Properties

Label 1925.2.b.q.1849.10
Level $1925$
Weight $2$
Character 1925.1849
Analytic conductor $15.371$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1925,2,Mod(1849,1925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1925, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1925.1849"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1925 = 5^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1925.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,-26,0,-2,0,0,-26,0,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3712023891\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 27x^{12} + 283x^{10} + 1442x^{8} + 3659x^{6} + 4315x^{4} + 2225x^{2} + 400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1849.10
Root \(1.06204i\) of defining polynomial
Character \(\chi\) \(=\) 1925.1849
Dual form 1925.2.b.q.1849.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.06204i q^{2} -1.17047i q^{3} +0.872076 q^{4} +1.24309 q^{6} -1.00000i q^{7} +3.05025i q^{8} +1.63000 q^{9} -1.00000 q^{11} -1.02074i q^{12} -6.82997i q^{13} +1.06204 q^{14} -1.49533 q^{16} -2.26325i q^{17} +1.73112i q^{18} -6.41641 q^{19} -1.17047 q^{21} -1.06204i q^{22} -9.35726i q^{23} +3.57024 q^{24} +7.25368 q^{26} -5.41928i q^{27} -0.872076i q^{28} -4.96420 q^{29} -0.856196 q^{31} +4.51241i q^{32} +1.17047i q^{33} +2.40366 q^{34} +1.42148 q^{36} +6.61436i q^{37} -6.81447i q^{38} -7.99428 q^{39} +0.527296 q^{41} -1.24309i q^{42} -4.95746i q^{43} -0.872076 q^{44} +9.93777 q^{46} +1.24309i q^{47} +1.75024i q^{48} -1.00000 q^{49} -2.64907 q^{51} -5.95625i q^{52} +3.97763i q^{53} +5.75548 q^{54} +3.05025 q^{56} +7.51023i q^{57} -5.27217i q^{58} +11.6526 q^{59} +3.40640 q^{61} -0.909312i q^{62} -1.63000i q^{63} -7.78301 q^{64} -1.24309 q^{66} +5.32284i q^{67} -1.97373i q^{68} -10.9524 q^{69} +4.43143 q^{71} +4.97190i q^{72} -1.06974i q^{73} -7.02470 q^{74} -5.59560 q^{76} +1.00000i q^{77} -8.49023i q^{78} +0.966826 q^{79} -1.45313 q^{81} +0.560008i q^{82} +6.07331i q^{83} -1.02074 q^{84} +5.26501 q^{86} +5.81046i q^{87} -3.05025i q^{88} +3.55617 q^{89} -6.82997 q^{91} -8.16024i q^{92} +1.00215i q^{93} -1.32020 q^{94} +5.28165 q^{96} -16.8926i q^{97} -1.06204i q^{98} -1.63000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 26 q^{4} - 2 q^{6} - 26 q^{9} - 14 q^{11} - 2 q^{14} + 58 q^{16} - 36 q^{19} + 44 q^{24} + 26 q^{26} + 4 q^{29} + 48 q^{31} - 66 q^{34} + 88 q^{36} - 20 q^{39} - 20 q^{41} + 26 q^{44} + 6 q^{46}+ \cdots + 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1925\mathbb{Z}\right)^\times\).

\(n\) \(276\) \(1002\) \(1751\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.06204i 0.750974i 0.926828 + 0.375487i \(0.122525\pi\)
−0.926828 + 0.375487i \(0.877475\pi\)
\(3\) − 1.17047i − 0.675772i −0.941187 0.337886i \(-0.890288\pi\)
0.941187 0.337886i \(-0.109712\pi\)
\(4\) 0.872076 0.436038
\(5\) 0 0
\(6\) 1.24309 0.507487
\(7\) − 1.00000i − 0.377964i
\(8\) 3.05025i 1.07843i
\(9\) 1.63000 0.543332
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) − 1.02074i − 0.294662i
\(13\) − 6.82997i − 1.89429i −0.320803 0.947146i \(-0.603953\pi\)
0.320803 0.947146i \(-0.396047\pi\)
\(14\) 1.06204 0.283841
\(15\) 0 0
\(16\) −1.49533 −0.373833
\(17\) − 2.26325i − 0.548919i −0.961599 0.274460i \(-0.911501\pi\)
0.961599 0.274460i \(-0.0884990\pi\)
\(18\) 1.73112i 0.408028i
\(19\) −6.41641 −1.47203 −0.736013 0.676968i \(-0.763294\pi\)
−0.736013 + 0.676968i \(0.763294\pi\)
\(20\) 0 0
\(21\) −1.17047 −0.255418
\(22\) − 1.06204i − 0.226427i
\(23\) − 9.35726i − 1.95112i −0.219724 0.975562i \(-0.570516\pi\)
0.219724 0.975562i \(-0.429484\pi\)
\(24\) 3.57024 0.728771
\(25\) 0 0
\(26\) 7.25368 1.42256
\(27\) − 5.41928i − 1.04294i
\(28\) − 0.872076i − 0.164807i
\(29\) −4.96420 −0.921829 −0.460914 0.887445i \(-0.652478\pi\)
−0.460914 + 0.887445i \(0.652478\pi\)
\(30\) 0 0
\(31\) −0.856196 −0.153777 −0.0768887 0.997040i \(-0.524499\pi\)
−0.0768887 + 0.997040i \(0.524499\pi\)
\(32\) 4.51241i 0.797689i
\(33\) 1.17047i 0.203753i
\(34\) 2.40366 0.412224
\(35\) 0 0
\(36\) 1.42148 0.236913
\(37\) 6.61436i 1.08739i 0.839281 + 0.543697i \(0.182976\pi\)
−0.839281 + 0.543697i \(0.817024\pi\)
\(38\) − 6.81447i − 1.10545i
\(39\) −7.99428 −1.28011
\(40\) 0 0
\(41\) 0.527296 0.0823498 0.0411749 0.999152i \(-0.486890\pi\)
0.0411749 + 0.999152i \(0.486890\pi\)
\(42\) − 1.24309i − 0.191812i
\(43\) − 4.95746i − 0.756005i −0.925804 0.378003i \(-0.876611\pi\)
0.925804 0.378003i \(-0.123389\pi\)
\(44\) −0.872076 −0.131470
\(45\) 0 0
\(46\) 9.93777 1.46524
\(47\) 1.24309i 0.181323i 0.995882 + 0.0906613i \(0.0288981\pi\)
−0.995882 + 0.0906613i \(0.971102\pi\)
\(48\) 1.75024i 0.252626i
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) −2.64907 −0.370945
\(52\) − 5.95625i − 0.825983i
\(53\) 3.97763i 0.546369i 0.961962 + 0.273185i \(0.0880770\pi\)
−0.961962 + 0.273185i \(0.911923\pi\)
\(54\) 5.75548 0.783222
\(55\) 0 0
\(56\) 3.05025 0.407607
\(57\) 7.51023i 0.994754i
\(58\) − 5.27217i − 0.692269i
