Properties

Label 1925.2.b.q.1849.8
Level $1925$
Weight $2$
Character 1925.1849
Analytic conductor $15.371$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1925,2,Mod(1849,1925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1925.1849"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1925 = 5^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1925.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,-26,0,-2,0,0,-26,0,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3712023891\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 27x^{12} + 283x^{10} + 1442x^{8} + 3659x^{6} + 4315x^{4} + 2225x^{2} + 400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1849.8
Root \(0.633891i\) of defining polynomial
Character \(\chi\) \(=\) 1925.1849
Dual form 1925.2.b.q.1849.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.633891i q^{2} +0.425088i q^{3} +1.59818 q^{4} -0.269459 q^{6} +1.00000i q^{7} +2.28085i q^{8} +2.81930 q^{9} -1.00000 q^{11} +0.679368i q^{12} -4.61413i q^{13} -0.633891 q^{14} +1.75055 q^{16} -0.0874635i q^{17} +1.78713i q^{18} +2.76975 q^{19} -0.425088 q^{21} -0.633891i q^{22} +4.36257i q^{23} -0.969564 q^{24} +2.92485 q^{26} +2.47371i q^{27} +1.59818i q^{28} +0.498559 q^{29} +7.10325 q^{31} +5.67137i q^{32} -0.425088i q^{33} +0.0554423 q^{34} +4.50576 q^{36} -1.50274i q^{37} +1.75572i q^{38} +1.96141 q^{39} +6.97670 q^{41} -0.269459i q^{42} -5.66659i q^{43} -1.59818 q^{44} -2.76539 q^{46} +0.269459i q^{47} +0.744139i q^{48} -1.00000 q^{49} +0.0371797 q^{51} -7.37421i q^{52} +7.48460i q^{53} -1.56806 q^{54} -2.28085 q^{56} +1.17739i q^{57} +0.316032i q^{58} -11.7082 q^{59} +4.43160 q^{61} +4.50269i q^{62} +2.81930i q^{63} -0.0939234 q^{64} +0.269459 q^{66} +13.4088i q^{67} -0.139783i q^{68} -1.85448 q^{69} -4.40847 q^{71} +6.43041i q^{72} -5.93802i q^{73} +0.952571 q^{74} +4.42657 q^{76} -1.00000i q^{77} +1.24332i q^{78} -11.4349 q^{79} +7.40635 q^{81} +4.42246i q^{82} -2.39958i q^{83} -0.679368 q^{84} +3.59200 q^{86} +0.211931i q^{87} -2.28085i q^{88} +2.80623 q^{89} +4.61413 q^{91} +6.97219i q^{92} +3.01951i q^{93} -0.170808 q^{94} -2.41083 q^{96} +0.504324i q^{97} -0.633891i q^{98} -2.81930 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 26 q^{4} - 2 q^{6} - 26 q^{9} - 14 q^{11} - 2 q^{14} + 58 q^{16} - 36 q^{19} + 44 q^{24} + 26 q^{26} + 4 q^{29} + 48 q^{31} - 66 q^{34} + 88 q^{36} - 20 q^{39} - 20 q^{41} + 26 q^{44} + 6 q^{46}+ \cdots + 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1925\mathbb{Z}\right)^\times\).

\(n\) \(276\) \(1002\) \(1751\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.633891i 0.448228i 0.974563 + 0.224114i \(0.0719489\pi\)
−0.974563 + 0.224114i \(0.928051\pi\)
\(3\) 0.425088i 0.245425i 0.992442 + 0.122712i \(0.0391593\pi\)
−0.992442 + 0.122712i \(0.960841\pi\)
\(4\) 1.59818 0.799091
\(5\) 0 0
\(6\) −0.269459 −0.110006
\(7\) 1.00000i 0.377964i
\(8\) 2.28085i 0.806404i
\(9\) 2.81930 0.939767
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0.679368i 0.196117i
\(13\) − 4.61413i − 1.27973i −0.768488 0.639864i \(-0.778991\pi\)
0.768488 0.639864i \(-0.221009\pi\)
\(14\) −0.633891 −0.169414
\(15\) 0 0
\(16\) 1.75055 0.437638
\(17\) − 0.0874635i − 0.0212130i −0.999944 0.0106065i \(-0.996624\pi\)
0.999944 0.0106065i \(-0.00337622\pi\)
\(18\) 1.78713i 0.421230i
\(19\) 2.76975 0.635425 0.317713 0.948187i \(-0.397085\pi\)
0.317713 + 0.948187i \(0.397085\pi\)
\(20\) 0 0
\(21\) −0.425088 −0.0927618
\(22\) − 0.633891i − 0.135146i
\(23\) 4.36257i 0.909659i 0.890578 + 0.454830i \(0.150300\pi\)
−0.890578 + 0.454830i \(0.849700\pi\)
\(24\) −0.969564 −0.197911
\(25\) 0 0
\(26\) 2.92485 0.573611
\(27\) 2.47371i 0.476067i
\(28\) 1.59818i 0.302028i
\(29\) 0.498559 0.0925800 0.0462900 0.998928i \(-0.485260\pi\)
0.0462900 + 0.998928i \(0.485260\pi\)
\(30\) 0 0
\(31\) 7.10325 1.27578 0.637891 0.770127i \(-0.279807\pi\)
0.637891 + 0.770127i \(0.279807\pi\)
\(32\) 5.67137i 1.00257i
\(33\) − 0.425088i − 0.0739983i
\(34\) 0.0554423 0.00950828
\(35\) 0 0
\(36\) 4.50576 0.750959
\(37\) − 1.50274i − 0.247048i −0.992342 0.123524i \(-0.960580\pi\)
0.992342 0.123524i \(-0.0394197\pi\)
\(38\) 1.75572i 0.284816i
\(39\) 1.96141 0.314077
\(40\) 0 0
\(41\) 6.97670 1.08958 0.544789 0.838573i \(-0.316610\pi\)
0.544789 + 0.838573i \(0.316610\pi\)
\(42\) − 0.269459i − 0.0415785i
\(43\) − 5.66659i − 0.864147i −0.901838 0.432074i \(-0.857782\pi\)
0.901838 0.432074i \(-0.142218\pi\)
\(44\) −1.59818 −0.240935
\(45\) 0 0
\(46\) −2.76539 −0.407735
\(47\) 0.269459i 0.0393047i 0.999807 + 0.0196523i \(0.00625594\pi\)
−0.999807 + 0.0196523i \(0.993744\pi\)
\(48\) 0.744139i 0.107407i
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 0.0371797 0.00520620
\(52\) − 7.37421i − 1.02262i
\(53\) 7.48460i 1.02809i 0.857764 + 0.514044i \(0.171853\pi\)
−0.857764 + 0.514044i \(0.828147\pi\)
\(54\) −1.56806 −0.213387
\(55\) 0 0
\(56\) −2.28085 −0.304792
\(57\) 1.17739i 0.155949i
\(58\) 0.316032i 0.0414970i
\(59\) −11.7082 −1.52428 −0.762142 0.647410i \(-0.775852\pi\)
