666\) 6.32956 0.245266
\(667\) −11.8908 11.8908i −0.460412 0.460412i
\(668\) 28.7948 1.11411
\(669\) −15.9893 15.9893i −0.618182 0.618182i
\(670\) −2.12391 + 7.05399i −0.0820539 + 0.272520i
\(671\) 14.3456 + 14.3456i 0.553805 + 0.553805i
\(672\) −3.42842 + 3.42842i −0.132254 + 0.132254i
\(673\) 15.5332 15.5332i 0.598760 0.598760i −0.341223 0.939982i \(-0.610841\pi\)
0.939982 + 0.341223i \(0.110841\pi\)
\(674\) 29.1644 29.1644i 1.12337 1.12337i
\(675\) −4.89986 + 0.995692i −0.188596 + 0.0383242i
\(676\) −23.3724 7.45784i −0.898940 0.286840i
\(677\) 15.6149 15.6149i 0.600128 0.600128i −0.340219 0.940346i \(-0.610501\pi\)
0.940346 + 0.340219i \(0.110501\pi\)
\(678\) 33.5782 1.28956
\(679\) 8.24380i 0.316368i
\(680\) −0.271598 0.505611i −0.0104153 0.0193893i
\(681\) 17.4301 17.4301i 0.667924 0.667924i
\(682\) 18.2056i 0.697127i
\(683\) 18.7071i 0.715807i 0.933759 + 0.357904i \(0.116508\pi\)
−0.933759 + 0.357904i \(0.883492\pi\)
\(684\) 8.05786 8.05786i 0.308100 0.308100i
\(685\) 0.559483 1.85817i 0.0213768 0.0709971i
\(686\) 16.5614i 0.632318i
\(687\) −0.598124 −0.0228198
\(688\) −2.89474 + 2.89474i −0.110361 + 0.110361i
\(689\) 8.32428 + 11.3940i 0.317130 + 0.434075i
\(690\) 31.4667 + 9.47441i 1.19792 + 0.360685i
\(691\) −14.7577 + 14.7577i −0.561410 + 0.561410i −0.929708 0.368298i \(-0.879941\pi\)
0.368298 + 0.929708i \(0.379941\pi\)
\(692\) −11.7797 + 11.7797i −0.447796 + 0.447796i
\(693\) 0.704419 0.704419i 0.0267587 0.0267587i
\(694\) 1.66692 + 1.66692i 0.0632755 + 0.0632755i
\(695\) −26.1891 7.88538i −0.993410 0.299109i
\(696\) 0.354803 + 0.354803i 0.0134488 + 0.0134488i
\(697\) −3.10075 −0.117449
\(698\) −3.45605 3.45605i −0.130813 0.130813i
\(699\) 17.2129 0.651050
\(700\) −4.85221 3.21324i −0.183396 0.121449i
\(701\) 31.8379i 1.20250i 0.799060 + 0.601251i \(0.205331\pi\)
−0.799060 + 0.601251i \(0.794669\pi\)
\(702\) 4.19356 + 5.73999i 0.158276 + 0.216642i
\(703\) 13.7076 + 13.7076i 0.516990 + 0.516990i
\(704\) 8.07886 + 8.07886i 0.304483 + 0.304483i
\(705\) −17.8861 + 9.60788i −0.673631 + 0.361854i
\(706\) 52.5013i 1.97591i
\(707\) 4.84222i 0.182110i
\(708\) 10.8223 0.406726
\(709\) −23.4261 + 23.4261i −0.879785 + 0.879785i −0.993512 0.113727i \(-0.963721\pi\)
0.113727 + 0.993512i \(0.463721\pi\)
\(710\) 15.1777 8.15298i 0.569609 0.305976i
\(711\) −15.4528 −0.579525
\(712\) 1.63329 + 1.63329i 0.0612103 + 0.0612103i
\(713\) 42.6135i 1.59589i
\(714\) 1.40328 0.0525165
\(715\) −12.2833 + 4.32436i −0.459371 + 0.161722i
\(716\) −17.8933 −0.668704
\(717\) 11.6626i 0.435549i