\(59\) 11.6526 1.51704 0.758518 0.651652i \(-0.225924\pi\)
0.758518 + 0.651652i \(0.225924\pi\)
\(60\) 0 0
\(61\) 3.40640 0.436145 0.218072 0.975933i \(-0.430023\pi\)
0.218072 + 0.975933i \(0.430023\pi\)
\(62\) − 0.909312i − 0.115483i
\(63\) − 1.63000i − 0.205360i
\(64\) −7.78301 −0.972876
\(65\) 0 0
\(66\) −1.24309 −0.153013
\(67\) 5.32284i 0.650288i 0.945665 + 0.325144i \(0.105413\pi\)
−0.945665 + 0.325144i \(0.894587\pi\)
\(68\) − 1.97373i − 0.239350i
\(69\) −10.9524 −1.31852
\(70\) 0 0
\(71\) 4.43143 0.525914 0.262957 0.964808i \(-0.415302\pi\)
0.262957 + 0.964808i \(0.415302\pi\)
\(72\) 4.97190i 0.585944i
\(73\) − 1.06974i − 0.125204i −0.998039 0.0626019i \(-0.980060\pi\)
0.998039 0.0626019i \(-0.0199399\pi\)
\(74\) −7.02470 −0.816605
\(75\) 0 0
\(76\) −5.59560 −0.641859
\(77\) 1.00000i 0.113961i
\(78\) − 8.49023i − 0.961329i
\(79\) 0.966826 0.108776 0.0543882 0.998520i \(-0.482679\pi\)
0.0543882 + 0.998520i \(0.482679\pi\)
\(80\) 0 0
\(81\) −1.45313 −0.161459
\(82\) 0.560008i 0.0618426i
\(83\) 6.07331i 0.666633i 0.942815 + 0.333316i \(0.108168\pi\)
−0.942815 + 0.333316i \(0.891832\pi\)
\(84\) −1.02074 −0.111372
\(85\) 0 0
\(86\) 5.26501 0.567740
\(87\) 5.81046i 0.622946i
\(88\) − 3.05025i − 0.325158i
\(89\) 3.55617 0.376954 0.188477 0.982078i \(-0.439645\pi\)
0.188477 + 0.982078i \(0.439645\pi\)
\(90\) 0 0
\(91\) −6.82997 −0.715975
\(92\) − 8.16024i − 0.850764i
\(93\) 1.00215i 0.103918i
\(94\) −1.32020 −0.136169
\(95\) 0 0
\(96\) 5.28165 0.539056
\(97\) − 16.8926i − 1.71518i −0.514331 0.857592i \(-0.671960\pi\)
0.514331 0.857592i \(-0.328040\pi\)
\(98\) − 1.06204i − 0.107282i
\(99\) −1.63000 −0.163821
\(100\) 0 0
\(101\) 8.23058 0.818974 0.409487 0.912316i \(-0.365708\pi\)
0.409487 + 0.912316i \(0.365708\pi\)
\(102\) − 2.81342i − 0.278570i
\(103\) − 17.1467i − 1.68951i −0.535150 0.844757i \(-0.679745\pi\)
0.535150 0.844757i \(-0.320255\pi\)
\(104\) 20.8331 2.04286
\(105\) 0 0
\(106\) −4.22439 −0.410309
\(107\) − 17.4535i − 1.68729i −0.536902 0.843645i \(-0.680406\pi\)
0.536902 0.843645i \(-0.319594\pi\)
\(108\) − 4.72602i − 0.454762i
\(109\) −9.79014 −0.937725 −0.468863 0.883271i \(-0.655336\pi\)
−0.468863 + 0.883271i \(0.655336\pi\)
\(110\) 0 0
\(111\) 7.74193 0.734831
\(112\) 1.49533i 0.141296i
\(113\) 16.6228i 1.56374i 0.623439 + 0.781872i \(0.285735\pi\)
−0.623439 + 0.781872i \(0.714265\pi\)
\(114\) −7.97614 −0.747034
\(115\) 0 0
\(116\) −4.32916 −0.401952
\(117\) − 11.1328i − 1.02923i
\(118\) 12.3755i 1.13925i
\(119\) −2.26325 −0.207472
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 3.61772i 0.327533i
\(123\) − 0.617186i − 0.0556497i
\(124\) −0.746668 −0.0670528
\(125\) 0 0
\(126\) 1.73112 0.154220
\(127\) − 16.1524i − 1.43330i −0.697435 0.716648i \(-0.745675\pi\)
0.697435 0.716648i \(-0.254325\pi\)
\(128\) 0.758967i 0.0670838i
\(129\) −5.80257 −0.510888
\(130\) 0 0
\(131\) 9.91338 0.866136 0.433068 0.901361i \(-0.357431\pi\)
0.433068 + 0.901361i \(0.357431\pi\)
\(132\) 1.02074i 0.0888441i
\(133\) 6.41641i 0.556373i
\(134\) −5.65305 −0.488349
\(135\) 0 0
\(136\) 6.90349 0.591970
\(137\) 4.06402i 0.347213i 0.984815 + 0.173606i \(0.0555420\pi\)
−0.984815 + 0.173606i \(0.944458\pi\)
\(138\) − 11.6319i − 0.990171i
\(139\) −14.0507 −1.19176 −0.595881 0.803073i \(-0.703197\pi\)
−0.595881 + 0.803073i \(0.703197\pi\)
\(140\) 0 0
\(141\) 1.45500 0.122533
\(142\) 4.70634i 0.394947i
\(143\) 6.82997i 0.571150i
\(144\) −2.43738 −0.203115
\(145\) 0 0
\(146\) 1.13611 0.0940249
\(147\) 1.17047i 0.0965389i
\(148\) 5.76823i 0.474145i
\(149\) 4.68802 0.384058 0.192029 0.981389i \(-0.438493\pi\)
0.192029 + 0.981389i \(0.438493\pi\)
\(150\) 0 0
\(151\) 4.15871 0.338431 0.169215 0.985579i \(-0.445877\pi\)
0.169215 + 0.985579i \(0.445877\pi\)
\(152\) − 19.5717i − 1.58747i
\(153\) − 3.68909i − 0.298245i
\(154\) −1.06204 −0.0855814
\(155\) 0 0
\(156\) −6.97162 −0.558177
\(157\) 9.50165i 0.758314i 0.925332 + 0.379157i \(0.123786\pi\)
−0.925332 + 0.379157i \(0.876214\pi\)
\(158\) 1.02681i 0.0816883i
\(159\) 4.65570 0.369221
\(160\) 0 0
\(161\) −9.35726 −0.737456
\(162\) − 1.54328i − 0.121251i
\(163\) 23.3193i 1.82651i 0.407386 + 0.913256i \(0.366440\pi\)
−0.407386 + 0.913256i \(0.633560\pi\)
\(164\) 0.459842 0.0359077
\(165\) 0 0
\(166\) −6.45009 −0.500624
\(167\) − 12.6057i − 0.975458i −0.872995 0.487729i \(-0.837825\pi\)
0.872995 0.487729i \(-0.162175\pi\)
\(168\) − 3.57024i − 0.275450i
\(169\) −33.6484 −2.58834
\(170\) 0 0
\(171\) −10.4587 −0.799798
\(172\) − 4.32328i − 0.329647i
\(173\) − 9.26682i − 0.704543i −0.935898 0.352272i \(-0.885409\pi\)
0.935898 0.352272i \(-0.114591\pi\)
\(174\) −6.17092 −0.467817
\(175\) 0 0
\(176\) 1.49533 0.112715
\(177\) − 13.6390i − 1.02517i
\(178\) 3.77679i 0.283082i
\(179\) 15.5397 1.16149 0.580747 0.814084i \(-0.302761\pi\)
0.580747 + 0.814084i \(0.302761\pi\)
\(180\) 0 0
\(181\) −3.33690 −0.248030 −0.124015 0.992280i \(-0.539577\pi\)
−0.124015 + 0.992280i \(0.539577\pi\)
\(182\) − 7.25368i − 0.537679i
