Properties

Label 1922.4.a.x.1.5
Level $1922$
Weight $4$
Character 1922.1
Self dual yes
Analytic conductor $113.402$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1922,4,Mod(1,1922)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1922, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1922.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1922 = 2 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1922.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,-64,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(113.401671031\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Character \(\chi\) \(=\) 1922.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -7.26205 q^{3} +4.00000 q^{4} +2.99959 q^{5} +14.5241 q^{6} +27.7754 q^{7} -8.00000 q^{8} +25.7374 q^{9} -5.99919 q^{10} -66.3689 q^{11} -29.0482 q^{12} -24.4628 q^{13} -55.5508 q^{14} -21.7832 q^{15} +16.0000 q^{16} -101.174 q^{17} -51.4747 q^{18} -43.1229 q^{19} +11.9984 q^{20} -201.707 q^{21} +132.738 q^{22} -157.557 q^{23} +58.0964 q^{24} -116.002 q^{25} +48.9257 q^{26} +9.16927 q^{27} +111.102 q^{28} -224.537 q^{29} +43.5664 q^{30} -32.0000 q^{32} +481.975 q^{33} +202.348 q^{34} +83.3150 q^{35} +102.949 q^{36} +57.8032 q^{37} +86.2458 q^{38} +177.650 q^{39} -23.9968 q^{40} -209.659 q^{41} +403.413 q^{42} -197.681 q^{43} -265.476 q^{44} +77.2017 q^{45} +315.114 q^{46} -55.7187 q^{47} -116.193 q^{48} +428.474 q^{49} +232.005 q^{50} +734.730 q^{51} -97.8514 q^{52} +386.731 q^{53} -18.3385 q^{54} -199.080 q^{55} -222.203 q^{56} +313.161 q^{57} +449.074 q^{58} +56.5098 q^{59} -87.1328 q^{60} +160.569 q^{61} +714.866 q^{63} +64.0000 q^{64} -73.3786 q^{65} -963.949 q^{66} -521.100 q^{67} -404.696 q^{68} +1144.19 q^{69} -166.630 q^{70} -407.358 q^{71} -205.899 q^{72} +404.228 q^{73} -115.606 q^{74} +842.415 q^{75} -172.492 q^{76} -1843.43 q^{77} -355.301 q^{78} +1096.41 q^{79} +47.9935 q^{80} -761.497 q^{81} +419.319 q^{82} -1327.61 q^{83} -806.826 q^{84} -303.481 q^{85} +395.362 q^{86} +1630.60 q^{87} +530.951 q^{88} +1589.32 q^{89} -154.403 q^{90} -679.466 q^{91} -630.228 q^{92} +111.437 q^{94} -129.351 q^{95} +232.386 q^{96} -703.502 q^{97} -856.948 q^{98} -1708.16 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 64 q^{2} + 128 q^{4} + 112 q^{7} - 256 q^{8} + 288 q^{9} - 224 q^{14} + 512 q^{16} - 576 q^{18} + 304 q^{19} + 1200 q^{25} + 448 q^{28} - 1024 q^{32} - 272 q^{33} + 1152 q^{36} - 608 q^{38} + 1616 q^{39}+ \cdots - 6176 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −7.26205 −1.39758 −0.698791 0.715326i \(-0.746278\pi\)
−0.698791 + 0.715326i \(0.746278\pi\)