−0.762142 + 0.647410i \(0.775852\pi\)
\(60\) 0 0
\(61\) 4.43160 0.567408 0.283704 0.958912i \(-0.408437\pi\)
0.283704 + 0.958912i \(0.408437\pi\)
\(62\) 4.50269i 0.571842i
\(63\) 2.81930i 0.355198i
\(64\) −0.0939234 −0.0117404
\(65\) 0 0
\(66\) 0.269459 0.0331682
\(67\) 13.4088i 1.63815i 0.573687 + 0.819075i \(0.305513\pi\)
−0.573687 + 0.819075i \(0.694487\pi\)
\(68\) − 0.139783i − 0.0169511i
\(69\) −1.85448 −0.223253
\(70\) 0 0
\(71\) −4.40847 −0.523189 −0.261595 0.965178i \(-0.584248\pi\)
−0.261595 + 0.965178i \(0.584248\pi\)
\(72\) 6.43041i 0.757832i
\(73\) − 5.93802i − 0.694992i −0.937681 0.347496i \(-0.887032\pi\)
0.937681 0.347496i \(-0.112968\pi\)
\(74\) 0.952571 0.110734
\(75\) 0 0
\(76\) 4.42657 0.507763
\(77\) − 1.00000i − 0.113961i
\(78\) 1.24332i 0.140778i
\(79\) −11.4349 −1.28652 −0.643262 0.765646i \(-0.722419\pi\)
−0.643262 + 0.765646i \(0.722419\pi\)
\(80\) 0 0
\(81\) 7.40635 0.822928
\(82\) 4.42246i 0.488380i
\(83\) − 2.39958i − 0.263388i −0.991290 0.131694i \(-0.957958\pi\)
0.991290 0.131694i \(-0.0420416\pi\)
\(84\) −0.679368 −0.0741251
\(85\) 0 0
\(86\) 3.59200 0.387335
\(87\) 0.211931i 0.0227214i
\(88\) − 2.28085i − 0.243140i
\(89\) 2.80623 0.297459 0.148730 0.988878i \(-0.452482\pi\)
0.148730 + 0.988878i \(0.452482\pi\)
\(90\) 0 0
\(91\) 4.61413 0.483692
\(92\) 6.97219i 0.726901i
\(93\) 3.01951i 0.313108i
\(94\) −0.170808 −0.0176175
\(95\) 0 0
\(96\) −2.41083 −0.246054
\(97\) 0.504324i 0.0512063i 0.999672 + 0.0256032i \(0.00815063\pi\)
−0.999672 + 0.0256032i \(0.991849\pi\)
\(98\) − 0.633891i − 0.0640326i
\(99\) −2.81930 −0.283350
\(100\) 0 0
\(101\) 15.9406 1.58615 0.793075 0.609124i \(-0.208479\pi\)
0.793075 + 0.609124i \(0.208479\pi\)
\(102\) 0.0235679i 0.00233357i
\(103\) − 1.37151i − 0.135139i −0.997715 0.0675693i \(-0.978476\pi\)
0.997715 0.0675693i \(-0.0215244\pi\)
\(104\) 10.5241 1.03198
\(105\) 0 0
\(106\) −4.74442 −0.460819
\(107\) − 13.9079i − 1.34452i −0.740314 0.672262i \(-0.765323\pi\)
0.740314 0.672262i \(-0.234677\pi\)
\(108\) 3.95345i 0.380421i
\(109\) −11.6899 −1.11969 −0.559845 0.828597i \(-0.689139\pi\)
−0.559845 + 0.828597i \(0.689139\pi\)
\(110\) 0 0
\(111\) 0.638796 0.0606318
\(112\) 1.75055i 0.165412i
\(113\) 7.87792i 0.741093i 0.928814 + 0.370546i \(0.120830\pi\)
−0.928814 + 0.370546i \(0.879170\pi\)
\(114\) −0.746336 −0.0699008
\(115\) 0 0
\(116\) 0.796788 0.0739799
\(117\) − 13.0086i − 1.20265i
\(118\) − 7.42175i − 0.683227i
\(119\) 0.0874635 0.00801777
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 2.80915i 0.254328i
\(123\) 2.96571i 0.267409i
\(124\) 11.3523 1.01947
\(125\) 0 0
\(126\) −1.78713 −0.159210
\(127\) 3.84487i 0.341177i 0.985342 + 0.170589i \(0.0545669\pi\)
−0.985342 + 0.170589i \(0.945433\pi\)
\(128\) 11.2832i 0.997303i
\(129\) 2.40880 0.212083
\(130\) 0 0
\(131\) −1.35840 −0.118684 −0.0593420 0.998238i \(-0.518900\pi\)
−0.0593420 + 0.998238i \(0.518900\pi\)
\(132\) − 0.679368i − 0.0591314i
\(133\) 2.76975i 0.240168i
\(134\) −8.49973 −0.734265
\(135\) 0 0
\(136\) 0.199492 0.0171063
\(137\) 2.25610i 0.192752i 0.995345 + 0.0963759i \(0.0307251\pi\)
−0.995345 + 0.0963759i \(0.969275\pi\)
\(138\) − 1.17554i − 0.100068i
\(139\) −0.275141 −0.0233371 −0.0116686 0.999932i \(-0.503714\pi\)
−0.0116686 + 0.999932i \(0.503714\pi\)
\(140\) 0 0
\(141\) −0.114544 −0.00964634
\(142\) − 2.79449i − 0.234508i
\(143\) 4.61413i 0.385853i
\(144\) 4.93533 0.411278
\(145\) 0 0
\(146\) 3.76405 0.311515
\(147\) − 0.425088i − 0.0350607i
\(148\) − 2.40165i − 0.197414i
\(149\) 3.21776 0.263609 0.131804 0.991276i \(-0.457923\pi\)
0.131804 + 0.991276i \(0.457923\pi\)
\(150\) 0 0
\(151\) 12.9470 1.05361 0.526805 0.849986i \(-0.323390\pi\)
0.526805 + 0.849986i \(0.323390\pi\)
\(152\) 6.31741i 0.512409i
\(153\) − 0.246586i − 0.0199353i
\(154\) 0.633891 0.0510804
\(155\) 0 0
\(156\) 3.13469 0.250976
\(157\) − 19.8615i − 1.58512i −0.609794 0.792560i \(-0.708748\pi\)
0.609794 0.792560i \(-0.291252\pi\)
\(158\) − 7.24846i − 0.576656i
\(159\) −3.18161 −0.252318
\(160\) 0 0
\(161\) −4.36257 −0.343819
\(162\) 4.69482i 0.368860i
\(163\) 14.3543i 1.12431i 0.827031 + 0.562157i \(0.190028\pi\)
−0.827031 + 0.562157i \(0.809972\pi\)
\(164\) 11.1500 0.870672
\(165\) 0 0
\(166\) 1.52107 0.118058
\(167\) 23.2790i 1.80138i 0.434457 + 0.900692i \(0.356940\pi\)
−0.434457 + 0.900692i \(0.643060\pi\)
\(168\) − 0.969564i − 0.0748035i
\(169\) −8.29015 −0.637704
\(170\) 0 0
\(171\) 7.80877 0.597151
\(172\) − 9.05625i − 0.690533i
\(173\) 10.2501i 0.779303i 0.920962 + 0.389651i \(0.127405\pi\)
−0.920962 + 0.389651i \(0.872595\pi\)
\(174\) −0.134341 −0.0101844
\(175\) 0 0
\(176\) −1.75055 −0.131953
\(177\) − 4.97703i − 0.374097i
\(178\) 1.77884i 0.133330i
\(179\) −22.5775 −1.68752 −0.843761 0.536718i \(-0.819664\pi\)
−0.843761 + 0.536718i \(0.819664\pi\)
\(180\) 0 0
\(181\) −13.7545 −1.02236 −0.511181 0.859473i \(-0.670792\pi\)
−0.511181 + 0.859473i \(0.670792\pi\)
\(182\) 2.92485i 0.216804i
\(183\) 1.88382i 0.139256i
\(184\) −9.95039 −0.733553
\(185\) 0 0