\(183\) − 3.98710i − 0.294735i
\(184\) 28.5420 2.10415
\(185\) 0 0
\(186\) −1.06432 −0.0780401
\(187\) 2.26325i 0.165505i
\(188\) 1.08406i 0.0790636i
\(189\) −5.41928 −0.394195
\(190\) 0 0
\(191\) 20.9541 1.51618 0.758092 0.652147i \(-0.226132\pi\)
0.758092 + 0.652147i \(0.226132\pi\)
\(192\) 9.10979i 0.657443i
\(193\) 13.7901i 0.992636i 0.868141 + 0.496318i \(0.165315\pi\)
−0.868141 + 0.496318i \(0.834685\pi\)
\(194\) 17.9406 1.28806
\(195\) 0 0
\(196\) −0.872076 −0.0622911
\(197\) 11.4424i 0.815234i 0.913153 + 0.407617i \(0.133640\pi\)
−0.913153 + 0.407617i \(0.866360\pi\)
\(198\) − 1.73112i − 0.123025i
\(199\) −21.8077 −1.54591 −0.772955 0.634461i \(-0.781222\pi\)
−0.772955 + 0.634461i \(0.781222\pi\)
\(200\) 0 0
\(201\) 6.23023 0.439447
\(202\) 8.74119i 0.615028i
\(203\) 4.96420i 0.348418i
\(204\) −2.31019 −0.161746
\(205\) 0 0
\(206\) 18.2104 1.26878
\(207\) − 15.2523i − 1.06011i
\(208\) 10.2131i 0.708148i
\(209\) 6.41641 0.443832
\(210\) 0 0
\(211\) 23.1975 1.59698 0.798490 0.602008i \(-0.205632\pi\)
0.798490 + 0.602008i \(0.205632\pi\)
\(212\) 3.46879i 0.238238i
\(213\) − 5.18686i − 0.355398i
\(214\) 18.5362 1.26711
\(215\) 0 0
\(216\) 16.5302 1.12474
\(217\) 0.856196i 0.0581224i
\(218\) − 10.3975i − 0.704207i
\(219\) −1.25210 −0.0846093
\(220\) 0 0
\(221\) −15.4579 −1.03981
\(222\) 8.22222i 0.551839i
\(223\) − 2.36026i − 0.158055i −0.996872 0.0790274i \(-0.974819\pi\)
0.996872 0.0790274i \(-0.0251815\pi\)
\(224\) 4.51241 0.301498
\(225\) 0 0
\(226\) −17.6541 −1.17433
\(227\) 28.4393i 1.88758i 0.330545 + 0.943790i \(0.392768\pi\)
−0.330545 + 0.943790i \(0.607232\pi\)
\(228\) 6.54949i 0.433751i
\(229\) 18.9280 1.25080 0.625400 0.780305i \(-0.284936\pi\)
0.625400 + 0.780305i \(0.284936\pi\)
\(230\) 0 0
\(231\) 1.17047 0.0770114
\(232\) − 15.1421i − 0.994125i
\(233\) − 17.8126i − 1.16694i −0.812135 0.583470i \(-0.801695\pi\)
0.812135 0.583470i \(-0.198305\pi\)
\(234\) 11.8235 0.772924
\(235\) 0 0
\(236\) 10.1619 0.661485
\(237\) − 1.13164i − 0.0735081i
\(238\) − 2.40366i − 0.155806i
\(239\) 13.3135 0.861179 0.430589 0.902548i \(-0.358306\pi\)
0.430589 + 0.902548i \(0.358306\pi\)
\(240\) 0 0
\(241\) 8.43397 0.543280 0.271640 0.962399i \(-0.412434\pi\)
0.271640 + 0.962399i \(0.412434\pi\)
\(242\) 1.06204i 0.0682704i
\(243\) − 14.5570i − 0.933831i
\(244\) 2.97064 0.190176
\(245\) 0 0
\(246\) 0.655474 0.0417915
\(247\) 43.8239i 2.78845i
\(248\) − 2.61161i − 0.165838i
\(249\) 7.10864 0.450492
\(250\) 0 0
\(251\) 13.9949 0.883350 0.441675 0.897175i \(-0.354384\pi\)
0.441675 + 0.897175i \(0.354384\pi\)
\(252\) − 1.42148i − 0.0895448i
\(253\) 9.35726i 0.588286i
\(254\) 17.1545 1.07637
\(255\) 0 0
\(256\) −16.3721 −1.02325
\(257\) 7.16272i 0.446798i 0.974727 + 0.223399i \(0.0717153\pi\)
−0.974727 + 0.223399i \(0.928285\pi\)
\(258\) − 6.16255i − 0.383663i
\(259\) 6.61436 0.410996
\(260\) 0 0
\(261\) −8.09162 −0.500859
\(262\) 10.5284i 0.650446i
\(263\) − 7.01651i − 0.432657i −0.976321 0.216328i \(-0.930592\pi\)
0.976321 0.216328i \(-0.0694081\pi\)
\(264\) −3.57024 −0.219733
\(265\) 0 0
\(266\) −6.81447 −0.417822
\(267\) − 4.16240i − 0.254735i
\(268\) 4.64192i 0.283550i
\(269\) 4.13429 0.252072 0.126036 0.992026i \(-0.459774\pi\)
0.126036 + 0.992026i \(0.459774\pi\)
\(270\) 0 0
\(271\) −12.8230 −0.778939 −0.389469 0.921039i \(-0.627342\pi\)
−0.389469 + 0.921039i \(0.627342\pi\)
\(272\) 3.38431i 0.205204i
\(273\) 7.99428i 0.483836i
\(274\) −4.31614 −0.260748
\(275\) 0 0
\(276\) −9.55134 −0.574923
\(277\) − 10.8885i − 0.654227i −0.944985 0.327114i \(-0.893924\pi\)
0.944985 0.327114i \(-0.106076\pi\)
\(278\) − 14.9223i − 0.894983i
\(279\) −1.39560 −0.0835521
\(280\) 0 0
\(281\) −3.16841 −0.189011 −0.0945056 0.995524i \(-0.530127\pi\)
−0.0945056 + 0.995524i \(0.530127\pi\)
\(282\) 1.54526i 0.0920190i
\(283\) 33.0957i 1.96733i 0.179997 + 0.983667i \(0.442391\pi\)
−0.179997 + 0.983667i \(0.557609\pi\)
\(284\) 3.86454 0.229318
\(285\) 0 0
\(286\) −7.25368 −0.428919
\(287\) − 0.527296i − 0.0311253i
\(288\) 7.35520i 0.433409i
\(289\) 11.8777 0.698687
\(290\) 0 0
\(291\) −19.7723 −1.15907
\(292\) − 0.932897i − 0.0545937i
\(293\) 17.3630i 1.01436i 0.861841 + 0.507178i \(0.169311\pi\)
−0.861841 + 0.507178i \(0.830689\pi\)
\(294\) −1.24309 −0.0724982
\(295\) 0 0
\(296\) −20.1755 −1.17268
\(297\) 5.41928i 0.314459i
\(298\) 4.97886i 0.288417i
\(299\) −63.9098 −3.69600
\(300\) 0 0
\(301\) −4.95746 −0.285743
\(302\) 4.41670i 0.254153i
\(303\) − 9.63367i − 0.553440i
\(304\) 9.59466 0.550291
\(305\) 0 0
\(306\) 3.91795 0.223974
\(307\) − 11.7256i − 0.669217i −0.942357 0.334608i \(-0.891396\pi\)
0.942357 0.334608i \(-0.108604\pi\)
\(308\) 0.872076i 0.0496911i
\(309\) −20.0697 −1.14173
\(310\) 0 0
\(311\) 10.4874 0.594686 0.297343 0.954771i \(-0.403900\pi\)
0.297343 + 0.954771i \(0.403900\pi\)
\(312\) − 24.3846i − 1.38051i
\(313\) 22.0342i 1.24545i 0.782443 + 0.622723i \(0.213973\pi\)
−0.782443 + 0.622723i \(0.786027\pi\)
\(314\) −10.0911 −0.569474
\(315\) 0 0