\(4\) 4.00000 0.500000
\(5\) 2.99959 0.268292 0.134146 0.990962i \(-0.457171\pi\)
0.134146 + 0.990962i \(0.457171\pi\)
\(6\) 14.5241 0.988240
\(7\) 27.7754 1.49973 0.749866 0.661590i \(-0.230118\pi\)
0.749866 + 0.661590i \(0.230118\pi\)
\(8\) −8.00000 −0.353553
\(9\) 25.7374 0.953236
\(10\) −5.99919 −0.189711
\(11\) −66.3689 −1.81918 −0.909590 0.415506i \(-0.863604\pi\)
−0.909590 + 0.415506i \(0.863604\pi\)
\(12\) −29.0482 −0.698791
\(13\) −24.4628 −0.521906 −0.260953 0.965352i \(-0.584037\pi\)
−0.260953 + 0.965352i \(0.584037\pi\)
\(14\) −55.5508 −1.06047
\(15\) −21.7832 −0.374960
\(16\) 16.0000 0.250000
\(17\) −101.174 −1.44343 −0.721714 0.692191i \(-0.756646\pi\)
−0.721714 + 0.692191i \(0.756646\pi\)
\(18\) −51.4747 −0.674040
\(19\) −43.1229 −0.520688 −0.260344 0.965516i \(-0.583836\pi\)
−0.260344 + 0.965516i \(0.583836\pi\)
\(20\) 11.9984 0.134146
\(21\) −201.707 −2.09600
\(22\) 132.738 1.28635
\(23\) −157.557 −1.42839 −0.714194 0.699948i \(-0.753206\pi\)
−0.714194 + 0.699948i \(0.753206\pi\)
\(24\) 58.0964 0.494120
\(25\) −116.002 −0.928019
\(26\) 48.9257 0.369043
\(27\) 9.16927 0.0653566
\(28\) 111.102 0.749866
\(29\) −224.537 −1.43777 −0.718887 0.695127i \(-0.755348\pi\)
−0.718887 + 0.695127i \(0.755348\pi\)
\(30\) 43.5664 0.265137
\(31\) 0 0
\(32\) −32.0000 −0.176777
\(33\) 481.975 2.54245
\(34\) 202.348 1.02066
\(35\) 83.3150 0.402366
\(36\) 102.949 0.476618
\(37\) 57.8032 0.256832 0.128416 0.991720i \(-0.459011\pi\)
0.128416 + 0.991720i \(0.459011\pi\)
\(38\) 86.2458 0.368182
\(39\) 177.650 0.729406
\(40\) −23.9968 −0.0948555
\(41\) −209.659 −0.798617 −0.399308 0.916817i \(-0.630750\pi\)
−0.399308 + 0.916817i \(0.630750\pi\)
\(42\) 403.413 1.48209
\(43\) −197.681 −0.701072 −0.350536 0.936549i \(-0.614001\pi\)
−0.350536 + 0.936549i \(0.614001\pi\)
\(44\) −265.476 −0.909590
\(45\) 77.2017 0.255745
\(46\) 315.114 1.01002
\(47\) −55.7187 −0.172923 −0.0864617 0.996255i \(-0.527556\pi\)
−0.0864617 + 0.996255i \(0.527556\pi\)
\(48\) −116.193 −0.349396
\(49\) 428.474 1.24920
\(50\) 232.005 0.656209
\(51\) 734.730 2.01731
\(52\) −97.8514 −0.260953
\(53\) 386.731 1.00229 0.501147 0.865362i \(-0.332911\pi\)
0.501147 + 0.865362i \(0.332911\pi\)
\(54\) −18.3385 −0.0462141
\(55\) −199.080 −0.488071
\(56\) −222.203 −0.530235
\(57\) 313.161 0.727704
\(58\) 449.074 1.01666
\(59\) 56.5098 0.124694 0.0623471 0.998055i \(-0.480141\pi\)
0.0623471 + 0.998055i \(0.480141\pi\)
\(60\) −87.1328 −0.187480
\(61\) 160.569 0.337028 0.168514 0.985699i \(-0.446103\pi\)
0.168514 + 0.985699i \(0.446103\pi\)
\(62\) 0 0
\(63\) 714.866 1.42960
\(64\) 64.0000 0.125000
\(65\) −73.3786 −0.140023