\(718\) −29.4088 29.4088i −1.09753 1.09753i
\(719\) 3.34392 0.124707 0.0623537 0.998054i \(-0.480139\pi\)
0.0623537 + 0.998054i \(0.480139\pi\)
\(720\) −9.02031 2.71596i −0.336167 0.101218i
\(721\) 7.25480 7.25480i 0.270183 0.270183i
\(722\) 34.4277 1.28126
\(723\) 4.99706i 0.185843i
\(724\) 24.9867i 0.928624i
\(725\) −6.22796 + 9.40464i −0.231301 + 0.349279i
\(726\) 11.6982 + 11.6982i 0.434162 + 0.434162i
\(727\) −25.9092 25.9092i −0.960918 0.960918i 0.0383469 0.999264i \(-0.487791\pi\)
−0.999264 + 0.0383469i \(0.987791\pi\)
\(728\) 0.0760818 0.488716i 0.00281978 0.0181130i
\(729\) 1.00000i 0.0370370i
\(730\) 19.7015 65.4333i 0.729187 2.42179i
\(731\) 1.12139 0.0414761
\(732\) 16.7611 + 16.7611i 0.619508 + 0.619508i
\(733\) 36.2969 1.34066 0.670329 0.742064i \(-0.266153\pi\)
0.670329 + 0.742064i \(0.266153\pi\)
\(734\) 37.0821 + 37.0821i 1.36873 + 1.36873i
\(735\) 13.0397 7.00450i 0.480976 0.258365i
\(736\) 41.4353 + 41.4353i 1.52733 + 1.52733i
\(737\) 1.90850 1.90850i 0.0703005 0.0703005i
\(738\) −3.74591 + 3.74591i −0.137889 + 0.137889i
\(739\) 15.9043 15.9043i 0.585049 0.585049i −0.351238 0.936286i \(-0.614239\pi\)
0.936286 + 0.351238i \(0.114239\pi\)
\(740\) −3.90583 + 12.9722i −0.143581 + 0.476866i
\(741\) −3.34900 + 21.5125i −0.123029 + 0.790282i
\(742\) 3.36511 3.36511i 0.123537 0.123537i
\(743\) −16.7508 −0.614527 −0.307263 0.951625i \(-0.599413\pi\)
−0.307263 + 0.951625i \(0.599413\pi\)
\(744\) 1.27153i 0.0466164i
\(745\) −0.342426 + 0.183941i −0.0125455 + 0.00673906i
\(746\) 9.22807 9.22807i 0.337864 0.337864i
\(747\) 4.88302i 0.178660i
\(748\) 3.51770i 0.128620i
\(749\) 0.732364 0.732364i 0.0267600 0.0267600i
\(750\) 2.02469 21.9499i 0.0739313 0.801498i
\(751\) 10.3303i 0.376958i 0.982077 + 0.188479i \(0.0603558\pi\)
−0.982077 + 0.188479i \(0.939644\pi\)
\(752\) −38.2528 −1.39494
\(753\) 20.6239 20.6239i 0.751576 0.751576i
\(754\) 15.8461 + 2.46687i 0.577081 + 0.0898381i
\(755\) −9.48223 + 5.09356i −0.345094 + 0.185373i
\(756\) 0.823029 0.823029i 0.0299333 0.0299333i
\(757\) −0.186517 + 0.186517i −0.00677908 + 0.00677908i −0.710488 0.703709i \(-0.751526\pi\)
0.703709 + 0.710488i \(0.251526\pi\)
\(758\) −0.933621 + 0.933621i −0.0339106 + 0.0339106i
\(759\) −8.51350 8.51350i −0.309020 0.309020i
\(760\) −1.42113 2.64560i −0.0515498 0.0959658i
\(761\) −5.78721 5.78721i −0.209786 0.209786i 0.594390 0.804177i \(-0.297393\pi\)
−0.804177 + 0.594390i \(0.797393\pi\)
\(762\) −13.5985 −0.492622
\(763\) −3.02444 3.02444i −0.109492 0.109492i
\(764\) 31.6707 1.14580
\(765\) 1.22112 + 2.27325i 0.0441496 + 0.0821895i