\(316\) 0.843146 0.0474307
\(317\) 14.8993i 0.836827i 0.908257 + 0.418414i \(0.137414\pi\)
−0.908257 + 0.418414i \(0.862586\pi\)
\(318\) 4.94453i 0.277275i
\(319\) 4.96420 0.277942
\(320\) 0 0
\(321\) −20.4288 −1.14022
\(322\) − 9.93777i − 0.553810i
\(323\) 14.5220i 0.808023i
\(324\) −1.26724 −0.0704022
\(325\) 0 0
\(326\) −24.7660 −1.37166
\(327\) 11.4591i 0.633689i
\(328\) 1.60839i 0.0888083i
\(329\) 1.24309 0.0685335
\(330\) 0 0
\(331\) 13.5775 0.746290 0.373145 0.927773i \(-0.378279\pi\)
0.373145 + 0.927773i \(0.378279\pi\)
\(332\) 5.29639i 0.290677i
\(333\) 10.7814i 0.590816i
\(334\) 13.3877 0.732543
\(335\) 0 0
\(336\) 1.75024 0.0954836
\(337\) 3.68755i 0.200874i 0.994943 + 0.100437i \(0.0320241\pi\)
−0.994943 + 0.100437i \(0.967976\pi\)
\(338\) − 35.7359i − 1.94378i
\(339\) 19.4566 1.05674
\(340\) 0 0
\(341\) 0.856196 0.0463656
\(342\) − 11.1075i − 0.600628i
\(343\) 1.00000i 0.0539949i
\(344\) 15.1215 0.815297
\(345\) 0 0
\(346\) 9.84171 0.529094
\(347\) − 19.0044i − 1.02021i −0.860112 0.510106i \(-0.829606\pi\)
0.860112 0.510106i \(-0.170394\pi\)
\(348\) 5.06716i 0.271628i
\(349\) 5.67289 0.303663 0.151831 0.988406i \(-0.451483\pi\)
0.151831 + 0.988406i \(0.451483\pi\)
\(350\) 0 0
\(351\) −37.0135 −1.97563
\(352\) − 4.51241i − 0.240512i
\(353\) − 2.84951i − 0.151664i −0.997121 0.0758320i \(-0.975839\pi\)
0.997121 0.0758320i \(-0.0241613\pi\)
\(354\) 14.4851 0.769876
\(355\) 0 0
\(356\) 3.10125 0.164366
\(357\) 2.64907i 0.140204i
\(358\) 16.5038i 0.872251i
\(359\) −20.9541 −1.10592 −0.552958 0.833209i \(-0.686501\pi\)
−0.552958 + 0.833209i \(0.686501\pi\)
\(360\) 0 0
\(361\) 22.1703 1.16686
\(362\) − 3.54392i − 0.186264i
\(363\) − 1.17047i − 0.0614339i
\(364\) −5.95625 −0.312192
\(365\) 0 0
\(366\) 4.23445 0.221338
\(367\) 3.69812i 0.193040i 0.995331 + 0.0965201i \(0.0307712\pi\)
−0.995331 + 0.0965201i \(0.969229\pi\)
\(368\) 13.9922i 0.729394i
\(369\) 0.859490 0.0447433
\(370\) 0 0
\(371\) 3.97763 0.206508
\(372\) 0.873954i 0.0453124i
\(373\) 30.7541i 1.59238i 0.605043 + 0.796192i \(0.293156\pi\)
−0.605043 + 0.796192i \(0.706844\pi\)
\(374\) −2.40366 −0.124290
\(375\) 0 0
\(376\) −3.79172 −0.195543
\(377\) 33.9053i 1.74621i
\(378\) − 5.75548i − 0.296030i
\(379\) −18.6017 −0.955506 −0.477753 0.878494i \(-0.658549\pi\)
−0.477753 + 0.878494i \(0.658549\pi\)
\(380\) 0 0
\(381\) −18.9060 −0.968582
\(382\) 22.2540i 1.13862i
\(383\) − 15.1169i − 0.772440i −0.922407 0.386220i \(-0.873781\pi\)
0.922407 0.386220i \(-0.126219\pi\)
\(384\) 0.888349 0.0453334
\(385\) 0 0
\(386\) −14.6456 −0.745444
\(387\) − 8.08063i − 0.410762i
\(388\) − 14.7316i − 0.747885i
\(389\) 13.9240 0.705973 0.352986 0.935628i \(-0.385166\pi\)
0.352986 + 0.935628i \(0.385166\pi\)
\(390\) 0 0
\(391\) −21.1778 −1.07101
\(392\) − 3.05025i − 0.154061i
\(393\) − 11.6033i − 0.585311i
\(394\) −12.1522 −0.612220
\(395\) 0 0
\(396\) −1.42148 −0.0714320
\(397\) − 1.02403i − 0.0513946i −0.999670 0.0256973i \(-0.991819\pi\)
0.999670 0.0256973i \(-0.00818061\pi\)
\(398\) − 23.1606i − 1.16094i
\(399\) 7.51023 0.375982
\(400\) 0 0
\(401\) 3.00889 0.150257 0.0751284 0.997174i \(-0.476063\pi\)
0.0751284 + 0.997174i \(0.476063\pi\)
\(402\) 6.61674i 0.330013i
\(403\) 5.84779i 0.291299i
\(404\) 7.17769 0.357104
\(405\) 0 0
\(406\) −5.27217 −0.261653
\(407\) − 6.61436i − 0.327862i
\(408\) − 8.08035i − 0.400037i
\(409\) 31.1886 1.54218 0.771090 0.636727i \(-0.219712\pi\)
0.771090 + 0.636727i \(0.219712\pi\)
\(410\) 0 0
\(411\) 4.75682 0.234637
\(412\) − 14.9532i − 0.736692i
\(413\) − 11.6526i − 0.573385i
\(414\) 16.1985 0.796113
\(415\) 0 0
\(416\) 30.8196 1.51105
\(417\) 16.4459i 0.805360i
\(418\) 6.81447i 0.333307i
\(419\) 31.4805 1.53792 0.768962 0.639294i \(-0.220773\pi\)
0.768962 + 0.639294i \(0.220773\pi\)
\(420\) 0 0
\(421\) 16.6545 0.811689 0.405845 0.913942i \(-0.366977\pi\)
0.405845 + 0.913942i \(0.366977\pi\)
\(422\) 24.6366i 1.19929i
\(423\) 2.02622i 0.0985183i
\(424\) −12.1328 −0.589219
\(425\) 0 0
\(426\) 5.50864 0.266895
\(427\) − 3.40640i − 0.164847i
\(428\) − 15.2207i − 0.735722i
\(429\) 7.99428 0.385968
\(430\) 0 0
\(431\) −31.0206 −1.49421 −0.747104 0.664707i \(-0.768556\pi\)
−0.747104 + 0.664707i \(0.768556\pi\)
\(432\) 8.10362i 0.389886i
\(433\) − 14.6496i − 0.704016i −0.935997 0.352008i \(-0.885499\pi\)
0.935997 0.352008i \(-0.114501\pi\)
\(434\) −0.909312 −0.0436484
\(435\) 0 0
\(436\) −8.53775 −0.408884
\(437\) 60.0400i 2.87210i
\(438\) − 1.32978i − 0.0635394i
\(439\) −16.8201 −0.802778 −0.401389 0.915908i \(-0.631473\pi\)
−0.401389 + 0.915908i \(0.631473\pi\)
\(440\) 0 0
\(441\) −1.63000 −0.0776188
\(442\) − 16.4169i − 0.780873i
\(443\) 18.3489i 0.871784i 0.899999 + 0.435892i \(0.143567\pi\)
−0.899999 + 0.435892i \(0.856433\pi\)
\(444\) 6.75155 0.320414
\(445\) 0 0
\(446\) 2.50669 0.118695
\(447\) − 5.48720i − 0.259536i
\(448\) 7.78301i 0.367713i
\(449\) −11.1951 −0.528329 −0.264164 0.964478i \(-0.585096\pi\)
−0.264164 + 0.964478i \(0.585096\pi\)
\(450\) 0 0
\(451\) −0.527296 −0.0248294