\(66\) −963.949 −1.79779
\(67\) −521.100 −0.950187 −0.475093 0.879935i \(-0.657586\pi\)
−0.475093 + 0.879935i \(0.657586\pi\)
\(68\) −404.696 −0.721714
\(69\) 1144.19 1.99629
\(70\) −166.630 −0.284516
\(71\) −407.358 −0.680908 −0.340454 0.940261i \(-0.610581\pi\)
−0.340454 + 0.940261i \(0.610581\pi\)
\(72\) −205.899 −0.337020
\(73\) 404.228 0.648100 0.324050 0.946040i \(-0.394955\pi\)
0.324050 + 0.946040i \(0.394955\pi\)
\(74\) −115.606 −0.181608
\(75\) 842.415 1.29698
\(76\) −172.492 −0.260344
\(77\) −1843.43 −2.72828
\(78\) −355.301 −0.515768
\(79\) 1096.41 1.56146 0.780731 0.624868i \(-0.214847\pi\)
0.780731 + 0.624868i \(0.214847\pi\)
\(80\) 47.9935 0.0670730
\(81\) −761.497 −1.04458
\(82\) 419.319 0.564707
\(83\) −1327.61 −1.75571 −0.877857 0.478922i \(-0.841028\pi\)
−0.877857 + 0.478922i \(0.841028\pi\)
\(84\) −806.826 −1.04800
\(85\) −303.481 −0.387260
\(86\) 395.362 0.495733
\(87\) 1630.60 2.00941
\(88\) 530.951 0.643177
\(89\) 1589.32 1.89289 0.946447 0.322858i \(-0.104644\pi\)
0.946447 + 0.322858i \(0.104644\pi\)
\(90\) −154.403 −0.180839
\(91\) −679.466 −0.782718
\(92\) −630.228 −0.714194
\(93\) 0 0
\(94\) 111.437 0.122275
\(95\) −129.351 −0.139696
\(96\) 232.386 0.247060
\(97\) −703.502 −0.736390 −0.368195 0.929749i \(-0.620024\pi\)
−0.368195 + 0.929749i \(0.620024\pi\)
\(98\) −856.948 −0.883315
\(99\) −1708.16 −1.73411
\(100\) −464.010 −0.464010
\(101\) −560.989 −0.552678 −0.276339 0.961060i \(-0.589121\pi\)
−0.276339 + 0.961060i \(0.589121\pi\)
\(102\) −1469.46 −1.42645
\(103\) −1370.52 −1.31108 −0.655542 0.755159i \(-0.727560\pi\)
−0.655542 + 0.755159i \(0.727560\pi\)
\(104\) 195.703 0.184521
\(105\) −605.038 −0.562339
\(106\) −773.463 −0.708730
\(107\) 1464.29 1.32297 0.661485 0.749958i \(-0.269926\pi\)
0.661485 + 0.749958i \(0.269926\pi\)
\(108\) 36.6771 0.0326783
\(109\) 686.476 0.603234 0.301617 0.953429i \(-0.402474\pi\)
0.301617 + 0.953429i \(0.402474\pi\)
\(110\) 398.160 0.345119
\(111\) −419.770 −0.358944
\(112\) 444.407 0.374933
\(113\) −2034.00 −1.69330 −0.846650 0.532151i \(-0.821384\pi\)
−0.846650 + 0.532151i \(0.821384\pi\)
\(114\) −626.321 −0.514565
\(115\) −472.607 −0.383225
\(116\) −898.147 −0.718887
\(117\) −629.609 −0.497499
\(118\) −113.020 −0.0881721
\(119\) −2810.15 −2.16476
\(120\) 174.266 0.132568
\(121\) 3073.84 2.30942
\(122\) −321.137 −0.238315
\(123\) 1522.56 1.11613
\(124\) 0 0
\(125\) −722.910 −0.517272
\(126\) −1429.73 −1.01088
\(127\) 2232.93 1.56016 0.780079 0.625681i \(-0.215179\pi\)
0.780079 + 0.625681i \(0.215179\pi\)
\(128\) −128.000 −0.0883883
\(129\) 1435.57 0.979806
\(130\) 146.757 0.0990112
