Properties

Label 1936.2.e.f
Level $1936$
Weight $2$
Character orbit 1936.e
Analytic conductor $15.459$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1936,2,Mod(1935,1936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1936.1935"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1936, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1936 = 2^{4} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1936.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.4590378313\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: 16.0.4526322734619140625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} + 7 x^{14} - 6 x^{13} + 3 x^{12} + 6 x^{11} + 14 x^{10} - 48 x^{9} + 113 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: no (minimal twist has level 176)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{13} + \beta_{4}) q^{3} + (\beta_{12} + \beta_{5}) q^{5} + ( - \beta_{10} + \beta_1) q^{7} + ( - \beta_{12} - \beta_{9} + \beta_{5}) q^{9} + (\beta_{14} + \beta_{7}) q^{13} + ( - \beta_{13} - \beta_{8} - \beta_{2}) q^{15}+ \cdots + (4 \beta_{9} + 9 \beta_{5} + 4) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{5} - 8 q^{9} + 28 q^{25} + 44 q^{37} - 56 q^{45} + 28 q^{49} + 36 q^{53} + 48 q^{69} + 48 q^{81} + 52 q^{89} - 128 q^{93} - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 3 x^{15} + 7 x^{14} - 6 x^{13} + 3 x^{12} + 6 x^{11} + 14 x^{10} - 48 x^{9} + 113 x^{8} + \cdots + 256 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{14} - 2 \nu^{13} + \nu^{12} + 10 \nu^{11} - 24 \nu^{10} + 35 \nu^{9} - 13 \nu^{8} - 12 \nu^{7} + \cdots + 48 ) / 16 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 6 \nu^{15} + 105 \nu^{14} - 315 \nu^{13} + 1035 \nu^{12} - 1350 \nu^{11} + 1519 \nu^{10} + \cdots - 19568 ) / 3824 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 33 \nu^{15} - 936 \nu^{14} + 2808 \nu^{13} - 6529 \nu^{12} + 5513 \nu^{11} - 2499 \nu^{10} + \cdots - 66368 ) / 15296 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 85 \nu^{15} - 544 \nu^{14} + 915 \nu^{13} - 992 \nu^{12} - 244 \nu^{11} + 49 \nu^{10} + 1119 \nu^{9} + \cdots - 24192 ) / 7648 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - \nu^{15} - 9 \nu^{12} + 9 \nu^{11} - 27 \nu^{10} + 18 \nu^{9} - 54 \nu^{8} + 27 \nu^{7} - 99 \nu^{6} + \cdots - 320 ) / 64 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{15} - 8 \nu^{14} + 12 \nu^{13} - 15 \nu^{12} - 17 \nu^{11} + 31 \nu^{10} - 30 \nu^{9} - 110 \nu^{8} + \cdots - 704 ) / 64 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 289 \nu^{15} + 158 \nu^{14} - 474 \nu^{13} + 2411 \nu^{12} - 973 \nu^{11} + 549 \nu^{10} + \cdots + 21760 ) / 15296 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 429 \nu^{15} + 1216 \nu^{14} - 2214 \nu^{13} + 2597 \nu^{12} - 509 \nu^{11} + 973 \nu^{10} + \cdots + 39680 ) / 15296 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - \nu^{15} + 4 \nu^{14} - 5 \nu^{13} + 2 \nu^{12} + 14 \nu^{11} - 21 \nu^{10} + 15 \nu^{9} + \cdots + 128 ) / 32 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 2 \nu^{15} + 7 \nu^{14} - 13 \nu^{13} + 11 \nu^{12} + 12 \nu^{11} - 29 \nu^{10} + 22 \nu^{9} + \cdots + 768 ) / 64 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 3 \nu^{15} - 7 \nu^{14} + 13 \nu^{13} - 2 \nu^{12} - 5 \nu^{11} + 8 \nu^{10} + 72 \nu^{9} - 140 \nu^{8} + \cdots - 192 ) / 64 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 3 \nu^{15} + 10 \nu^{14} - 20 \nu^{13} + 17 \nu^{12} - 7 \nu^{11} + 13 \nu^{10} - 104 \nu^{9} + \cdots + 832 ) / 64 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 410 \nu^{15} - 951 \nu^{14} + 2136 \nu^{13} - 1214 \nu^{12} + 1199 \nu^{11} + 869 \nu^{10} + \cdots - 5120 ) / 7648 