\(766\) 8.72194i 0.315136i
\(767\) −16.6954 + 12.1974i −0.602836 + 0.440424i
\(768\) −12.4801 12.4801i −0.450337 0.450337i
\(769\) 29.1513 + 29.1513i 1.05122 + 1.05122i 0.998615 + 0.0526059i \(0.0167527\pi\)
0.0526059 + 0.998615i \(0.483247\pi\)
\(770\) 2.07830 + 3.86899i 0.0748968 + 0.139429i
\(771\) 6.70884i 0.241613i
\(772\) 18.0935i 0.651199i
\(773\) 40.4990 1.45665 0.728325 0.685232i \(-0.240299\pi\)
0.728325 + 0.685232i \(0.240299\pi\)
\(774\) 1.35471 1.35471i 0.0486941 0.0486941i
\(775\) −28.0117 + 5.69220i −1.00621 + 0.204470i
\(776\) 2.97292 0.106721
\(777\) 1.40009 + 1.40009i 0.0502279 + 0.0502279i
\(778\) 48.2384i 1.72943i
\(779\) −16.2246 −0.581306
\(780\) −14.3516 + 5.05250i −0.513870 + 0.180909i
\(781\) −6.31226 −0.225870
\(782\) 16.9599i 0.606483i
\(783\) −1.59521 1.59521i −0.0570081 0.0570081i
\(784\) 27.8877 0.995990
\(785\) 7.10916 + 13.2345i 0.253737 + 0.472360i
\(786\) −31.1758 + 31.1758i −1.11200 + 1.11200i
\(787\) 6.05284 0.215761 0.107880 0.994164i \(-0.465594\pi\)
0.107880 + 0.994164i \(0.465594\pi\)
\(788\) 23.2455i 0.828087i
\(789\) 2.64983i 0.0943363i
\(790\) 19.6412 65.2328i 0.698802 2.32088i
\(791\) 7.42745 + 7.42745i 0.264090 + 0.264090i
\(792\) 0.254031 + 0.254031i 0.00902658 + 0.00902658i
\(793\) −44.7480 6.96623i −1.58905 0.247378i
\(794\) 70.0197i 2.48491i
\(795\) 8.37958 + 2.52304i 0.297193 + 0.0894829i
\(796\) 3.24407 0.114983
\(797\) −16.7482 16.7482i −0.593253 0.593253i 0.345256 0.938509i \(-0.387792\pi\)
−0.938509 + 0.345256i \(0.887792\pi\)
\(798\) 7.34263 0.259926
\(799\) 7.40935 + 7.40935i 0.262124 + 0.262124i
\(800\) 21.7024 32.7720i 0.767294 1.15867i
\(801\) −7.34335 7.34335i −0.259465 0.259465i
\(802\) −38.8683 + 38.8683i −1.37249 + 1.37249i
\(803\) −17.7034 + 17.7034i −0.624739 + 0.624739i
\(804\) 2.22986 2.22986i 0.0786409 0.0786409i
\(805\) 4.86465 + 9.05610i 0.171456 + 0.319186i
\(806\) 23.9739 + 32.8146i 0.844445 + 1.15584i
\(807\) −15.6176 + 15.6176i −0.549764 + 0.549764i
\(808\) −1.74622 −0.0614318
\(809\) 18.1580i 0.638401i 0.947687 + 0.319200i \(0.103414\pi\)
−0.947687 + 0.319200i \(0.896586\pi\)
\(810\) 4.22142 + 1.27104i 0.148326 + 0.0446599i
\(811\) −13.0477 + 13.0477i −0.458168 + 0.458168i −0.898054 0.439885i \(-0.855019\pi\)
0.439885 + 0.898054i \(0.355019\pi\)
\(812\) 2.62581i 0.0921478i
\(813\) 14.0861i 0.494021i
\(814\) 7.22919 7.22919i 0.253383 0.253383i
\(815\) −1.33792 0.402840i −0.0468654 0.0141109i
\(816\) 4.86176i 0.170196i
\(817\) 5.86764 0.205283
\(818\) 36.6451 36.6451i 1.28127 1.28127i