\(131\) −1042.78 −0.695484 −0.347742 0.937590i \(-0.613051\pi\)
−0.347742 + 0.937590i \(0.613051\pi\)
\(132\) 1927.90 1.27123
\(133\) −1197.76 −0.780893
\(134\) 1042.20 0.671883
\(135\) 27.5041 0.0175346
\(136\) 809.392 0.510329
\(137\) −355.363 −0.221611 −0.110805 0.993842i \(-0.535343\pi\)
−0.110805 + 0.993842i \(0.535343\pi\)
\(138\) −2288.37 −1.41159
\(139\) −2674.58 −1.63205 −0.816025 0.578017i \(-0.803827\pi\)
−0.816025 + 0.578017i \(0.803827\pi\)
\(140\) 333.260 0.201183
\(141\) 404.632 0.241675
\(142\) 814.716 0.481475
\(143\) 1623.57 0.949440
\(144\) 411.798 0.238309
\(145\) −673.519 −0.385743
\(146\) −808.456 −0.458276
\(147\) −3111.60 −1.74585
\(148\) 231.213 0.128416
\(149\) −1064.43 −0.585244 −0.292622 0.956228i \(-0.594528\pi\)
−0.292622 + 0.956228i \(0.594528\pi\)
\(150\) −1684.83 −0.917106
\(151\) −1356.25 −0.730930 −0.365465 0.930825i \(-0.619090\pi\)
−0.365465 + 0.930825i \(0.619090\pi\)
\(152\) 344.983 0.184091
\(153\) −2603.95 −1.37593
\(154\) 3686.85 1.92919
\(155\) 0 0
\(156\) 710.602 0.364703
\(157\) 1613.65 0.820275 0.410138 0.912024i \(-0.365481\pi\)
0.410138 + 0.912024i \(0.365481\pi\)
\(158\) −2192.81 −1.10412
\(159\) −2808.46 −1.40079
\(160\) −95.9870 −0.0474277
\(161\) −4376.21 −2.14220
\(162\) 1522.99 0.738628
\(163\) −1598.87 −0.768301 −0.384151 0.923270i \(-0.625506\pi\)
−0.384151 + 0.923270i \(0.625506\pi\)
\(164\) −838.637 −0.399308
\(165\) 1445.73 0.682120
\(166\) 2655.22 1.24148
\(167\) 2651.12 1.22844 0.614220 0.789135i \(-0.289471\pi\)
0.614220 + 0.789135i \(0.289471\pi\)
\(168\) 1613.65 0.741047
\(169\) −1598.57 −0.727615
\(170\) 606.962 0.273834
\(171\) −1109.87 −0.496339
\(172\) −790.725 −0.350536
\(173\) −2594.68 −1.14029 −0.570144 0.821545i \(-0.693113\pi\)
−0.570144 + 0.821545i \(0.693113\pi\)
\(174\) −3261.20 −1.42087
\(175\) −3222.02 −1.39178
\(176\) −1061.90 −0.454795
\(177\) −410.377 −0.174270
\(178\) −3178.64 −1.33848
\(179\) 2047.48 0.854950 0.427475 0.904027i \(-0.359403\pi\)
0.427475 + 0.904027i \(0.359403\pi\)
\(180\) 308.807 0.127873
\(181\) 924.632 0.379709 0.189855 0.981812i \(-0.439198\pi\)
0.189855 + 0.981812i \(0.439198\pi\)
\(182\) 1358.93 0.553465
\(183\) −1166.06 −0.471024
\(184\) 1260.46 0.505011
\(185\) 173.386 0.0689060
\(186\) 0 0
\(187\) 6714.81 2.62586
\(188\) −222.875 −0.0864617
\(189\) 254.680 0.0980173
\(190\) 258.702 0.0987803
\(191\) 1597.00 0.604999 0.302499 0.953150i \(-0.402179\pi\)
0.302499 + 0.953150i \(0.402179\pi\)
\(192\) −464.771 −0.174698
\(193\) 3367.54 1.25596 0.627981 0.778228i \(-0.283881\pi\)
0.627981 + 0.778228i \(0.283881\pi\)
\(194\) 1407.00 0.520706
\(195\) 532.879 0.195694