\(452\) 14.4964i 0.681852i
\(453\) − 4.86765i − 0.228702i
\(454\) −30.2036 −1.41752
\(455\) 0 0
\(456\) −22.9081 −1.07277
\(457\) 12.0566i 0.563984i 0.959417 + 0.281992i \(0.0909951\pi\)
−0.959417 + 0.281992i \(0.909005\pi\)
\(458\) 20.1023i 0.939318i
\(459\) −12.2652 −0.572490
\(460\) 0 0
\(461\) −41.1825 −1.91806 −0.959030 0.283303i \(-0.908570\pi\)
−0.959030 + 0.283303i \(0.908570\pi\)
\(462\) 1.24309i 0.0578336i
\(463\) − 33.1629i − 1.54121i −0.637311 0.770606i \(-0.719953\pi\)
0.637311 0.770606i \(-0.280047\pi\)
\(464\) 7.42312 0.344610
\(465\) 0 0
\(466\) 18.9176 0.876341
\(467\) − 20.8688i − 0.965695i −0.875705 0.482847i \(-0.839603\pi\)
0.875705 0.482847i \(-0.160397\pi\)
\(468\) − 9.70866i − 0.448783i
\(469\) 5.32284 0.245786
\(470\) 0 0
\(471\) 11.1214 0.512448
\(472\) 35.5433i 1.63601i
\(473\) 4.95746i 0.227944i
\(474\) 1.20185 0.0552027
\(475\) 0 0
\(476\) −1.97373 −0.0904657
\(477\) 6.48351i 0.296860i
\(478\) 14.1394i 0.646723i
\(479\) −4.71764 −0.215555 −0.107777 0.994175i \(-0.534373\pi\)
−0.107777 + 0.994175i \(0.534373\pi\)
\(480\) 0 0
\(481\) 45.1759 2.05984
\(482\) 8.95720i 0.407989i
\(483\) 10.9524i 0.498352i
\(484\) 0.872076 0.0396398
\(485\) 0 0
\(486\) 15.4601 0.701283
\(487\) − 5.80132i − 0.262883i −0.991324 0.131441i \(-0.958039\pi\)
0.991324 0.131441i \(-0.0419605\pi\)
\(488\) 10.3904i 0.470350i
\(489\) 27.2946 1.23431
\(490\) 0 0
\(491\) −30.4064 −1.37222 −0.686111 0.727497i \(-0.740683\pi\)
−0.686111 + 0.727497i \(0.740683\pi\)
\(492\) − 0.538233i − 0.0242654i
\(493\) 11.2352i 0.506010i
\(494\) −46.5426 −2.09405
\(495\) 0 0
\(496\) 1.28030 0.0574870
\(497\) − 4.43143i − 0.198777i
\(498\) 7.54964i 0.338308i
\(499\) −40.7188 −1.82282 −0.911411 0.411497i \(-0.865006\pi\)
−0.911411 + 0.411497i \(0.865006\pi\)
\(500\) 0 0
\(501\) −14.7546 −0.659187
\(502\) 14.8631i 0.663373i
\(503\) 16.6048i 0.740370i 0.928958 + 0.370185i \(0.120706\pi\)
−0.928958 + 0.370185i \(0.879294\pi\)
\(504\) 4.97190 0.221466
\(505\) 0 0
\(506\) −9.93777 −0.441788
\(507\) 39.3846i 1.74913i
\(508\) − 14.0861i − 0.624972i
\(509\) 8.91546 0.395171 0.197585 0.980286i \(-0.436690\pi\)
0.197585 + 0.980286i \(0.436690\pi\)
\(510\) 0 0
\(511\) −1.06974 −0.0473226
\(512\) − 15.8698i − 0.701354i
\(513\) 34.7723i 1.53524i
\(514\) −7.60708 −0.335534
\(515\) 0 0
\(516\) −5.06028 −0.222766
\(517\) − 1.24309i − 0.0546708i
\(518\) 7.02470i 0.308648i
\(519\) −10.8466 −0.476111
\(520\) 0 0
\(521\) −12.0474 −0.527806 −0.263903 0.964549i \(-0.585010\pi\)
−0.263903 + 0.964549i \(0.585010\pi\)
\(522\) − 8.59361i − 0.376132i
\(523\) − 6.05630i − 0.264823i −0.991195 0.132412i \(-0.957728\pi\)
0.991195 0.132412i \(-0.0422721\pi\)
\(524\) 8.64522 0.377668
\(525\) 0 0
\(526\) 7.45180 0.324914
\(527\) 1.93779i 0.0844114i
\(528\) − 1.75024i − 0.0761696i
\(529\) −64.5584 −2.80689
\(530\) 0 0
\(531\) 18.9936 0.824253
\(532\) 5.59560i 0.242600i
\(533\) − 3.60142i − 0.155995i
\(534\) 4.42063 0.191299
\(535\) 0 0
\(536\) −16.2360 −0.701288
\(537\) − 18.1888i − 0.784905i
\(538\) 4.39077i 0.189300i
\(539\) 1.00000 0.0430730
\(540\) 0 0
\(541\) −2.81266 −0.120926 −0.0604629 0.998170i \(-0.519258\pi\)
−0.0604629 + 0.998170i \(0.519258\pi\)
\(542\) − 13.6185i − 0.584963i
\(543\) 3.90575i 0.167612i
\(544\) 10.2127 0.437867
\(545\) 0 0
\(546\) −8.49023 −0.363348
\(547\) − 14.1171i − 0.603603i −0.953371 0.301802i \(-0.902412\pi\)
0.953371 0.301802i \(-0.0975880\pi\)
\(548\) 3.54413i 0.151398i
\(549\) 5.55241 0.236971
\(550\) 0 0
\(551\) 31.8523 1.35696
\(552\) − 33.4076i − 1.42192i
\(553\) − 0.966826i − 0.0411136i
\(554\) 11.5640 0.491308
\(555\) 0 0
\(556\) −12.2533 −0.519654
\(557\) 1.95691i 0.0829168i 0.999140 + 0.0414584i \(0.0132004\pi\)
−0.999140 + 0.0414584i \(0.986800\pi\)
\(558\) − 1.48217i − 0.0627455i
\(559\) −33.8593 −1.43209
\(560\) 0 0
\(561\) 2.64907 0.111844
\(562\) − 3.36497i − 0.141943i
\(563\) − 15.5164i − 0.653939i −0.945035 0.326970i \(-0.893973\pi\)
0.945035 0.326970i \(-0.106027\pi\)
\(564\) 1.26887 0.0534290
\(565\) 0 0
\(566\) −35.1489 −1.47742
\(567\) 1.45313i 0.0610257i
\(568\) 13.5170i 0.567160i
\(569\) 37.7170 1.58118 0.790589 0.612347i \(-0.209774\pi\)
0.790589 + 0.612347i \(0.209774\pi\)
\(570\) 0 0
\(571\) −12.4679 −0.521767 −0.260883 0.965370i \(-0.584014\pi\)
−0.260883 + 0.965370i \(0.584014\pi\)
\(572\) 5.95625i 0.249043i
\(573\) − 24.5262i − 1.02460i
\(574\) 0.560008 0.0233743
\(575\) 0 0
\(576\) −12.6863 −0.528594
\(577\) 7.71735i 0.321278i 0.987013 + 0.160639i \(0.0513554\pi\)
−0.987013 + 0.160639i \(0.948645\pi\)
\(578\) 12.6146i 0.524696i
\(579\) 16.1410 0.670796
\(580\) 0 0
\(581\) 6.07331 0.251963
\(582\) − 20.9989i − 0.870434i
\(583\) − 3.97763i − 0.164736i
\(584\) 3.26298 0.135023
\(585\) 0 0
\(586\) −18.4401 −0.761755
\(587\) − 30.6554i − 1.26528i −0.774445 0.632641i \(-0.781971\pi\)
0.774445 0.632641i \(-0.218029\pi\)
\(588\) 1.02074i 0.0420946i
\(589\) 5.49370 0.226364
\(590\) 0 0
\(591\) 13.3930 0.550913
\(592\) − 9.89066i − 0.406504i