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 1002 \nu^{15} - 3975 \nu^{14} + 10013 \nu^{13} - 14531 \nu^{12} + 14028 \nu^{11} - 5403 \nu^{10} + \cdots - 90112 ) / 15296 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 1457 \nu^{15} + 2824 \nu^{14} - 3692 \nu^{13} - 3609 \nu^{12} + 8521 \nu^{11} - 5783 \nu^{10} + \cdots + 167424 ) / 15296 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{14} - \beta_{13} + \beta_{12} + \beta_{11} + \beta_{5} - \beta_{3} + \beta_{2} + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{15} + \beta_{14} - \beta_{11} - \beta_{9} - \beta_{8} + \beta_{7} - \beta_{6} + \beta_{5} + \cdots - 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{13} - \beta_{11} - \beta_{10} - \beta_{8} - 4\beta_{7} + \beta_{5} - 3\beta_{4} - 3\beta_{3} - \beta_{2} - 4 ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 2 \beta_{15} - \beta_{14} + \beta_{13} - \beta_{12} + \beta_{11} - 2 \beta_{10} + 2 \beta_{9} + 2 \beta_{7} + \cdots - 3 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -3\beta_{13} - 3\beta_{12} + \beta_{8} - 4\beta_{5} - \beta_{4} - 2\beta_{2} + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( - 8 \beta_{13} + 6 \beta_{11} + 4 \beta_{10} - 3 \beta_{8} + \beta_{7} - \beta_{6} - 9 \beta_{5} + \cdots - 17 ) / 4 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 3 \beta_{15} - 2 \beta_{14} + \beta_{13} - \beta_{12} - 10 \beta_{11} + 8 \beta_{10} + \beta_{9} + \cdots + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( - 13 \beta_{15} - \beta_{14} + 12 \beta_{13} + 12 \beta_{12} - 7 \beta_{11} + 8 \beta_{10} + 11 \beta_{9} + \cdots + 3 ) / 4 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 16 \beta_{13} - 10 \beta_{11} + 8 \beta_{10} + 17 \beta_{8} + 39 \beta_{7} + 9 \beta_{6} + 35 \beta_{5} + \cdots + 31 ) / 4 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 6\beta_{13} - 6\beta_{12} - 15\beta_{9} + 18\beta_{8} + 12\beta_{5} - 33\beta_{4} - 8\beta_{2} + 10 ) / 2 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 27 \beta_{15} - 8 \beta_{14} + 19 \beta_{13} + 19 \beta_{12} + 39 \beta_{11} - 31 \beta_{10} - 27 \beta_{9} + \cdots - 40 ) / 4 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( - 6 \beta_{13} - 3 \beta_{11} - 59 \beta_{10} + 31 \beta_{8} - 80 \beta_{7} - 28 \beta_{6} - 63 \beta_{5} + \cdots + 80 ) / 4 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( - 21 \beta_{15} + 26 \beta_{14} - 47 \beta_{13} + 47 \beta_{12} + 82 \beta_{11} - 56 \beta_{10} + \cdots - 15 ) / 4 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( 41 \beta_{15} + 20 \beta_{14} - 61 \beta_{13} - 61 \beta_{12} - 11 \beta_{11} - 9 \beta_{10} + 41 \beta_{9} + \cdots + 92 ) / 4 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( -18\beta_{13} - 144\beta_{8} - 20\beta_{5} - 126\beta_{4} + 9\beta_{2} - 91 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1936\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(849\) \(1695\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1935.1
0.818796 + 1.15307i
0.0153379 1.41413i
1.06903 + 0.925833i
1.21087 0.730613i
−1.23234 + 0.693782i
0.589191 1.28563i
0.267278 + 1.38873i
−1.23816 + 0.683337i
0.267278 1.38873i
−1.23816 0.683337i
−1.23234 0.693782i
0.589191 + 1.28563i
1.06903 0.925833i
1.21087 + 0.730613i
0.818796 1.15307i
0.0153379 + 1.41413i
0 3.09898i 0 0.668269 0 −2.64994 0 −6.60365 0
1935.2 0 3.09898i 0 0.668269 0 2.64994 0 −6.60365 0
1935.3 0 1.58292i 0 3.55981 0 −2.55190 0 0.494377 0
1935.4 0 1.58292i 0 3.55981 0 2.55190 0 0.494377 0
1935.5 0 1.36693i 0 −2.28630 0 −0.644621 0 1.13152 0
1935.6 0 1.36693i 0 −2.28630 0 0.644621 0 1.13152 0
1935.7 0 0.149135i 0 −2.94177 0 −4.58804 0 2.97776 0