\(186\) −1.91404 −0.140344
\(187\) 0.0874635i 0.00639597i
\(188\) 0.430645i 0.0314080i
\(189\) −2.47371 −0.179936
\(190\) 0 0
\(191\) 4.74700 0.343481 0.171741 0.985142i \(-0.445061\pi\)
0.171741 + 0.985142i \(0.445061\pi\)
\(192\) − 0.0399257i − 0.00288139i
\(193\) − 15.6899i − 1.12938i −0.825301 0.564692i \(-0.808995\pi\)
0.825301 0.564692i \(-0.191005\pi\)
\(194\) −0.319686 −0.0229521
\(195\) 0 0
\(196\) −1.59818 −0.114156
\(197\) − 6.40911i − 0.456630i −0.973587 0.228315i \(-0.926678\pi\)
0.973587 0.228315i \(-0.0733217\pi\)
\(198\) − 1.78713i − 0.127006i
\(199\) 10.4872 0.743419 0.371710 0.928349i \(-0.378772\pi\)
0.371710 + 0.928349i \(0.378772\pi\)
\(200\) 0 0
\(201\) −5.69993 −0.402042
\(202\) 10.1046i 0.710957i
\(203\) 0.498559i 0.0349920i
\(204\) 0.0594199 0.00416023
\(205\) 0 0
\(206\) 0.869385 0.0605729
\(207\) 12.2994i 0.854868i
\(208\) − 8.07727i − 0.560058i
\(209\) −2.76975 −0.191588
\(210\) 0 0
\(211\) −9.57881 −0.659432 −0.329716 0.944080i \(-0.606953\pi\)
−0.329716 + 0.944080i \(0.606953\pi\)
\(212\) 11.9618i 0.821537i
\(213\) − 1.87399i − 0.128404i
\(214\) 8.81606 0.602654
\(215\) 0 0
\(216\) −5.64218 −0.383902
\(217\) 7.10325i 0.482200i
\(218\) − 7.41013i − 0.501877i
\(219\) 2.52418 0.170568
\(220\) 0 0
\(221\) −0.403568 −0.0271469
\(222\) 0.404927i 0.0271769i
\(223\) 10.0219i 0.671115i 0.942020 + 0.335558i \(0.108925\pi\)
−0.942020 + 0.335558i \(0.891075\pi\)
\(224\) −5.67137 −0.378934
\(225\) 0 0
\(226\) −4.99374 −0.332179
\(227\) − 6.51139i − 0.432176i −0.976374 0.216088i \(-0.930670\pi\)
0.976374 0.216088i \(-0.0693299\pi\)
\(228\) 1.88168i 0.124617i
\(229\) −28.5066 −1.88377 −0.941886 0.335934i \(-0.890948\pi\)
−0.941886 + 0.335934i \(0.890948\pi\)
\(230\) 0 0
\(231\) 0.425088 0.0279687
\(232\) 1.13714i 0.0746569i
\(233\) − 13.7790i − 0.902693i −0.892349 0.451346i \(-0.850944\pi\)
0.892349 0.451346i \(-0.149056\pi\)
\(234\) 8.24603 0.539060
\(235\) 0 0
\(236\) −18.7119 −1.21804
\(237\) − 4.86083i − 0.315745i
\(238\) 0.0554423i 0.00359379i
\(239\) −11.9099 −0.770389 −0.385195 0.922835i \(-0.625866\pi\)
−0.385195 + 0.922835i \(0.625866\pi\)
\(240\) 0 0
\(241\) 7.72250 0.497450 0.248725 0.968574i \(-0.419989\pi\)
0.248725 + 0.968574i \(0.419989\pi\)
\(242\) 0.633891i 0.0407480i
\(243\) 10.5695i 0.678034i
\(244\) 7.08250 0.453411
\(245\) 0 0
\(246\) −1.87994 −0.119860
\(247\) − 12.7800i − 0.813171i
\(248\) 16.2015i 1.02880i
\(249\) 1.02003 0.0646419
\(250\) 0 0
\(251\) −7.54774 −0.476409 −0.238205 0.971215i \(-0.576559\pi\)
−0.238205 + 0.971215i \(0.576559\pi\)
\(252\) 4.50576i 0.283836i
\(253\) − 4.36257i − 0.274273i
\(254\) −2.43723 −0.152925
\(255\) 0 0
\(256\) −7.34016 −0.458760
\(257\) − 16.9146i − 1.05511i −0.849522 0.527553i \(-0.823110\pi\)
0.849522 0.527553i \(-0.176890\pi\)
\(258\) 1.52692i 0.0950617i
\(259\) 1.50274 0.0933755
\(260\) 0 0
\(261\) 1.40559 0.0870036
\(262\) − 0.861077i − 0.0531975i
\(263\) − 11.0615i − 0.682082i −0.940048 0.341041i \(-0.889220\pi\)
0.940048 0.341041i \(-0.110780\pi\)
\(264\) 0.969564 0.0596725
\(265\) 0 0
\(266\) −1.75572 −0.107650
\(267\) 1.19289i 0.0730039i
\(268\) 21.4298i 1.30903i
\(269\) 27.2259 1.65999 0.829997 0.557768i \(-0.188342\pi\)
0.829997 + 0.557768i \(0.188342\pi\)
\(270\) 0 0
\(271\) −14.4274 −0.876405 −0.438203 0.898876i \(-0.644385\pi\)
−0.438203 + 0.898876i \(0.644385\pi\)
\(272\) − 0.153109i − 0.00928363i
\(273\) 1.96141i 0.118710i
\(274\) −1.43012 −0.0863968
\(275\) 0 0
\(276\) −2.96379 −0.178399
\(277\) − 3.80344i − 0.228527i −0.993450 0.114263i \(-0.963549\pi\)
0.993450 0.114263i \(-0.0364508\pi\)
\(278\) − 0.174409i − 0.0104604i
\(279\) 20.0262 1.19894
\(280\) 0 0
\(281\) −20.3505 −1.21401 −0.607005 0.794698i \(-0.707629\pi\)
−0.607005 + 0.794698i \(0.707629\pi\)
\(282\) − 0.0726083i − 0.00432376i
\(283\) 4.21465i 0.250535i 0.992123 + 0.125267i \(0.0399789\pi\)
−0.992123 + 0.125267i \(0.960021\pi\)
\(284\) −7.04554 −0.418076
\(285\) 0 0
\(286\) −2.92485 −0.172950
\(287\) 6.97670i 0.411821i
\(288\) 15.9893i 0.942178i
\(289\) 16.9924 0.999550
\(290\) 0 0
\(291\) −0.214382 −0.0125673
\(292\) − 9.49003i − 0.555362i
\(293\) − 33.1882i − 1.93887i −0.245340 0.969437i \(-0.578900\pi\)
0.245340 0.969437i \(-0.421100\pi\)
\(294\) 0.269459 0.0157152
\(295\) 0 0
\(296\) 3.42753 0.199221
\(297\) − 2.47371i − 0.143539i
\(298\) 2.03971i 0.118157i
\(299\) 20.1295 1.16412
\(300\) 0 0
\(301\) 5.66659 0.326617
\(302\) 8.20697i 0.472258i
\(303\) 6.77616i 0.389280i
\(304\) 4.84860 0.278086
\(305\) 0 0
\(306\) 0.156309 0.00893556
\(307\) − 24.5918i − 1.40353i −0.712409 0.701765i \(-0.752396\pi\)
0.712409 0.701765i \(-0.247604\pi\)
\(308\) − 1.59818i − 0.0910649i
\(309\) 0.583011 0.0331663
\(310\) 0 0
\(311\) 6.42367 0.364253 0.182126 0.983275i \(-0.441702\pi\)
0.182126 + 0.983275i \(0.441702\pi\)
\(312\) 4.47369i 0.253273i
\(313\) − 5.05001i − 0.285443i −0.989763 0.142722i \(-0.954415\pi\)
0.989763 0.142722i \(-0.0455854\pi\)
\(314\) 12.5900 0.710496
\(315\) 0 0
\(316\) −18.2750 −1.02805
\(317\) 12.6498i 0.710481i 0.934775 + 0.355240i \(0.115601\pi\)