\(593\) − 42.4286i − 1.74233i −0.490986 0.871167i \(-0.663364\pi\)
0.490986 0.871167i \(-0.336636\pi\)
\(594\) −5.75548 −0.236150
\(595\) 0 0
\(596\) 4.08831 0.167464
\(597\) 25.5253i 1.04468i
\(598\) − 67.8746i − 2.77560i
\(599\) −8.49535 −0.347111 −0.173555 0.984824i \(-0.555526\pi\)
−0.173555 + 0.984824i \(0.555526\pi\)
\(600\) 0 0
\(601\) −23.1651 −0.944925 −0.472463 0.881351i \(-0.656635\pi\)
−0.472463 + 0.881351i \(0.656635\pi\)
\(602\) − 5.26501i − 0.214586i
\(603\) 8.67620i 0.353322i
\(604\) 3.62671 0.147569
\(605\) 0 0
\(606\) 10.2313 0.415619
\(607\) 2.87209i 0.116575i 0.998300 + 0.0582873i \(0.0185640\pi\)
−0.998300 + 0.0582873i \(0.981436\pi\)
\(608\) − 28.9535i − 1.17422i
\(609\) 5.81046 0.235452
\(610\) 0 0
\(611\) 8.49023 0.343478
\(612\) − 3.21717i − 0.130046i
\(613\) 33.8112i 1.36562i 0.730595 + 0.682811i \(0.239243\pi\)
−0.730595 + 0.682811i \(0.760757\pi\)
\(614\) 12.4531 0.502564
\(615\) 0 0
\(616\) −3.05025 −0.122898
\(617\) − 26.0998i − 1.05074i −0.850875 0.525369i \(-0.823927\pi\)
0.850875 0.525369i \(-0.176073\pi\)
\(618\) − 21.3148i − 0.857407i
\(619\) 27.1306 1.09047 0.545235 0.838283i \(-0.316440\pi\)
0.545235 + 0.838283i \(0.316440\pi\)
\(620\) 0 0
\(621\) −50.7096 −2.03491
\(622\) 11.1380i 0.446594i
\(623\) − 3.55617i − 0.142475i
\(624\) 11.9541 0.478547
\(625\) 0 0
\(626\) −23.4011 −0.935297
\(627\) − 7.51023i − 0.299930i
\(628\) 8.28616i 0.330654i
\(629\) 14.9700 0.596892
\(630\) 0 0
\(631\) −24.0346 −0.956802 −0.478401 0.878141i \(-0.658784\pi\)
−0.478401 + 0.878141i \(0.658784\pi\)
\(632\) 2.94906i 0.117307i
\(633\) − 27.1520i − 1.07920i
\(634\) −15.8236 −0.628436
\(635\) 0 0
\(636\) 4.06013 0.160994
\(637\) 6.82997i 0.270613i
\(638\) 5.27217i 0.208727i
\(639\) 7.22320 0.285746
\(640\) 0 0
\(641\) 9.48821 0.374762 0.187381 0.982287i \(-0.440000\pi\)
0.187381 + 0.982287i \(0.440000\pi\)
\(642\) − 21.6961i − 0.856278i
\(643\) 34.1937i 1.34847i 0.738517 + 0.674235i \(0.235526\pi\)
−0.738517 + 0.674235i \(0.764474\pi\)
\(644\) −8.16024 −0.321559
\(645\) 0 0
\(646\) −15.4229 −0.606804
\(647\) − 25.8239i − 1.01524i −0.861581 0.507620i \(-0.830525\pi\)
0.861581 0.507620i \(-0.169475\pi\)
\(648\) − 4.43241i − 0.174122i
\(649\) −11.6526 −0.457403
\(650\) 0 0
\(651\) 1.00215 0.0392775
\(652\) 20.3362i 0.796429i
\(653\) 21.1459i 0.827502i 0.910390 + 0.413751i \(0.135782\pi\)
−0.910390 + 0.413751i \(0.864218\pi\)
\(654\) −12.1700 −0.475884
\(655\) 0 0
\(656\) −0.788483 −0.0307851
\(657\) − 1.74367i − 0.0680272i
\(658\) 1.32020i 0.0514669i
\(659\) 12.9835 0.505764 0.252882 0.967497i \(-0.418621\pi\)
0.252882 + 0.967497i \(0.418621\pi\)
\(660\) 0 0
\(661\) 32.6438 1.26970 0.634849 0.772636i \(-0.281062\pi\)
0.634849 + 0.772636i \(0.281062\pi\)
\(662\) 14.4199i 0.560444i
\(663\) 18.0931i 0.702677i
\(664\) −18.5251 −0.718915
\(665\) 0 0
\(666\) −11.4502 −0.443687
\(667\) 46.4513i 1.79860i
\(668\) − 10.9931i − 0.425337i
\(669\) −2.76262 −0.106809
\(670\) 0 0
\(671\) −3.40640 −0.131503
\(672\) − 5.28165i − 0.203744i
\(673\) 19.5798i 0.754745i 0.926062 + 0.377372i \(0.123172\pi\)
−0.926062 + 0.377372i \(0.876828\pi\)
\(674\) −3.91632 −0.150851
\(675\) 0 0
\(676\) −29.3440 −1.12862
\(677\) 40.2314i 1.54622i 0.634273 + 0.773109i \(0.281299\pi\)
−0.634273 + 0.773109i \(0.718701\pi\)
\(678\) 20.6636i 0.793581i
\(679\) −16.8926 −0.648278
\(680\) 0 0
\(681\) 33.2874 1.27557
\(682\) 0.909312i 0.0348194i
\(683\) 37.6157i 1.43933i 0.694323 + 0.719663i \(0.255704\pi\)
−0.694323 + 0.719663i \(0.744296\pi\)
\(684\) −9.12080 −0.348742
\(685\) 0 0
\(686\) −1.06204 −0.0405488
\(687\) − 22.1547i − 0.845256i
\(688\) 7.41304i 0.282620i
\(689\) 27.1671 1.03498
\(690\) 0 0
\(691\) 14.7643 0.561659 0.280829 0.959758i \(-0.409391\pi\)
0.280829 + 0.959758i \(0.409391\pi\)
\(692\) − 8.08137i − 0.307208i
\(693\) 1.63000i 0.0619184i
\(694\) 20.1834 0.766152
\(695\) 0 0
\(696\) −17.7234 −0.671802
\(697\) − 1.19340i − 0.0452034i
\(698\) 6.02482i 0.228043i
\(699\) −20.8491 −0.788585
\(700\) 0 0
\(701\) 16.1271 0.609111 0.304555 0.952495i \(-0.401492\pi\)
0.304555 + 0.952495i \(0.401492\pi\)
\(702\) − 39.3097i − 1.48365i
\(703\) − 42.4405i − 1.60067i
\(704\) 7.78301 0.293333
\(705\) 0 0
\(706\) 3.02629 0.113896
\(707\) − 8.23058i − 0.309543i
\(708\) − 11.8943i − 0.447013i
\(709\) 36.9892 1.38916 0.694579 0.719416i \(-0.255591\pi\)
0.694579 + 0.719416i \(0.255591\pi\)
\(710\) 0 0
\(711\) 1.57592 0.0591017
\(712\) 10.8472i 0.406517i
\(713\) 8.01165i 0.300039i
\(714\) −2.81342 −0.105289
\(715\) 0 0
\(716\) 13.5518 0.506455
\(717\) − 15.5831i − 0.581961i
\(718\) − 22.2541i − 0.830515i
\(719\) −6.71788 −0.250535 −0.125267 0.992123i \(-0.539979\pi\)
−0.125267 + 0.992123i \(0.539979\pi\)
\(720\) 0 0
\(721\) −17.1467 −0.638576
\(722\) 23.5457i 0.876280i
\(723\) − 9.87173i − 0.367134i
\(724\) −2.91003 −0.108151
\(725\) 0 0
\(726\) 1.24309 0.0461352
\(727\) 9.41666i 0.349245i 0.984636 + 0.174622i \(0.0558704\pi\)
−0.984636 + 0.174622i \(0.944130\pi\)
\(728\) − 20.8331i − 0.772127i