\(819\) −0.342067 + 2.19729i −0.0119528 + 0.0767794i
\(820\) −5.36556 9.98859i −0.187373 0.348817i
\(821\) −5.41615 + 5.41615i −0.189025 + 0.189025i −0.795274 0.606250i \(-0.792673\pi\)
0.606250 + 0.795274i \(0.292673\pi\)
\(822\) −1.20989 + 1.20989i −0.0421999 + 0.0421999i
\(823\) −27.4743 + 27.4743i −0.957694 + 0.957694i −0.999141 0.0414467i \(-0.986803\pi\)
0.0414467 + 0.999141i \(0.486803\pi\)
\(824\) 2.61626 + 2.61626i 0.0911417 + 0.0911417i
\(825\) −4.45907 + 6.73349i −0.155245 + 0.234430i
\(826\) 4.93084 + 4.93084i 0.171566 + 0.171566i
\(827\) 4.15065 0.144332 0.0721661 0.997393i \(-0.477009\pi\)
0.0721661 + 0.997393i \(0.477009\pi\)
\(828\) −9.94700 9.94700i −0.345682 0.345682i
\(829\) −20.2410 −0.702998 −0.351499 0.936188i \(-0.614328\pi\)
−0.351499 + 0.936188i \(0.614328\pi\)
\(830\) 20.6133 + 6.20652i 0.715497 + 0.215432i
\(831\) 32.3090i 1.12079i
\(832\) −25.2003 3.92310i −0.873663 0.136009i
\(833\) −5.40169 5.40169i −0.187158 0.187158i
\(834\) 17.0523 + 17.0523i 0.590473 + 0.590473i
\(835\) −9.83652 + 32.6693i −0.340407 + 1.13057i
\(836\) 18.4063i 0.636594i
\(837\) 5.71683i 0.197603i
\(838\) −29.4421 −1.01706
\(839\) −10.7010 + 10.7010i −0.369441 + 0.369441i −0.867273 0.497833i \(-0.834129\pi\)
0.497833 + 0.867273i \(0.334129\pi\)
\(840\) −0.145154 0.270221i −0.00500830 0.00932351i
\(841\) 23.9106 0.824504
\(842\) −6.12971 6.12971i −0.211244 0.211244i
\(843\) 28.3127i 0.975143i
\(844\) −2.70892 −0.0932450
\(845\) 16.4455 23.9697i 0.565743 0.824582i
\(846\) 17.9019 0.615482
\(847\) 5.17526i 0.177824i
\(848\) 11.6586 + 11.6586i 0.400358 + 0.400358i
\(849\) −5.16753 −0.177349
\(850\) −11.1484 + 2.26545i −0.382388 + 0.0777045i
\(851\) 16.9213 16.9213i 0.580054 0.580054i
\(852\) −7.37512 −0.252668
\(853\) 20.6709i 0.707757i −0.935291 0.353879i \(-0.884863\pi\)
0.935291 0.353879i \(-0.115137\pi\)
\(854\) 15.2734i 0.522644i
\(855\) 6.38946 + 11.8947i 0.218515 + 0.406790i
\(856\) 0.264108 + 0.264108i 0.00902703 + 0.00902703i
\(857\) 20.4633 + 20.4633i 0.699013 + 0.699013i 0.964198 0.265185i \(-0.0854330\pi\)
−0.265185 + 0.964198i \(0.585433\pi\)
\(858\) 11.3454 + 1.76622i 0.387326 + 0.0602978i
\(859\) 22.8410i 0.779325i 0.920958 + 0.389663i \(0.127408\pi\)
−0.920958 + 0.389663i \(0.872592\pi\)
\(860\) 1.94046 + 3.61239i 0.0661691 + 0.123181i
\(861\) −1.65718 −0.0564765
\(862\) 8.90988 + 8.90988i 0.303472 + 0.303472i
\(863\) 20.7883 0.707644 0.353822 0.935313i \(-0.384882\pi\)
0.353822 + 0.935313i \(0.384882\pi\)
\(864\) 5.55877 + 5.55877i 0.189113 + 0.189113i
\(865\) −9.34066 17.3887i −0.317592 0.591233i