−0.934775 + 0.355240i \(0.884399\pi\)
\(318\) − 2.01679i − 0.113096i
\(319\) −0.498559 −0.0279139
\(320\) 0 0
\(321\) 5.91206 0.329979
\(322\) − 2.76539i − 0.154109i
\(323\) − 0.242252i − 0.0134793i
\(324\) 11.8367 0.657595
\(325\) 0 0
\(326\) −9.09905 −0.503950
\(327\) − 4.96924i − 0.274800i
\(328\) 15.9128i 0.878639i
\(329\) −0.269459 −0.0148558
\(330\) 0 0
\(331\) 31.6097 1.73743 0.868714 0.495314i \(-0.164947\pi\)
0.868714 + 0.495314i \(0.164947\pi\)
\(332\) − 3.83496i − 0.210471i
\(333\) − 4.23667i − 0.232168i
\(334\) −14.7564 −0.807432
\(335\) 0 0
\(336\) −0.744139 −0.0405961
\(337\) − 15.8472i − 0.863251i −0.902053 0.431625i \(-0.857940\pi\)
0.902053 0.431625i \(-0.142060\pi\)
\(338\) − 5.25505i − 0.285837i
\(339\) −3.34881 −0.181882
\(340\) 0 0
\(341\) −7.10325 −0.384663
\(342\) 4.94991i 0.267660i
\(343\) − 1.00000i − 0.0539949i
\(344\) 12.9247 0.696852
\(345\) 0 0
\(346\) −6.49746 −0.349306
\(347\) 8.60284i 0.461825i 0.972975 + 0.230912i \(0.0741711\pi\)
−0.972975 + 0.230912i \(0.925829\pi\)
\(348\) 0.338705i 0.0181565i
\(349\) −31.7291 −1.69842 −0.849209 0.528057i \(-0.822921\pi\)
−0.849209 + 0.528057i \(0.822921\pi\)
\(350\) 0 0
\(351\) 11.4140 0.609236
\(352\) − 5.67137i − 0.302285i
\(353\) 17.4824i 0.930494i 0.885181 + 0.465247i \(0.154035\pi\)
−0.885181 + 0.465247i \(0.845965\pi\)
\(354\) 3.15490 0.167681
\(355\) 0 0
\(356\) 4.48486 0.237697
\(357\) 0.0371797i 0.00196776i
\(358\) − 14.3117i − 0.756396i
\(359\) 29.4116 1.55229 0.776143 0.630557i \(-0.217174\pi\)
0.776143 + 0.630557i \(0.217174\pi\)
\(360\) 0 0
\(361\) −11.3285 −0.596235
\(362\) − 8.71884i − 0.458252i
\(363\) 0.425088i 0.0223113i
\(364\) 7.37421 0.386514
\(365\) 0 0
\(366\) −1.19414 −0.0624185
\(367\) − 29.0423i − 1.51600i −0.652256 0.757999i \(-0.726177\pi\)
0.652256 0.757999i \(-0.273823\pi\)
\(368\) 7.63691i 0.398102i
\(369\) 19.6694 1.02395
\(370\) 0 0
\(371\) −7.48460 −0.388581
\(372\) 4.82572i 0.250202i
\(373\) − 22.5467i − 1.16743i −0.811960 0.583713i \(-0.801599\pi\)
0.811960 0.583713i \(-0.198401\pi\)
\(374\) −0.0554423 −0.00286685
\(375\) 0 0
\(376\) −0.614598 −0.0316955
\(377\) − 2.30041i − 0.118477i
\(378\) − 1.56806i − 0.0806526i
\(379\) −23.7421 −1.21955 −0.609775 0.792574i \(-0.708740\pi\)
−0.609775 + 0.792574i \(0.708740\pi\)
\(380\) 0 0
\(381\) −1.63441 −0.0837333
\(382\) 3.00908i 0.153958i
\(383\) − 4.69277i − 0.239790i −0.992787 0.119895i \(-0.961744\pi\)
0.992787 0.119895i \(-0.0382557\pi\)
\(384\) −4.79635 −0.244763
\(385\) 0 0
\(386\) 9.94569 0.506222
\(387\) − 15.9758i − 0.812097i
\(388\) 0.806001i 0.0409185i
\(389\) −13.3329 −0.676007 −0.338003 0.941145i \(-0.609752\pi\)
−0.338003 + 0.941145i \(0.609752\pi\)
\(390\) 0 0
\(391\) 0.381566 0.0192966
\(392\) − 2.28085i − 0.115201i
\(393\) − 0.577439i − 0.0291280i
\(394\) 4.06268 0.204675
\(395\) 0 0
\(396\) −4.50576 −0.226423
\(397\) − 18.4351i − 0.925229i −0.886560 0.462614i \(-0.846911\pi\)
0.886560 0.462614i \(-0.153089\pi\)
\(398\) 6.64775i 0.333222i
\(399\) −1.17739 −0.0589432
\(400\) 0 0
\(401\) −24.8247 −1.23968 −0.619842 0.784726i \(-0.712803\pi\)
−0.619842 + 0.784726i \(0.712803\pi\)
\(402\) − 3.61313i − 0.180207i
\(403\) − 32.7753i − 1.63265i
\(404\) 25.4760 1.26748
\(405\) 0 0
\(406\) −0.316032 −0.0156844
\(407\) 1.50274i 0.0744879i
\(408\) 0.0848015i 0.00419830i
\(409\) 22.1055 1.09305 0.546524 0.837443i \(-0.315951\pi\)
0.546524 + 0.837443i \(0.315951\pi\)
\(410\) 0 0
\(411\) −0.959042 −0.0473060
\(412\) − 2.19192i − 0.107988i
\(413\) − 11.7082i − 0.576125i
\(414\) −7.79648 −0.383176
\(415\) 0 0
\(416\) 26.1684 1.28301
\(417\) − 0.116959i − 0.00572751i
\(418\) − 1.75572i − 0.0858751i
\(419\) −29.4106 −1.43680 −0.718401 0.695629i \(-0.755126\pi\)
−0.718401 + 0.695629i \(0.755126\pi\)
\(420\) 0 0
\(421\) −22.9317 −1.11762 −0.558812 0.829295i \(-0.688743\pi\)
−0.558812 + 0.829295i \(0.688743\pi\)
\(422\) − 6.07192i − 0.295576i
\(423\) 0.759687i 0.0369372i
\(424\) −17.0713 −0.829055
\(425\) 0 0
\(426\) 1.18790 0.0575541
\(427\) 4.43160i 0.214460i
\(428\) − 22.2273i − 1.07440i
\(429\) −1.96141 −0.0946977
\(430\) 0 0
\(431\) 31.0474 1.49550 0.747750 0.663981i \(-0.231134\pi\)
0.747750 + 0.663981i \(0.231134\pi\)
\(432\) 4.33037i 0.208345i
\(433\) − 27.3772i − 1.31566i −0.753165 0.657832i \(-0.771474\pi\)
0.753165 0.657832i \(-0.228526\pi\)
\(434\) −4.50269 −0.216136
\(435\) 0 0
\(436\) −18.6826 −0.894735
\(437\) 12.0833i 0.578020i
\(438\) 1.60005i 0.0764535i
\(439\) −5.43727 −0.259507 −0.129753 0.991546i \(-0.541419\pi\)
−0.129753 + 0.991546i \(0.541419\pi\)
\(440\) 0 0
\(441\) −2.81930 −0.134252
\(442\) − 0.255818i − 0.0121680i
\(443\) − 10.3375i − 0.491148i −0.969378 0.245574i \(-0.921024\pi\)
0.969378 0.245574i \(-0.0789765\pi\)
\(444\) 1.02091 0.0484503
\(445\) 0 0
\(446\) −6.35278 −0.300813
\(447\) 1.36783i 0.0646961i
\(448\) − 0.0939234i − 0.00443747i
\(449\) −17.5398 −0.827754 −0.413877 0.910333i \(-0.635826\pi\)
−0.413877 + 0.910333i \(0.635826\pi\)
\(450\) 0 0
\(451\) −6.97670 −0.328520
