Properties

Label 1936.2
Level 1936
Weight 2
Dimension 63632
Nonzero newspaces 16
Sturm bound 464640
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1936 = 2^{4} \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 16 \)
Sturm bound: \(464640\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1936))\).

Total New Old
Modular forms 118400 64897 53503
Cusp forms 113921 63632 50289
Eisenstein series 4479 1265 3214

Trace form

\( 63632 q - 182 q^{2} - 137 q^{3} - 180 q^{4} - 227 q^{5} - 176 q^{6} - 135 q^{7} - 176 q^{8} - 45 q^{9} - 180 q^{10} - 150 q^{11} - 344 q^{12} - 227 q^{13} - 184 q^{14} - 131 q^{15} - 188 q^{16} - 409 q^{17}+ \cdots - 200 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1936))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1936.2.a \(\chi_{1936}(1, \cdot)\) 1936.2.a.a 1 1
1936.2.a.b 1
1936.2.a.c 1
1936.2.a.d 1
1936.2.a.e 1
1936.2.a.f 1
1936.2.a.g 1
1936.2.a.h 1
1936.2.a.i 1
1936.2.a.j 1
1936.2.a.k 1
1936.2.a.l 1
1936.2.a.m 2
1936.2.a.n 2
1936.2.a.o 2
1936.2.a.p 2
1936.2.a.q 2
1936.2.a.r 2
1936.2.a.s 2
1936.2.a.t 2
1936.2.a.u 2
1936.2.a.v 2
1936.2.a.w 2
1936.2.a.x 2
1936.2.a.y 2
1936.2.a.z 2
1936.2.a.ba 2
1936.2.a.bb 4
1936.2.a.bc 4
1936.2.c \(\chi_{1936}(969, \cdot)\) None 0 1
1936.2.e \(\chi_{1936}(1935, \cdot)\) 1936.2.e.a 2 1
1936.2.e.b 4
1936.2.e.c 4
1936.2.e.d 4
1936.2.e.e 8
1936.2.e.f 16
1936.2.e.g 16
1936.2.g \(\chi_{1936}(967, \cdot)\) None 0 1
1936.2.i \(\chi_{1936}(483, \cdot)\) n/a 416 2
1936.2.j \(\chi_{1936}(485, \cdot)\) n/a 418 2
1936.2.m \(\chi_{1936}(81, \cdot)\) n/a 200 4
1936.2.o \(\chi_{1936}(215, \cdot)\) None 0 4
1936.2.q \(\chi_{1936}(239, \cdot)\) n/a 216 4
1936.2.s \(\chi_{1936}(9, \cdot)\) None 0 4
1936.2.u \(\chi_{1936}(177, \cdot)\) n/a 650 10
1936.2.x \(\chi_{1936}(245, \cdot)\) n/a 1664 8
1936.2.y \(\chi_{1936}(403, \cdot)\) n/a 1664 8
1936.2.z \(\chi_{1936}(175, \cdot)\) n/a 660 10
1936.2.bb \(\chi_{1936}(89, \cdot)\) None 0 10
1936.2.be \(\chi_{1936}(87, \cdot)\) None 0 10
1936.2.bi \(\chi_{1936}(45, \cdot)\) n/a 5240 20
1936.2.bj \(\chi_{1936}(43, \cdot)\) n/a 5240 20
1936.2.bk \(\chi_{1936}(49, \cdot)\) n/a 2600 40
1936.2.bm \(\chi_{1936}(7, \cdot)\) None 0 40
1936.2.bp \(\chi_{1936}(25, \cdot)\) None 0 40
1936.2.br \(\chi_{1936}(63, \cdot)\) n/a 2640 40
1936.2.bs \(\chi_{1936}(19, \cdot)\) n/a 20960 80
1936.2.bt \(\chi_{1936}(5, \cdot)\) n/a 20960 80

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1936))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1936)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 15}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(88))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(121))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(176))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(242))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(484))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(968))\)\(^{\oplus 2}\)