\(196\) 1713.90 0.624598
\(197\) −2036.90 −0.736666 −0.368333 0.929694i \(-0.620071\pi\)
−0.368333 + 0.929694i \(0.620071\pi\)
\(198\) 3416.32 1.22620
\(199\) 2650.71 0.944241 0.472121 0.881534i \(-0.343489\pi\)
0.472121 + 0.881534i \(0.343489\pi\)
\(200\) 928.019 0.328104
\(201\) 3784.25 1.32796
\(202\) 1121.98 0.390803
\(203\) −6236.61 −2.15628
\(204\) 2938.92 1.00866
\(205\) −628.893 −0.214262
\(206\) 2741.05 0.927076
\(207\) −4055.10 −1.36159
\(208\) −391.406 −0.130476
\(209\) 2862.02 0.947226
\(210\) 1210.08 0.397634
\(211\) 428.479 0.139800 0.0698998 0.997554i \(-0.477732\pi\)
0.0698998 + 0.997554i \(0.477732\pi\)
\(212\) 1546.93 0.501147
\(213\) 2958.25 0.951625
\(214\) −2928.57 −0.935482
\(215\) −592.963 −0.188092
\(216\) −73.3542 −0.0231070
\(217\) 0 0
\(218\) −1372.95 −0.426551
\(219\) −2935.53 −0.905774
\(220\) −796.319 −0.244036
\(221\) 2475.00 0.753334
\(222\) 839.539 0.253812
\(223\) 4299.54 1.29111 0.645557 0.763712i \(-0.276625\pi\)
0.645557 + 0.763712i \(0.276625\pi\)
\(224\) −888.814 −0.265118
\(225\) −2985.60 −0.884622
\(226\) 4068.00 1.19734
\(227\) 2670.90 0.780943 0.390471 0.920615i \(-0.372312\pi\)
0.390471 + 0.920615i \(0.372312\pi\)
\(228\) 1252.64 0.363852
\(229\) 501.400 0.144688 0.0723438 0.997380i \(-0.476952\pi\)
0.0723438 + 0.997380i \(0.476952\pi\)
\(230\) 945.214 0.270981
\(231\) 13387.0 3.81300
\(232\) 1796.29 0.508330
\(233\) 15.0863 0.00424179 0.00212090 0.999998i \(-0.499325\pi\)
0.00212090 + 0.999998i \(0.499325\pi\)
\(234\) 1259.22 0.351785
\(235\) −167.133 −0.0463940
\(236\) 226.039 0.0623471
\(237\) −7962.16 −2.18227
\(238\) 5620.30 1.53071
\(239\) 3057.75 0.827571 0.413785 0.910374i \(-0.364206\pi\)
0.413785 + 0.910374i \(0.364206\pi\)
\(240\) −348.531 −0.0937400
\(241\) −4446.46 −1.18847 −0.594236 0.804290i \(-0.702546\pi\)
−0.594236 + 0.804290i \(0.702546\pi\)
\(242\) −6147.67 −1.63301
\(243\) 5282.46 1.39453
\(244\) 642.274 0.168514
\(245\) 1285.25 0.335149
\(246\) −3045.11 −0.789225
\(247\) 1054.91 0.271750
\(248\) 0 0
\(249\) 9641.18 2.45376
\(250\) 1445.82 0.365766
\(251\) 1701.29 0.427826 0.213913 0.976853i \(-0.431379\pi\)
0.213913 + 0.976853i \(0.431379\pi\)
\(252\) 2859.47 0.714799
\(253\) 10456.9 2.59850
\(254\) −4465.85 −1.10320
\(255\) 2203.89 0.541228
\(256\) 256.000 0.0625000
\(257\) −2072.58 −0.503050 −0.251525 0.967851i \(-0.580932\pi\)
−0.251525 + 0.967851i \(0.580932\pi\)
\(258\) −2871.14 −0.692827
\(259\) 1605.51 0.385179
\(260\) −293.514 −0.0700115
\(261\) −5778.99 −1.37054
\(262\) 2085.57 0.491781
\(263\) 7708.31 1.80728 0.903640 0.428293i \(-0.140885\pi\)
0.903640 + 0.428293i \(0.140885\pi\)