\(729\) −21.3979 −0.792516
\(730\) 0 0
\(731\) −11.2200 −0.414986
\(732\) − 3.47705i − 0.128515i
\(733\) 7.09353i 0.262006i 0.991382 + 0.131003i \(0.0418197\pi\)
−0.991382 + 0.131003i \(0.958180\pi\)
\(734\) −3.92754 −0.144968
\(735\) 0 0
\(736\) 42.2238 1.55639
\(737\) − 5.32284i − 0.196069i
\(738\) 0.912811i 0.0336010i
\(739\) −28.4731 −1.04740 −0.523701 0.851902i \(-0.675449\pi\)
−0.523701 + 0.851902i \(0.675449\pi\)
\(740\) 0 0
\(741\) 51.2946 1.88435
\(742\) 4.22439i 0.155082i
\(743\) − 1.20393i − 0.0441681i −0.999756 0.0220840i \(-0.992970\pi\)
0.999756 0.0220840i \(-0.00703014\pi\)
\(744\) −3.05682 −0.112069
\(745\) 0 0
\(746\) −32.6620 −1.19584
\(747\) 9.89947i 0.362203i
\(748\) 1.97373i 0.0721667i
\(749\) −17.4535 −0.637735
\(750\) 0 0
\(751\) 13.1877 0.481227 0.240614 0.970621i \(-0.422651\pi\)
0.240614 + 0.970621i \(0.422651\pi\)
\(752\) − 1.85882i − 0.0677844i
\(753\) − 16.3806i − 0.596943i
\(754\) −36.0087 −1.31136
\(755\) 0 0
\(756\) −4.72602 −0.171884
\(757\) − 28.5746i − 1.03856i −0.854603 0.519282i \(-0.826200\pi\)
0.854603 0.519282i \(-0.173800\pi\)
\(758\) − 19.7557i − 0.717560i
\(759\) 10.9524 0.397547
\(760\) 0 0
\(761\) 22.9475 0.831847 0.415924 0.909400i \(-0.363458\pi\)
0.415924 + 0.909400i \(0.363458\pi\)
\(762\) − 20.0788i − 0.727380i
\(763\) 9.79014i 0.354427i
\(764\) 18.2736 0.661114
\(765\) 0 0
\(766\) 16.0548 0.580082
\(767\) − 79.5867i − 2.87371i
\(768\) 19.1630i 0.691487i
\(769\) 5.02937 0.181364 0.0906818 0.995880i \(-0.471095\pi\)
0.0906818 + 0.995880i \(0.471095\pi\)
\(770\) 0 0
\(771\) 8.38376 0.301934
\(772\) 12.0260i 0.432827i
\(773\) 3.44069i 0.123753i 0.998084 + 0.0618765i \(0.0197085\pi\)
−0.998084 + 0.0618765i \(0.980292\pi\)
\(774\) 8.58194 0.308471
\(775\) 0 0
\(776\) 51.5267 1.84970
\(777\) − 7.74193i − 0.277740i
\(778\) 14.7878i 0.530167i
\(779\) −3.38335 −0.121221
\(780\) 0 0
\(781\) −4.43143 −0.158569
\(782\) − 22.4917i − 0.804301i
\(783\) 26.9024i 0.961413i
\(784\) 1.49533 0.0534047
\(785\) 0 0
\(786\) 12.3232 0.439553
\(787\) − 16.1901i − 0.577116i −0.957462 0.288558i \(-0.906824\pi\)
0.957462 0.288558i \(-0.0931759\pi\)
\(788\) 9.97861i 0.355473i
\(789\) −8.21263 −0.292377
\(790\) 0 0
\(791\) 16.6228 0.591040
\(792\) − 4.97190i − 0.176669i
\(793\) − 23.2656i − 0.826185i
\(794\) 1.08756 0.0385960
\(795\) 0 0
\(796\) −19.0180 −0.674075
\(797\) 20.1288i 0.712999i 0.934296 + 0.356499i \(0.116030\pi\)
−0.934296 + 0.356499i \(0.883970\pi\)
\(798\) 7.97614i 0.282352i
\(799\) 2.81342 0.0995315
\(800\) 0 0
\(801\) 5.79654 0.204811
\(802\) 3.19555i 0.112839i
\(803\) 1.06974i 0.0377504i
\(804\) 5.43324 0.191615
\(805\) 0 0
\(806\) −6.21057 −0.218758
\(807\) − 4.83907i − 0.170343i
\(808\) 25.1054i 0.883203i
\(809\) 37.2899 1.31104 0.655522 0.755176i \(-0.272449\pi\)
0.655522 + 0.755176i \(0.272449\pi\)
\(810\) 0 0
\(811\) −14.5835 −0.512095 −0.256047 0.966664i \(-0.582420\pi\)
−0.256047 + 0.966664i \(0.582420\pi\)
\(812\) 4.32916i 0.151924i
\(813\) 15.0089i 0.526385i
\(814\) 7.02470 0.246216
\(815\) 0 0
\(816\) 3.96124 0.138671
\(817\) 31.8091i 1.11286i
\(818\) 33.1235i 1.15814i
\(819\) −11.1328 −0.389012
\(820\) 0 0
\(821\) −30.9951 −1.08174 −0.540869 0.841107i \(-0.681905\pi\)
−0.540869 + 0.841107i \(0.681905\pi\)
\(822\) 5.05192i 0.176206i
\(823\) − 55.0098i − 1.91752i −0.284215 0.958761i \(-0.591733\pi\)
0.284215 0.958761i \(-0.408267\pi\)
\(824\) 52.3017 1.82202
\(825\) 0 0
\(826\) 12.3755 0.430598
\(827\) − 44.3005i − 1.54048i −0.637755 0.770239i \(-0.720137\pi\)
0.637755 0.770239i \(-0.279863\pi\)
\(828\) − 13.3012i − 0.462247i
\(829\) 9.84740 0.342014 0.171007 0.985270i \(-0.445298\pi\)
0.171007 + 0.985270i \(0.445298\pi\)
\(830\) 0 0
\(831\) −12.7447 −0.442109
\(832\) 53.1577i 1.84291i
\(833\) 2.26325i 0.0784171i
\(834\) −17.4662 −0.604804
\(835\) 0 0
\(836\) 5.59560 0.193528
\(837\) 4.63997i 0.160381i
\(838\) 33.4335i 1.15494i
\(839\) −11.3177 −0.390730 −0.195365 0.980731i \(-0.562589\pi\)
−0.195365 + 0.980731i \(0.562589\pi\)
\(840\) 0 0
\(841\) −4.35673 −0.150232
\(842\) 17.6877i 0.609558i
\(843\) 3.70853i 0.127729i
\(844\) 20.2300 0.696344
\(845\) 0 0
\(846\) −2.15193 −0.0739847
\(847\) − 1.00000i − 0.0343604i
\(848\) − 5.94787i − 0.204251i
\(849\) 38.7376 1.32947
\(850\) 0 0
\(851\) 61.8923 2.12164
\(852\) − 4.52334i − 0.154967i
\(853\) − 26.3172i − 0.901083i −0.892755 0.450541i \(-0.851231\pi\)
0.892755 0.450541i \(-0.148769\pi\)
\(854\) 3.61772 0.123796
\(855\) 0 0
\(856\) 53.2375 1.81962
\(857\) 39.8259i 1.36043i 0.733014 + 0.680213i \(0.238113\pi\)
−0.733014 + 0.680213i \(0.761887\pi\)
\(858\) 8.49023i 0.289852i
\(859\) −16.5702 −0.565367 −0.282684 0.959213i \(-0.591225\pi\)
−0.282684 + 0.959213i \(0.591225\pi\)
\(860\) 0 0
\(861\) −0.617186 −0.0210336
\(862\) − 32.9450i − 1.12211i
\(863\) 23.2437i 0.791225i 0.918418 + 0.395613i \(0.129468\pi\)
−0.918418 + 0.395613i \(0.870532\pi\)
\(864\) 24.4540 0.831942
\(865\) 0 0
\(866\) 15.5585 0.528698
\(867\) − 13.9025i − 0.472154i