1935.8 0 0.149135i 0 −2.94177 0 4.58804 0 2.97776 0
1935.9 0 0.149135i 0 −2.94177 0 −4.58804 0 2.97776 0
1935.10 0 0.149135i 0 −2.94177 0 4.58804 0 2.97776 0
1935.11 0 1.36693i 0 −2.28630 0 −0.644621 0 1.13152 0
1935.12 0 1.36693i 0 −2.28630 0 0.644621 0 1.13152 0
1935.13 0 1.58292i 0 3.55981 0 −2.55190 0 0.494377 0
1935.14 0 1.58292i 0 3.55981 0 2.55190 0 0.494377 0
1935.15 0 3.09898i 0 0.668269 0 −2.64994 0 −6.60365 0
1935.16 0 3.09898i 0 0.668269 0 2.64994 0 −6.60365 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1935.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
11.b odd 2 1 inner
44.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1936.2.e.f 16
4.b odd 2 1 inner 1936.2.e.f 16
11.b odd 2 1 inner 1936.2.e.f 16
11.c even 5 1 176.2.q.b 16
11.d odd 10 1 176.2.q.b 16
44.c even 2 1 inner 1936.2.e.f 16
44.g even 10 1 176.2.q.b 16
44.h odd 10 1 176.2.q.b 16
88.k even 10 1 704.2.u.b 16
88.l odd 10 1 704.2.u.b 16
88.o even 10 1 704.2.u.b 16
88.p odd 10 1 704.2.u.b 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
176.2.q.b 16 11.c even 5 1
176.2.q.b 16 11.d odd 10 1
176.2.q.b 16 44.g even 10 1
176.2.q.b 16 44.h odd 10 1
704.2.u.b 16 88.k even 10 1
704.2.u.b 16 88.l odd 10 1
704.2.u.b 16 88.o even 10 1
704.2.u.b 16 88.p odd 10 1
1936.2.e.f 16 1.a even 1 1 trivial
1936.2.e.f 16 4.b odd 2 1 inner
1936.2.e.f 16 11.b odd 2 1 inner
1936.2.e.f 16 44.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1936, [\chi])\):

\( T_{3}^{8} + 14T_{3}^{6} + 47T_{3}^{4} + 46T_{3}^{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{4} + T_{5}^{3} - 13T_{5}^{2} - 16T_{5} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} \) Copy content Toggle raw display
$3$ \( (T^{8} + 14 T^{6} + 47 T^{4} + \cdots + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T^{4} + T^{3} - 13 T^{2} + \cdots + 16)^{4} \) Copy content Toggle raw display
$7$ \( (T^{8} - 35 T^{6} + \cdots + 400)^{2} \) Copy content Toggle raw display
$11$ \( T^{16} \) Copy content Toggle raw display
$13$ \( (T^{8} + 65 T^{6} + \cdots + 400)^{2} \) Copy content Toggle raw display
$17$ \( (T^{8} + 50 T^{6} + \cdots + 9025)^{2} \) Copy content Toggle raw display
$19$ \( (T^{8} - 90 T^{6} + \cdots + 3025)^{2} \) Copy content Toggle raw display
$23$ \( (T^{8} + 44 T^{6} + \cdots + 256)^{2} \) Copy content Toggle raw display
$29$ \( (T^{8} + 145 T^{6} + \cdots + 336400)^{2} \) Copy content Toggle raw display
$31$ \( (T^{8} + 149 T^{6} + \cdots + 524176)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} - 11 T^{3} + 35 T^{2} + \cdots + 4)^{4} \) Copy content Toggle raw display
$41$ \( (T^{8} + 170 T^{6} + \cdots + 42025)^{2} \) Copy content Toggle raw display
$43$ \( (T^{8} - 235 T^{6} + \cdots + 5382400)^{2} \) Copy content Toggle raw display
$47$ \( (T^{8} + 181 T^{6} + \cdots + 1752976)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} - 9 T^{3} + \cdots + 396)^{4} \) Copy content Toggle raw display
$59$ \( (T^{8} + 166 T^{6} + \cdots + 1413721)^{2} \) Copy content Toggle raw display
$61$ \( (T^{8} + 385 T^{6} + \cdots + 70224400)^{2} \) Copy content Toggle raw display
$67$ \( (T^{8} + 301 T^{6} + \cdots + 1547536)^{2} \) Copy content Toggle raw display
$71$ \( (T^{8} + 317 T^{6} + \cdots + 3083536)^{2} \) Copy content Toggle raw display
$73$ \( (T^{8} + 170 T^{6} + \cdots + 156025)^{2} \) Copy content Toggle raw display
$79$ \( (T^{8} - 495 T^{6} + \cdots + 2624400)^{2} \) Copy content Toggle raw display
$83$ \( (T^{8} - 410 T^{6} + \cdots + 297025)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} - 13 T^{3} + \cdots - 164)^{4} \) Copy content Toggle raw display
$97$ \( (T^{4} + 6 T^{3} + \cdots + 109)^{4} \) Copy content Toggle raw display
show more
show less