\(452\) 12.5904i 0.592201i
\(453\) 5.50360i 0.258582i
\(454\) 4.12751 0.193714
\(455\) 0 0
\(456\) −2.68545 −0.125758
\(457\) − 1.34919i − 0.0631124i −0.999502 0.0315562i \(-0.989954\pi\)
0.999502 0.0315562i \(-0.0100463\pi\)
\(458\) − 18.0701i − 0.844360i
\(459\) 0.216360 0.0100988
\(460\) 0 0
\(461\) −30.5881 −1.42463 −0.712316 0.701859i \(-0.752354\pi\)
−0.712316 + 0.701859i \(0.752354\pi\)
\(462\) 0.269459i 0.0125364i
\(463\) − 40.4250i − 1.87871i −0.342949 0.939354i \(-0.611426\pi\)
0.342949 0.939354i \(-0.388574\pi\)
\(464\) 0.872753 0.0405165
\(465\) 0 0
\(466\) 8.73438 0.404613
\(467\) − 26.3158i − 1.21775i −0.793266 0.608875i \(-0.791621\pi\)
0.793266 0.608875i \(-0.208379\pi\)
\(468\) − 20.7901i − 0.961024i
\(469\) −13.4088 −0.619162
\(470\) 0 0
\(471\) 8.44288 0.389027
\(472\) − 26.7048i − 1.22919i
\(473\) 5.66659i 0.260550i
\(474\) 3.08123 0.141526
\(475\) 0 0
\(476\) 0.139783 0.00640693
\(477\) 21.1013i 0.966163i
\(478\) − 7.54960i − 0.345310i
\(479\) −3.35349 −0.153225 −0.0766123 0.997061i \(-0.524410\pi\)
−0.0766123 + 0.997061i \(0.524410\pi\)
\(480\) 0 0
\(481\) −6.93382 −0.316155
\(482\) 4.89522i 0.222971i
\(483\) − 1.85448i − 0.0843816i
\(484\) 1.59818 0.0726447
\(485\) 0 0
\(486\) −6.69991 −0.303914
\(487\) 13.7963i 0.625169i 0.949890 + 0.312585i \(0.101195\pi\)
−0.949890 + 0.312585i \(0.898805\pi\)
\(488\) 10.1078i 0.457560i
\(489\) −6.10183 −0.275934
\(490\) 0 0
\(491\) −37.0100 −1.67024 −0.835119 0.550070i \(-0.814601\pi\)
−0.835119 + 0.550070i \(0.814601\pi\)
\(492\) 4.73975i 0.213684i
\(493\) − 0.0436057i − 0.00196390i
\(494\) 8.10112 0.364487
\(495\) 0 0
\(496\) 12.4346 0.558331
\(497\) − 4.40847i − 0.197747i
\(498\) 0.646589i 0.0289743i
\(499\) 17.0397 0.762803 0.381401 0.924410i \(-0.375442\pi\)
0.381401 + 0.924410i \(0.375442\pi\)
\(500\) 0 0
\(501\) −9.89563 −0.442104
\(502\) − 4.78444i − 0.213540i
\(503\) − 7.14111i − 0.318406i −0.987246 0.159203i \(-0.949108\pi\)
0.987246 0.159203i \(-0.0508925\pi\)
\(504\) −6.43041 −0.286433
\(505\) 0 0
\(506\) 2.76539 0.122937
\(507\) − 3.52404i − 0.156508i
\(508\) 6.14480i 0.272632i
\(509\) 19.5536 0.866697 0.433348 0.901226i \(-0.357332\pi\)
0.433348 + 0.901226i \(0.357332\pi\)
\(510\) 0 0
\(511\) 5.93802 0.262682
\(512\) 17.9135i 0.791674i
\(513\) 6.85158i 0.302505i
\(514\) 10.7220 0.472928
\(515\) 0 0
\(516\) 3.84970 0.169474
\(517\) − 0.269459i − 0.0118508i
\(518\) 0.952571i 0.0418536i
\(519\) −4.35721 −0.191260
\(520\) 0 0
\(521\) 19.9867 0.875635 0.437818 0.899064i \(-0.355752\pi\)
0.437818 + 0.899064i \(0.355752\pi\)
\(522\) 0.890989i 0.0389975i
\(523\) 20.3762i 0.890990i 0.895284 + 0.445495i \(0.146972\pi\)
−0.895284 + 0.445495i \(0.853028\pi\)
\(524\) −2.17097 −0.0948393
\(525\) 0 0
\(526\) 7.01179 0.305729
\(527\) − 0.621275i − 0.0270632i
\(528\) − 0.744139i − 0.0323845i
\(529\) 3.96796 0.172520
\(530\) 0 0
\(531\) −33.0091 −1.43247
\(532\) 4.42657i 0.191916i
\(533\) − 32.1914i − 1.39436i
\(534\) −0.756164 −0.0327224
\(535\) 0 0
\(536\) −30.5836 −1.32101
\(537\) − 9.59743i − 0.414160i
\(538\) 17.2583i 0.744057i
\(539\) 1.00000 0.0430730
\(540\) 0 0
\(541\) 37.7722 1.62395 0.811977 0.583689i \(-0.198391\pi\)
0.811977 + 0.583689i \(0.198391\pi\)
\(542\) − 9.14543i − 0.392830i
\(543\) − 5.84687i − 0.250913i
\(544\) 0.496038 0.0212674
\(545\) 0 0
\(546\) −1.24332 −0.0532092
\(547\) − 17.2831i − 0.738972i −0.929236 0.369486i \(-0.879534\pi\)
0.929236 0.369486i \(-0.120466\pi\)
\(548\) 3.60566i 0.154026i
\(549\) 12.4940 0.533231
\(550\) 0 0
\(551\) 1.38089 0.0588277
\(552\) − 4.22979i − 0.180032i
\(553\) − 11.4349i − 0.486260i
\(554\) 2.41097 0.102432
\(555\) 0 0
\(556\) −0.439725 −0.0186485
\(557\) 6.79002i 0.287703i 0.989599 + 0.143851i \(0.0459487\pi\)
−0.989599 + 0.143851i \(0.954051\pi\)
\(558\) 12.6944i 0.537398i
\(559\) −26.1464 −1.10587
\(560\) 0 0
\(561\) −0.0371797 −0.00156973
\(562\) − 12.9000i − 0.544154i
\(563\) − 4.49862i − 0.189594i −0.995497 0.0947972i \(-0.969780\pi\)
0.995497 0.0947972i \(-0.0302203\pi\)
\(564\) −0.183062 −0.00770831
\(565\) 0 0
\(566\) −2.67163 −0.112297
\(567\) 7.40635i 0.311038i
\(568\) − 10.0551i − 0.421902i
\(569\) −27.7691 −1.16414 −0.582070 0.813139i \(-0.697757\pi\)
−0.582070 + 0.813139i \(0.697757\pi\)
\(570\) 0 0
\(571\) −17.7674 −0.743542 −0.371771 0.928325i \(-0.621249\pi\)
−0.371771 + 0.928325i \(0.621249\pi\)
\(572\) 7.37421i 0.308331i
\(573\) 2.01789i 0.0842987i
\(574\) −4.42246 −0.184590
\(575\) 0 0
\(576\) −0.264798 −0.0110333
\(577\) − 44.9562i − 1.87155i −0.352595 0.935776i \(-0.614701\pi\)
0.352595 0.935776i \(-0.385299\pi\)
\(578\) 10.7713i 0.448027i
\(579\) 6.66959 0.277179
\(580\) 0 0
\(581\) 2.39958 0.0995512
\(582\) − 0.135895i − 0.00563302i
\(583\) − 7.48460i − 0.309980i
\(584\) 13.5438 0.560444
\(585\) 0 0
\(586\) 21.0377 0.869059
\(587\) 17.9592i 0.741255i 0.928782 + 0.370627i \(0.120857\pi\)
−0.928782 + 0.370627i \(0.879143\pi\)
\(588\) − 0.679368i − 0.0280167i
\(589\) 19.6743 0.810664
\(590\) 0 0
\(591\) 2.72444 0.112068
\(592\) − 2.63062i − 0.108118i