\(866\) 2.04865 + 2.04865i 0.0696161 + 0.0696161i
\(867\) −11.0791 + 11.0791i −0.376267 + 0.376267i
\(868\) 4.70512 4.70512i 0.159702 0.159702i
\(869\) −17.6491 + 17.6491i −0.598706 + 0.598706i
\(870\) 8.76163 4.70647i 0.297047 0.159564i
\(871\) −0.926771 + 5.95317i −0.0314024 + 0.201715i
\(872\) 1.09069 1.09069i 0.0369354 0.0369354i
\(873\) −13.3663 −0.452382
\(874\) 88.7419i 3.00174i
\(875\) 5.30315 4.40743i 0.179279 0.148998i
\(876\) −20.6843 + 20.6843i −0.698857 + 0.698857i
\(877\) 30.0306i 1.01406i −0.861928 0.507031i \(-0.830743\pi\)
0.861928 0.507031i \(-0.169257\pi\)
\(878\) 58.6678i 1.97994i
\(879\) 16.6148 16.6148i 0.560403 0.560403i
\(880\) −13.4044 + 7.20040i −0.451861 + 0.242725i
\(881\) 10.2712i 0.346047i −0.984918 0.173023i \(-0.944646\pi\)
0.984918 0.173023i \(-0.0553536\pi\)
\(882\) −13.0512 −0.439457
\(883\) −8.61028 + 8.61028i −0.289759 + 0.289759i −0.836985 0.547226i \(-0.815684\pi\)
0.547226 + 0.836985i \(0.315684\pi\)
\(884\) 4.63226 + 6.34046i 0.155800 + 0.213253i
\(885\) −3.69697 + 12.2785i −0.124272 + 0.412736i
\(886\) −4.26075 + 4.26075i −0.143143 + 0.143143i
\(887\) 30.1903 30.1903i 1.01369 1.01369i 0.0137874 0.999905i \(-0.495611\pi\)
0.999905 0.0137874i \(-0.00438882\pi\)
\(888\) −0.504906 + 0.504906i −0.0169436 + 0.0169436i
\(889\) −3.00797 3.00797i −0.100884 0.100884i
\(890\) 40.3331 21.6657i 1.35197 0.726235i
\(891\) −1.14213 1.14213i −0.0382628 0.0382628i
\(892\) −42.6737 −1.42882
\(893\) 38.7692 + 38.7692i 1.29736 + 1.29736i
\(894\) 0.342729 0.0114626
\(895\) 6.11247 20.3009i 0.204317 0.678585i
\(896\) 1.09568i 0.0366041i
\(897\) 26.5561 + 4.13417i 0.886681 + 0.138036i
\(898\) 15.2611 + 15.2611i 0.509270 + 0.509270i
\(899\) −9.11954 9.11954i −0.304154 0.304154i
\(900\) −5.20989 + 7.86728i −0.173663 + 0.262243i
\(901\) 4.51641i 0.150464i
\(902\) 8.55665i 0.284905i
\(903\) 0.599321 0.0199441
\(904\) −2.67852 + 2.67852i −0.0890862 + 0.0890862i
\(905\) 28.3488 + 8.53564i 0.942346 + 0.283734i
\(906\) 9.49061 0.315304
\(907\) 2.97313 + 2.97313i 0.0987211 + 0.0987211i 0.754742 0.656021i \(-0.227762\pi\)
−0.656021 + 0.754742i \(0.727762\pi\)
\(908\) 46.5191i 1.54379i
\(909\) 7.85108 0.260404
\(910\) −8.84089 4.23685i −0.293073 0.140450i
\(911\) −3.49551 −0.115811 −0.0579057 0.998322i \(-0.518442\pi\)
−0.0579057 + 0.998322i \(0.518442\pi\)
\(912\) 25.4390i 0.842369i
\(913\) −5.57705 5.57705i −0.184573 0.184573i
\(914\) 2.79317 0.0923898
\(915\) −24.7421 + 13.2907i −0.817948 + 0.439376i
\(916\) −0.798163 + 0.798163i −0.0263720 + 0.0263720i
\(917\) −13.7921 −0.455455