\(868\) 0.746668i 0.0253436i
\(869\) −0.966826 −0.0327973
\(870\) 0 0
\(871\) 36.3548 1.23184
\(872\) − 29.8624i − 1.01127i
\(873\) − 27.5349i − 0.931914i
\(874\) −63.7648 −2.15688
\(875\) 0 0
\(876\) −1.09193 −0.0368929
\(877\) − 56.2380i − 1.89902i −0.313735 0.949511i \(-0.601580\pi\)
0.313735 0.949511i \(-0.398420\pi\)
\(878\) − 17.8636i − 0.602866i
\(879\) 20.3229 0.685474
\(880\) 0 0
\(881\) −50.4473 −1.69961 −0.849807 0.527094i \(-0.823282\pi\)
−0.849807 + 0.527094i \(0.823282\pi\)
\(882\) − 1.73112i − 0.0582897i
\(883\) 10.2912i 0.346328i 0.984893 + 0.173164i \(0.0553990\pi\)
−0.984893 + 0.173164i \(0.944601\pi\)
\(884\) −13.4805 −0.453398
\(885\) 0 0
\(886\) −19.4872 −0.654687
\(887\) 40.8093i 1.37024i 0.728430 + 0.685120i \(0.240250\pi\)
−0.728430 + 0.685120i \(0.759750\pi\)
\(888\) 23.6148i 0.792462i
\(889\) −16.1524 −0.541735
\(890\) 0 0
\(891\) 1.45313 0.0486817
\(892\) − 2.05833i − 0.0689179i
\(893\) − 7.97614i − 0.266911i
\(894\) 5.82761 0.194904
\(895\) 0 0
\(896\) 0.758967 0.0253553
\(897\) 74.8046i 2.49765i
\(898\) − 11.8896i − 0.396761i
\(899\) 4.25033 0.141756
\(900\) 0 0
\(901\) 9.00237 0.299913
\(902\) − 0.560008i − 0.0186462i
\(903\) 5.80257i 0.193097i
\(904\) −50.7038 −1.68638
\(905\) 0 0
\(906\) 5.16963 0.171749
\(907\) 21.3652i 0.709420i 0.934976 + 0.354710i \(0.115420\pi\)
−0.934976 + 0.354710i \(0.884580\pi\)
\(908\) 24.8012i 0.823057i
\(909\) 13.4158 0.444974
\(910\) 0 0
\(911\) 17.4802 0.579144 0.289572 0.957156i \(-0.406487\pi\)
0.289572 + 0.957156i \(0.406487\pi\)
\(912\) − 11.2303i − 0.371872i
\(913\) − 6.07331i − 0.200997i
\(914\) −12.8046 −0.423537
\(915\) 0 0
\(916\) 16.5067 0.545396
\(917\) − 9.91338i − 0.327369i
\(918\) − 13.0261i − 0.429925i
\(919\) 22.1767 0.731541 0.365771 0.930705i \(-0.380805\pi\)
0.365771 + 0.930705i \(0.380805\pi\)
\(920\) 0 0
\(921\) −13.7245 −0.452238
\(922\) − 43.7374i − 1.44041i
\(923\) − 30.2665i − 0.996234i
\(924\) 1.02074 0.0335799
\(925\) 0 0
\(926\) 35.2203 1.15741
\(927\) − 27.9490i − 0.917966i
\(928\) − 22.4005i − 0.735332i
\(929\) 8.89242 0.291751 0.145875 0.989303i \(-0.453400\pi\)
0.145875 + 0.989303i \(0.453400\pi\)
\(930\) 0 0
\(931\) 6.41641 0.210289
\(932\) − 15.5339i − 0.508830i
\(933\) − 12.2752i − 0.401872i
\(934\) 22.1635 0.725212
\(935\) 0 0
\(936\) 33.9579 1.10995
\(937\) 57.8417i 1.88960i 0.327641 + 0.944802i \(0.393746\pi\)
−0.327641 + 0.944802i \(0.606254\pi\)
\(938\) 5.65305i 0.184579i
\(939\) 25.7904 0.841637
\(940\) 0 0
\(941\) 35.3237 1.15152 0.575760 0.817619i \(-0.304706\pi\)
0.575760 + 0.817619i \(0.304706\pi\)
\(942\) 11.8114i 0.384835i
\(943\) − 4.93405i − 0.160675i
\(944\) −17.4245 −0.567118
\(945\) 0 0
\(946\) −5.26501 −0.171180
\(947\) 28.9507i 0.940773i 0.882461 + 0.470386i \(0.155885\pi\)
−0.882461 + 0.470386i \(0.844115\pi\)
\(948\) − 0.986879i − 0.0320523i
\(949\) −7.30630 −0.237173
\(950\) 0 0
\(951\) 17.4392 0.565505
\(952\) − 6.90349i − 0.223743i
\(953\) 6.75259i 0.218738i 0.994001 + 0.109369i \(0.0348830\pi\)
−0.994001 + 0.109369i \(0.965117\pi\)
\(954\) −6.88573 −0.222934
\(955\) 0 0
\(956\) 11.6104 0.375507
\(957\) − 5.81046i − 0.187825i
\(958\) − 5.01031i − 0.161876i
\(959\) 4.06402 0.131234
\(960\) 0 0
\(961\) −30.2669 −0.976353
\(962\) 47.9785i 1.54689i
\(963\) − 28.4490i − 0.916758i
\(964\) 7.35506 0.236891
\(965\) 0 0
\(966\) −11.6319 −0.374249
\(967\) 2.17445i 0.0699257i 0.999389 + 0.0349628i \(0.0111313\pi\)
−0.999389 + 0.0349628i \(0.988869\pi\)
\(968\) 3.05025i 0.0980388i
\(969\) 16.9975 0.546040
\(970\) 0 0
\(971\) 55.7879 1.79032 0.895159 0.445746i \(-0.147062\pi\)
0.895159 + 0.445746i \(0.147062\pi\)
\(972\) − 12.6948i − 0.407186i
\(973\) 14.0507i 0.450444i
\(974\) 6.16122 0.197418
\(975\) 0 0
\(976\) −5.09370 −0.163045
\(977\) − 45.5825i − 1.45831i −0.684347 0.729156i \(-0.739913\pi\)
0.684347 0.729156i \(-0.260087\pi\)
\(978\) 28.9879i 0.926932i
\(979\) −3.55617 −0.113656
\(980\) 0 0
\(981\) −15.9579 −0.509496
\(982\) − 32.2927i − 1.03050i
\(983\) − 1.30557i − 0.0416413i −0.999783 0.0208206i \(-0.993372\pi\)
0.999783 0.0208206i \(-0.00662790\pi\)
\(984\) 1.88257 0.0600142
\(985\) 0 0
\(986\) −11.9322 −0.380000
\(987\) − 1.45500i − 0.0463131i
\(988\) 38.2177i 1.21587i
\(989\) −46.3882 −1.47506
\(990\) 0 0
\(991\) 34.4682 1.09492 0.547459 0.836833i \(-0.315595\pi\)
0.547459 + 0.836833i \(0.315595\pi\)
\(992\) − 3.86351i − 0.122666i
\(993\) − 15.8921i − 0.504322i
\(994\) 4.70634 0.149276
\(995\) 0 0
\(996\) 6.19928 0.196432
\(997\) − 40.4670i − 1.28160i −0.767707 0.640801i \(-0.778602\pi\)
0.767707 0.640801i \(-0.221398\pi\)
\(998\) − 43.2449i − 1.36889i
\(999\) 35.8451 1.13409
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1925.2.b.q.1849.10 14
5.2 odd 4 1925.2.a.bc.1.3 yes 7
5.3 odd 4 1925.2.a.ba.1.5 7
5.4 even 2 inner 1925.2.b.q.1849.5 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1925.2.a.ba.1.5 7 5.3 odd 4
1925.2.a.bc.1.3 yes 7 5.2 odd 4
1925.2.b.q.1849.5 14 5.4 even 2 inner
1925.2.b.q.1849.10 14 1.1 even 1 trivial