\(593\) − 33.4098i − 1.37198i −0.727613 0.685988i \(-0.759370\pi\)
0.727613 0.685988i \(-0.240630\pi\)
\(594\) 1.56806 0.0643385
\(595\) 0 0
\(596\) 5.14256 0.210648
\(597\) 4.45799i 0.182453i
\(598\) 12.7599i 0.521790i
\(599\) 20.7221 0.846681 0.423341 0.905971i \(-0.360857\pi\)
0.423341 + 0.905971i \(0.360857\pi\)
\(600\) 0 0
\(601\) −28.3592 −1.15680 −0.578398 0.815755i \(-0.696322\pi\)
−0.578398 + 0.815755i \(0.696322\pi\)
\(602\) 3.59200i 0.146399i
\(603\) 37.8035i 1.53948i
\(604\) 20.6916 0.841930
\(605\) 0 0
\(606\) −4.29535 −0.174487
\(607\) 46.1211i 1.87200i 0.352004 + 0.935998i \(0.385500\pi\)
−0.352004 + 0.935998i \(0.614500\pi\)
\(608\) 15.7083i 0.637055i
\(609\) −0.211931 −0.00858789
\(610\) 0 0
\(611\) 1.24332 0.0502993
\(612\) − 0.394089i − 0.0159301i
\(613\) − 0.542682i − 0.0219187i −0.999940 0.0109594i \(-0.996511\pi\)
0.999940 0.0109594i \(-0.00348854\pi\)
\(614\) 15.5885 0.629102
\(615\) 0 0
\(616\) 2.28085 0.0918983
\(617\) 19.0924i 0.768630i 0.923202 + 0.384315i \(0.125562\pi\)
−0.923202 + 0.384315i \(0.874438\pi\)
\(618\) 0.369565i 0.0148661i
\(619\) −32.9718 −1.32525 −0.662624 0.748952i \(-0.730557\pi\)
−0.662624 + 0.748952i \(0.730557\pi\)
\(620\) 0 0
\(621\) −10.7918 −0.433058
\(622\) 4.07190i 0.163268i
\(623\) 2.80623i 0.112429i
\(624\) 3.43355 0.137452
\(625\) 0 0
\(626\) 3.20115 0.127944
\(627\) − 1.17739i − 0.0470204i
\(628\) − 31.7423i − 1.26665i
\(629\) −0.131435 −0.00524064
\(630\) 0 0
\(631\) 29.5879 1.17787 0.588937 0.808179i \(-0.299546\pi\)
0.588937 + 0.808179i \(0.299546\pi\)
\(632\) − 26.0813i − 1.03746i
\(633\) − 4.07184i − 0.161841i
\(634\) −8.01856 −0.318458
\(635\) 0 0
\(636\) −5.08480 −0.201625
\(637\) 4.61413i 0.182818i
\(638\) − 0.316032i − 0.0125118i
\(639\) −12.4288 −0.491676
\(640\) 0 0
\(641\) −13.8383 −0.546579 −0.273290 0.961932i \(-0.588112\pi\)
−0.273290 + 0.961932i \(0.588112\pi\)
\(642\) 3.74760i 0.147906i
\(643\) − 9.95758i − 0.392689i −0.980535 0.196344i \(-0.937093\pi\)
0.980535 0.196344i \(-0.0629070\pi\)
\(644\) −6.97219 −0.274743
\(645\) 0 0
\(646\) 0.153562 0.00604180
\(647\) − 28.3400i − 1.11416i −0.830459 0.557080i \(-0.811921\pi\)
0.830459 0.557080i \(-0.188079\pi\)
\(648\) 16.8928i 0.663613i
\(649\) 11.7082 0.459589
\(650\) 0 0
\(651\) −3.01951 −0.118344
\(652\) 22.9408i 0.898430i
\(653\) 44.6604i 1.74770i 0.486199 + 0.873848i \(0.338383\pi\)
−0.486199 + 0.873848i \(0.661617\pi\)
\(654\) 3.14996 0.123173
\(655\) 0 0
\(656\) 12.2131 0.476840
\(657\) − 16.7410i − 0.653131i
\(658\) − 0.170808i − 0.00665878i
\(659\) 1.54774 0.0602913 0.0301456 0.999546i \(-0.490403\pi\)
0.0301456 + 0.999546i \(0.490403\pi\)
\(660\) 0 0
\(661\) 31.8659 1.23944 0.619721 0.784822i \(-0.287246\pi\)
0.619721 + 0.784822i \(0.287246\pi\)
\(662\) 20.0371i 0.778765i
\(663\) − 0.171552i − 0.00666252i
\(664\) 5.47309 0.212397
\(665\) 0 0
\(666\) 2.68558 0.104064
\(667\) 2.17500i 0.0842163i
\(668\) 37.2041i 1.43947i
\(669\) −4.26019 −0.164708
\(670\) 0 0
\(671\) −4.43160 −0.171080
\(672\) − 2.41083i − 0.0929998i
\(673\) 26.5399i 1.02304i 0.859272 + 0.511519i \(0.170917\pi\)
−0.859272 + 0.511519i \(0.829083\pi\)
\(674\) 10.0454 0.386934
\(675\) 0 0
\(676\) −13.2492 −0.509584
\(677\) 16.5717i 0.636904i 0.947939 + 0.318452i \(0.103163\pi\)
−0.947939 + 0.318452i \(0.896837\pi\)
\(678\) − 2.12278i − 0.0815249i
\(679\) −0.504324 −0.0193542
\(680\) 0 0
\(681\) 2.76791 0.106067
\(682\) − 4.50269i − 0.172417i
\(683\) 3.06152i 0.117146i 0.998283 + 0.0585730i \(0.0186550\pi\)
−0.998283 + 0.0585730i \(0.981345\pi\)
\(684\) 12.4798 0.477178
\(685\) 0 0
\(686\) 0.633891 0.0242021
\(687\) − 12.1178i − 0.462324i
\(688\) − 9.91967i − 0.378184i
\(689\) 34.5349 1.31567
\(690\) 0 0
\(691\) 29.7730 1.13262 0.566309 0.824193i \(-0.308371\pi\)
0.566309 + 0.824193i \(0.308371\pi\)
\(692\) 16.3816i 0.622734i
\(693\) − 2.81930i − 0.107096i
\(694\) −5.45326 −0.207003
\(695\) 0 0
\(696\) −0.483385 −0.0183226
\(697\) − 0.610207i − 0.0231132i
\(698\) − 20.1128i − 0.761279i
\(699\) 5.85729 0.221543
\(700\) 0 0
\(701\) 2.55517 0.0965076 0.0482538 0.998835i \(-0.484634\pi\)
0.0482538 + 0.998835i \(0.484634\pi\)
\(702\) 7.23525i 0.273077i
\(703\) − 4.16221i − 0.156981i
\(704\) 0.0939234 0.00353987
\(705\) 0 0
\(706\) −11.0819 −0.417074
\(707\) 15.9406i 0.599508i
\(708\) − 7.95421i − 0.298937i
\(709\) 6.53595 0.245463 0.122731 0.992440i \(-0.460835\pi\)
0.122731 + 0.992440i \(0.460835\pi\)
\(710\) 0 0
\(711\) −32.2383 −1.20903
\(712\) 6.40060i 0.239872i
\(713\) 30.9885i 1.16053i
\(714\) −0.0235679 −0.000882005 0
\(715\) 0 0
\(716\) −36.0830 −1.34848
\(717\) − 5.06277i − 0.189073i
\(718\) 18.6437i 0.695778i
\(719\) −27.4125 −1.02231 −0.511157 0.859487i \(-0.670783\pi\)
−0.511157 + 0.859487i \(0.670783\pi\)
\(720\) 0 0
\(721\) 1.37151 0.0510776
\(722\) − 7.18101i − 0.267249i
\(723\) 3.28274i 0.122086i
\(724\) −21.9822 −0.816961
\(725\) 0 0
\(726\) −0.269459 −0.0100006
\(727\) 30.1724i 1.11903i 0.828819 + 0.559516i \(0.189013\pi\)
−0.828819 + 0.559516i \(0.810987\pi\)
\(728\) 10.5241i 0.390051i