\(918\) 2.27526i 0.0750946i
\(919\) 16.6055i 0.547766i 0.961763 + 0.273883i \(0.0883081\pi\)
−0.961763 + 0.273883i \(0.911692\pi\)
\(920\) −3.26585 + 1.75431i −0.107672 + 0.0578379i
\(921\) 16.3527 + 16.3527i 0.538839 + 0.538839i
\(922\) −34.3445 34.3445i −1.13108 1.13108i
\(923\) 11.3775 8.31227i 0.374495 0.273602i
\(924\) 1.88001i 0.0618479i
\(925\) −13.3834 8.86276i −0.440042 0.291406i
\(926\) 18.5368 0.609158
\(927\) −11.7628 11.7628i −0.386341 0.386341i
\(928\) 17.7348 0.582174
\(929\) −21.1479 21.1479i −0.693841 0.693841i 0.269234 0.963075i \(-0.413230\pi\)
−0.963075 + 0.269234i \(0.913230\pi\)
\(930\) 24.1332 + 7.26634i 0.791357 + 0.238273i
\(931\) −28.2642 28.2642i −0.926321 0.926321i
\(932\) 22.9696 22.9696i 0.752394 0.752394i
\(933\) 15.9075 15.9075i 0.520789 0.520789i
\(934\) −43.1068 + 43.1068i −1.41050 + 1.41050i
\(935\) 3.99102 + 1.20167i 0.130520 + 0.0392989i
\(936\) −0.792395 0.123358i −0.0259002 0.00403207i
\(937\) 8.85950 8.85950i 0.289427 0.289427i −0.547427 0.836854i \(-0.684392\pi\)
0.836854 + 0.547427i \(0.184392\pi\)
\(938\) 2.03193 0.0663449
\(939\) 26.6871i 0.870901i
\(940\) −11.0469 + 36.6892i −0.360310 + 1.19667i
\(941\) −19.6731 + 19.6731i −0.641323 + 0.641323i −0.950881 0.309557i \(-0.899819\pi\)
0.309557 + 0.950881i \(0.399819\pi\)
\(942\) 13.2462i 0.431584i
\(943\) 20.0284i 0.652215i
\(944\) −17.0832 + 17.0832i −0.556011 + 0.556011i
\(945\) 0.652619 + 1.21492i 0.0212297 + 0.0395215i
\(946\) 3.09452i 0.100612i
\(947\) −40.3886 −1.31245 −0.656227 0.754564i \(-0.727849\pi\)
−0.656227 + 0.754564i \(0.727849\pi\)
\(948\) −20.6209 + 20.6209i −0.669736 + 0.669736i
\(949\) 8.59678 55.2220i 0.279063 1.79258i
\(950\) −58.3338 + 11.8539i −1.89260 + 0.384592i
\(951\) 16.4800 16.4800i 0.534400 0.534400i
\(952\) −0.111939 + 0.111939i −0.00362797 + 0.00362797i
\(953\) −37.7716 + 37.7716i −1.22354 + 1.22354i −0.257176 + 0.966365i \(0.582792\pi\)
−0.966365 + 0.257176i \(0.917208\pi\)
\(954\) −5.45612 5.45612i −0.176648 0.176648i
\(955\) −10.8189 + 35.9321i −0.350092 + 1.16274i
\(956\) −15.5631 15.5631i −0.503348 0.503348i
\(957\) −3.64388 −0.117790
\(958\) −45.7542 45.7542i −1.47825 1.47825i
\(959\) −0.535254 −0.0172842
\(960\) −13.9338 + 7.48478i −0.449710 + 0.241570i
\(961\) 1.68217i 0.0542634i
\(962\) −3.51051 + 22.5500i −0.113183 + 0.727040i
\(963\) −1.18744 1.18744i −0.0382648 0.0382648i
\(964\) 6.66830 + 6.66830i 0.214771 + 0.214771i
\(965\) −20.5281 6.18087i −0.660822 0.198969i
\(966\) 9.06410i 0.291633i
\(967\) 2.41199i 0.0775644i 0.999248 + 0.0387822i \(0.0123479\pi\)