\(729\) 17.7261 0.656522
\(730\) 0 0
\(731\) −0.495620 −0.0183312
\(732\) 3.01069i 0.111278i
\(733\) − 14.4616i − 0.534152i −0.963675 0.267076i \(-0.913942\pi\)
0.963675 0.267076i \(-0.0860575\pi\)
\(734\) 18.4097 0.679513
\(735\) 0 0
\(736\) −24.7418 −0.911993
\(737\) − 13.4088i − 0.493921i
\(738\) 12.4683i 0.458963i
\(739\) −32.9543 −1.21224 −0.606121 0.795372i \(-0.707275\pi\)
−0.606121 + 0.795372i \(0.707275\pi\)
\(740\) 0 0
\(741\) 5.43262 0.199572
\(742\) − 4.74442i − 0.174173i
\(743\) − 3.76396i − 0.138086i −0.997614 0.0690432i \(-0.978005\pi\)
0.997614 0.0690432i \(-0.0219946\pi\)
\(744\) −6.88706 −0.252492
\(745\) 0 0
\(746\) 14.2922 0.523274
\(747\) − 6.76513i − 0.247523i
\(748\) 0.139783i 0.00511096i
\(749\) 13.9079 0.508182
\(750\) 0 0
\(751\) 45.9444 1.67653 0.838267 0.545260i \(-0.183569\pi\)
0.838267 + 0.545260i \(0.183569\pi\)
\(752\) 0.471703i 0.0172012i
\(753\) − 3.20845i − 0.116923i
\(754\) 1.45821 0.0531049
\(755\) 0 0
\(756\) −3.95345 −0.143785
\(757\) 40.3467i 1.46643i 0.679999 + 0.733213i \(0.261980\pi\)
−0.679999 + 0.733213i \(0.738020\pi\)
\(758\) − 15.0499i − 0.546637i
\(759\) 1.85448 0.0673133
\(760\) 0 0
\(761\) −13.6871 −0.496157 −0.248079 0.968740i \(-0.579799\pi\)
−0.248079 + 0.968740i \(0.579799\pi\)
\(762\) − 1.03604i − 0.0375316i
\(763\) − 11.6899i − 0.423203i
\(764\) 7.58658 0.274473
\(765\) 0 0
\(766\) 2.97471 0.107480
\(767\) 54.0233i 1.95067i
\(768\) − 3.12022i − 0.112591i
\(769\) −38.5474 −1.39006 −0.695028 0.718983i \(-0.744608\pi\)
−0.695028 + 0.718983i \(0.744608\pi\)
\(770\) 0 0
\(771\) 7.19021 0.258949
\(772\) − 25.0753i − 0.902482i
\(773\) − 5.51659i − 0.198418i −0.995067 0.0992090i \(-0.968369\pi\)
0.995067 0.0992090i \(-0.0316312\pi\)
\(774\) 10.1269 0.364005
\(775\) 0 0
\(776\) −1.15029 −0.0412930
\(777\) 0.638796i 0.0229167i
\(778\) − 8.45163i − 0.303006i
\(779\) 19.3237 0.692345
\(780\) 0 0
\(781\) 4.40847 0.157748
\(782\) 0.241871i 0.00864930i
\(783\) 1.23329i 0.0440743i
\(784\) −1.75055 −0.0625197
\(785\) 0 0
\(786\) 0.366034 0.0130560
\(787\) − 29.7792i − 1.06151i −0.847524 0.530756i \(-0.821908\pi\)
0.847524 0.530756i \(-0.178092\pi\)
\(788\) − 10.2429i − 0.364889i
\(789\) 4.70212 0.167400
\(790\) 0 0
\(791\) −7.87792 −0.280107
\(792\) − 6.43041i − 0.228495i
\(793\) − 20.4479i − 0.726128i
\(794\) 11.6858 0.414714
\(795\) 0 0
\(796\) 16.7605 0.594060
\(797\) − 17.9922i − 0.637315i −0.947870 0.318658i \(-0.896768\pi\)
0.947870 0.318658i \(-0.103232\pi\)
\(798\) − 0.746336i − 0.0264200i
\(799\) 0.0235679 0.000833771 0
\(800\) 0 0
\(801\) 7.91160 0.279543
\(802\) − 15.7361i − 0.555662i
\(803\) 5.93802i 0.209548i
\(804\) −9.10953 −0.321268
\(805\) 0 0
\(806\) 20.7760 0.731802
\(807\) 11.5734i 0.407404i
\(808\) 36.3582i 1.27908i
\(809\) −10.4613 −0.367801 −0.183901 0.982945i \(-0.558872\pi\)
−0.183901 + 0.982945i \(0.558872\pi\)
\(810\) 0 0
\(811\) 43.7701 1.53698 0.768489 0.639863i \(-0.221009\pi\)
0.768489 + 0.639863i \(0.221009\pi\)
\(812\) 0.796788i 0.0279618i
\(813\) − 6.13293i − 0.215091i
\(814\) −0.952571 −0.0333876
\(815\) 0 0
\(816\) 0.0650850 0.00227843
\(817\) − 15.6951i − 0.549101i
\(818\) 14.0125i 0.489936i
\(819\) 13.0086 0.454557
\(820\) 0 0
\(821\) −11.8371 −0.413119 −0.206559 0.978434i \(-0.566227\pi\)
−0.206559 + 0.978434i \(0.566227\pi\)
\(822\) − 0.607928i − 0.0212039i
\(823\) 46.7082i 1.62815i 0.580762 + 0.814073i \(0.302755\pi\)
−0.580762 + 0.814073i \(0.697245\pi\)
\(824\) 3.12821 0.108976
\(825\) 0 0
\(826\) 7.42175 0.258236
\(827\) 40.2990i 1.40133i 0.713489 + 0.700666i \(0.247114\pi\)
−0.713489 + 0.700666i \(0.752886\pi\)
\(828\) 19.6567i 0.683117i
\(829\) −7.42077 −0.257734 −0.128867 0.991662i \(-0.541134\pi\)
−0.128867 + 0.991662i \(0.541134\pi\)
\(830\) 0 0
\(831\) 1.61680 0.0560861
\(832\) 0.433374i 0.0150246i
\(833\) 0.0874635i 0.00303043i
\(834\) 0.0741392 0.00256723
\(835\) 0 0
\(836\) −4.42657 −0.153096
\(837\) 17.5714i 0.607357i
\(838\) − 18.6431i − 0.644016i
\(839\) −23.6372 −0.816046 −0.408023 0.912972i \(-0.633782\pi\)
−0.408023 + 0.912972i \(0.633782\pi\)
\(840\) 0 0
\(841\) −28.7514 −0.991429
\(842\) − 14.5362i − 0.500951i
\(843\) − 8.65076i − 0.297948i
\(844\) −15.3087 −0.526947
\(845\) 0 0
\(846\) −0.481558 −0.0165563
\(847\) 1.00000i 0.0343604i
\(848\) 13.1022i 0.449931i
\(849\) −1.79160 −0.0614874
\(850\) 0 0
\(851\) 6.55580 0.224730
\(852\) − 2.99498i − 0.102606i
\(853\) 31.5024i 1.07862i 0.842106 + 0.539311i \(0.181315\pi\)
−0.842106 + 0.539311i \(0.818685\pi\)
\(854\) −2.80915 −0.0961271
\(855\) 0 0
\(856\) 31.7218 1.08423
\(857\) 30.8943i 1.05533i 0.849452 + 0.527665i \(0.176932\pi\)
−0.849452 + 0.527665i \(0.823068\pi\)
\(858\) − 1.24332i − 0.0424462i
\(859\) −35.8938 −1.22468 −0.612340 0.790594i \(-0.709772\pi\)
−0.612340 + 0.790594i \(0.709772\pi\)
\(860\) 0 0
\(861\) −2.96571 −0.101071
\(862\) 19.6806i 0.670325i
\(863\) 16.3679i 0.557170i 0.960412 + 0.278585i \(0.0898653\pi\)
−0.960412 + 0.278585i \(0.910135\pi\)
\(864\) −14.0293 −0.477288
\(865\) 0 0
\(866\) 17.3542 0.589718
\(867\) 7.22324i 0.245314i
\(868\) 11.3523i 0.385322i
\(869\) 11.4349 0.387901
\(870\) 0 0
\(871\) 61.8700 2.09639
\(872\) − 26.6630i − 0.902923i
\(873\) 1.42184i 0.0481220i
\(874\) −7.65946 −0.259085
\(875\) 0 0
\(876\) 4.03410 0.136300
\(877\) − 19.6026i − 0.661932i −0.943643 0.330966i \(-0.892625\pi\)
0.943643 0.330966i \(-0.107375\pi\)
\(878\) − 3.44664i − 0.116318i
\(879\) 14.1079 0.475848
\(880\) 0 0
\(881\) 19.6500 0.662025 0.331012 0.943626i \(-0.392610\pi\)
0.331012 + 0.943626i \(0.392610\pi\)
\(882\) − 1.78713i − 0.0601757i
\(883\) − 35.2229i − 1.18534i −0.805444 0.592672i \(-0.798073\pi\)
0.805444 0.592672i \(-0.201927\pi\)
\(884\) −0.644975 −0.0216928
\(885\) 0 0
\(886\) 6.55283 0.220147
\(887\) − 38.4382i − 1.29063i −0.763918 0.645314i \(-0.776727\pi\)
0.763918 0.645314i \(-0.223273\pi\)
\(888\) 1.45700i 0.0488937i
\(889\) −3.84487 −0.128953
\(890\) 0 0
\(891\) −7.40635 −0.248122
\(892\) 16.0168i 0.536282i
\(893\) 0.746336i 0.0249752i
\(894\) −0.867055 −0.0289986
\(895\) 0 0
\(896\) −11.2832 −0.376945
\(897\) 8.55679i 0.285703i
\(898\) − 11.1183i − 0.371023i
\(899\) 3.54139 0.118112
\(900\) 0 0
\(901\) 0.654629 0.0218089
\(902\) − 4.42246i − 0.147252i
\(903\) 2.40880i 0.0801599i
\(904\) −17.9684 −0.597620
\(905\) 0 0
\(906\) −3.48868 −0.115904
\(907\) − 40.3084i − 1.33842i −0.743075 0.669209i \(-0.766633\pi\)
0.743075 0.669209i \(-0.233367\pi\)
\(908\) − 10.4064i − 0.345348i
\(909\) 44.9414 1.49061
\(910\) 0 0
\(911\) 18.7318 0.620612 0.310306 0.950637i \(-0.399568\pi\)
0.310306 + 0.950637i \(0.399568\pi\)
\(912\) 2.06108i 0.0682492i
\(913\) 2.39958i 0.0794144i
\(914\) 0.855238 0.0282888
\(915\) 0 0
\(916\) −45.5588 −1.50531
\(917\) − 1.35840i − 0.0448583i
\(918\) 0.137148i 0.00452657i
\(919\) −21.0980 −0.695958 −0.347979 0.937502i \(-0.613132\pi\)
−0.347979 + 0.937502i \(0.613132\pi\)
\(920\) 0 0
\(921\) 10.4537 0.344461
\(922\) − 19.3895i − 0.638561i
\(923\) 20.3412i 0.669540i
\(924\) 0.679368 0.0223496
\(925\) 0 0
\(926\) 25.6250 0.842090
\(927\) − 3.86669i − 0.126999i
\(928\) 2.82751i 0.0928176i
\(929\) −42.6410 −1.39901 −0.699503 0.714629i \(-0.746595\pi\)
−0.699503 + 0.714629i \(0.746595\pi\)
\(930\) 0 0
\(931\) −2.76975 −0.0907750
\(932\) − 22.0214i − 0.721334i
\(933\) 2.73062i 0.0893966i
\(934\) 16.6814 0.545831
\(935\) 0 0
\(936\) 29.6707 0.969818
\(937\) 5.15757i 0.168491i 0.996445 + 0.0842453i \(0.0268479\pi\)
−0.996445 + 0.0842453i \(0.973152\pi\)
\(938\) − 8.49973i − 0.277526i
\(939\) 2.14670 0.0700548
\(940\) 0 0
\(941\) −53.5224 −1.74478 −0.872390 0.488810i \(-0.837431\pi\)
−0.872390 + 0.488810i \(0.837431\pi\)
\(942\) 5.35186i 0.174373i
\(943\) 30.4364i 0.991144i
\(944\) −20.4959 −0.667084
\(945\) 0 0
\(946\) −3.59200 −0.116786
\(947\) 16.2031i 0.526530i 0.964724 + 0.263265i \(0.0847994\pi\)
−0.964724 + 0.263265i \(0.915201\pi\)
\(948\) − 7.76849i − 0.252309i
\(949\) −27.3987 −0.889401
\(950\) 0 0
\(951\) −5.37726 −0.174370
\(952\) 0.199492i 0.00646556i
\(953\) 35.2173i 1.14080i 0.821366 + 0.570401i \(0.193212\pi\)
−0.821366 + 0.570401i \(0.806788\pi\)
\(954\) −13.3759 −0.433062
\(955\) 0 0
\(956\) −19.0342 −0.615611
\(957\) − 0.211931i − 0.00685077i
\(958\) − 2.12574i − 0.0686797i
\(959\) −2.25610 −0.0728533
\(960\) 0 0
\(961\) 19.4562 0.627619
\(962\) − 4.39528i − 0.141710i
\(963\) − 39.2104i − 1.26354i
\(964\) 12.3420 0.397508
\(965\) 0 0
\(966\) 1.17554 0.0378223
\(967\) 50.4619i 1.62275i 0.584529 + 0.811373i \(0.301279\pi\)
−0.584529 + 0.811373i \(0.698721\pi\)
\(968\) 2.28085i 0.0733094i
\(969\) 0.102979 0.00330815
\(970\) 0 0
\(971\) 37.8328 1.21411 0.607057 0.794659i \(-0.292350\pi\)
0.607057 + 0.794659i \(0.292350\pi\)
\(972\) 16.8920i 0.541811i
\(973\) − 0.275141i − 0.00882061i
\(974\) −8.74534 −0.280219
\(975\) 0 0
\(976\) 7.75774 0.248319
\(977\) 19.6920i 0.630002i 0.949091 + 0.315001i \(0.102005\pi\)
−0.949091 + 0.315001i \(0.897995\pi\)
\(978\) − 3.86790i − 0.123682i
\(979\) −2.80623 −0.0896874
\(980\) 0 0
\(981\) −32.9574 −1.05225
\(982\) − 23.4603i − 0.748648i
\(983\) 61.7486i 1.96947i 0.174052 + 0.984736i \(0.444314\pi\)
−0.174052 + 0.984736i \(0.555686\pi\)
\(984\) −6.76435 −0.215640
\(985\) 0 0
\(986\) 0.0276413 0.000880277 0
\(987\) − 0.114544i − 0.00364597i
\(988\) − 20.4248i − 0.649798i
\(989\) 24.7209 0.786080
\(990\) 0 0
\(991\) 27.0205 0.858336 0.429168 0.903225i \(-0.358807\pi\)
0.429168 + 0.903225i \(0.358807\pi\)
\(992\) 40.2852i 1.27905i
\(993\) 13.4369i 0.426408i
\(994\) 2.79449 0.0886358
\(995\) 0 0
\(996\) 1.63020 0.0516547
\(997\) − 49.4068i − 1.56473i −0.622821 0.782364i \(-0.714014\pi\)
0.622821 0.782364i \(-0.285986\pi\)
\(998\) 10.8013i 0.341910i
\(999\) 3.71734 0.117612
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1925.2.b.q.1849.8 14
5.2 odd 4 1925.2.a.ba.1.4 7
5.3 odd 4 1925.2.a.bc.1.4 yes 7
5.4 even 2 inner 1925.2.b.q.1849.7 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1925.2.a.ba.1.4 7 5.2 odd 4
1925.2.a.bc.1.4 yes 7 5.3 odd 4
1925.2.b.q.1849.7 14 5.4 even 2 inner
1925.2.b.q.1849.8 14 1.1 even 1 trivial