−0.999248 + 0.0387822i \(0.987652\pi\)
\(968\) −1.86633 −0.0599860
\(969\) 4.92739 4.92739i 0.158290 0.158290i
\(970\) 16.9892 56.4250i 0.545490 1.81170i
\(971\) 43.9182 1.40940 0.704701 0.709505i \(-0.251081\pi\)
0.704701 + 0.709505i \(0.251081\pi\)
\(972\) −1.33444 1.33444i −0.0428023 0.0428023i
\(973\) 7.54389i 0.241846i
\(974\) −57.1062 −1.82980
\(975\) −0.829731 18.0087i −0.0265726 0.576738i
\(976\) −52.9155 −1.69378
\(977\) 0.655019i 0.0209559i 0.999945 + 0.0104780i \(0.00333530\pi\)
−0.999945 + 0.0104780i \(0.996665\pi\)
\(978\) 0.871151 + 0.871151i 0.0278563 + 0.0278563i
\(979\) −16.7741 −0.536104
\(980\) 8.05360 26.7478i 0.257263 0.854428i
\(981\) −4.90378 + 4.90378i −0.156566 + 0.156566i
\(982\) −3.26470 −0.104181
\(983\) 21.4040i 0.682681i −0.939940 0.341340i \(-0.889119\pi\)
0.939940 0.341340i \(-0.110881\pi\)
\(984\) 0.597619i 0.0190514i
\(985\) −26.3733 7.94083i −0.840323 0.253016i
\(986\) −3.62951 3.62951i −0.115587 0.115587i
\(987\) 3.95988 + 3.95988i 0.126044 + 0.126044i
\(988\) 24.2382 + 33.1763i 0.771119 + 1.05548i
\(989\) 7.24330i 0.230323i
\(990\) 6.27312 3.36972i 0.199373 0.107097i
\(991\) 43.0224 1.36665 0.683326 0.730113i \(-0.260533\pi\)
0.683326 + 0.730113i \(0.260533\pi\)
\(992\) 31.7786 + 31.7786i 1.00897 + 1.00897i
\(993\) −19.0254 −0.603754
\(994\) −3.36025 3.36025i −0.106581 0.106581i
\(995\) −1.10820 + 3.68058i −0.0351322 + 0.116682i
\(996\) −6.51611 6.51611i −0.206471 0.206471i
\(997\) 25.7164 25.7164i 0.814448 0.814448i −0.170849 0.985297i \(-0.554651\pi\)
0.985297 + 0.170849i \(0.0546511\pi\)
\(998\) −39.3006 + 39.3006i −1.24404 + 1.24404i
\(999\) 2.27008 2.27008i 0.0718221 0.0718221i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 195.2.k.a.148.3 yes 28
3.2 odd 2 585.2.n.g.343.12 28
5.2 odd 4 195.2.t.a.187.12 yes 28
5.3 odd 4 975.2.t.d.382.3 28
5.4 even 2 975.2.k.d.343.12 28
13.8 odd 4 195.2.t.a.73.12 yes 28
15.2 even 4 585.2.w.g.577.3 28
39.8 even 4 585.2.w.g.73.3 28
65.8 even 4 975.2.k.d.307.3 28
65.34 odd 4 975.2.t.d.268.3 28
65.47 even 4 inner 195.2.k.a.112.12 28
195.47 odd 4 585.2.n.g.307.3 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.k.a.112.12 28 65.47 even 4 inner
195.2.k.a.148.3 yes 28 1.1 even 1 trivial
195.2.t.a.73.12 yes 28 13.8 odd 4
195.2.t.a.187.12 yes 28 5.2 odd 4
585.2.n.g.307.3 28 195.47 odd 4
585.2.n.g.343.12 28 3.2 odd 2
585.2.w.g.73.3 28 39.8 even 4
585.2.w.g.577.3 28 15.2 even 4
975.2.k.d.307.3 28 65.8 even 4
975.2.k.d.343.12 28 5.4 even 2
975.2.t.d.268.3 28 65.34 odd 4
975.2.t.d.382.3 28 5.3 odd 4