\(264\) −3855.80 −0.898893
\(265\) 1160.04 0.268908
\(266\) 2395.51 0.552174
\(267\) −11541.7 −2.64548
\(268\) −2084.40 −0.475093
\(269\) −2033.51 −0.460912 −0.230456 0.973083i \(-0.574022\pi\)
−0.230456 + 0.973083i \(0.574022\pi\)
\(270\) −55.0082 −0.0123989
\(271\) 4714.76 1.05683 0.528416 0.848986i \(-0.322786\pi\)
0.528416 + 0.848986i \(0.322786\pi\)
\(272\) −1618.78 −0.360857
\(273\) 4934.32 1.09391
\(274\) 710.726 0.156703
\(275\) 7698.96 1.68824
\(276\) 4576.75 0.998145
\(277\) −5348.72 −1.16019 −0.580097 0.814548i \(-0.696985\pi\)
−0.580097 + 0.814548i \(0.696985\pi\)
\(278\) 5349.16 1.15403
\(279\) 0 0
\(280\) −666.520 −0.142258
\(281\) −4822.38 −1.02377 −0.511884 0.859054i \(-0.671052\pi\)
−0.511884 + 0.859054i \(0.671052\pi\)
\(282\) −809.263 −0.170890
\(283\) −2897.52 −0.608621 −0.304311 0.952573i \(-0.598426\pi\)
−0.304311 + 0.952573i \(0.598426\pi\)
\(284\) −1629.43 −0.340454
\(285\) 939.355 0.195237
\(286\) −3247.15 −0.671356
\(287\) −5823.38 −1.19771
\(288\) −823.596 −0.168510
\(289\) 5323.17 1.08349
\(290\) 1347.04 0.272762
\(291\) 5108.87 1.02917
\(292\) 1616.91 0.324050
\(293\) −69.2462 −0.0138068 −0.00690342 0.999976i \(-0.502197\pi\)
−0.00690342 + 0.999976i \(0.502197\pi\)
\(294\) 6223.20 1.23451
\(295\) 169.507 0.0334544
\(296\) −462.426 −0.0908039
\(297\) −608.555 −0.118895
\(298\) 2128.86 0.413830
\(299\) 3854.29 0.745483
\(300\) 3369.66 0.648492
\(301\) −5490.68 −1.05142
\(302\) 2712.51 0.516845
\(303\) 4073.93 0.772413
\(304\) −689.967 −0.130172
\(305\) 481.641 0.0904218
\(306\) 5207.90 0.972928
\(307\) 2756.13 0.512379 0.256190 0.966627i \(-0.417533\pi\)
0.256190 + 0.966627i \(0.417533\pi\)
\(308\) −7373.70 −1.36414
\(309\) 9952.81 1.83235
\(310\) 0 0
\(311\) −4520.29 −0.824187 −0.412094 0.911142i \(-0.635202\pi\)
−0.412094 + 0.911142i \(0.635202\pi\)
\(312\) −1421.20 −0.257884
\(313\) −9570.98 −1.72838 −0.864192 0.503163i \(-0.832170\pi\)
−0.864192 + 0.503163i \(0.832170\pi\)
\(314\) −3227.30 −0.580022
\(315\) 2144.31 0.383550
\(316\) 4385.63 0.780731
\(317\) 117.492 0.0208171 0.0104086 0.999946i \(-0.496687\pi\)
0.0104086 + 0.999946i \(0.496687\pi\)
\(318\) 5616.92 0.990508
\(319\) 14902.3 2.61557
\(320\) 191.974 0.0335365
\(321\) −10633.7 −1.84896
\(322\) 8752.43 1.51476
\(323\) 4362.92 0.751576
\(324\) −3045.99 −0.522289
\(325\) 2837.75 0.484339
\(326\) 3197.74 0.543271
\(327\) −4985.23 −0.843069
\(328\) 1677.27 0.282354
\(329\) −1547.61 −0.259339
\(330\) −2891.46 −0.482332
\(331\) −7547.63 −1.25334 −0.626669 0.779285i \(-0.715582\pi\)
−0.626669 + 0.779285i \(0.715582\pi\)
\(332\) −5310.45 −0.877857
\(333\) 1487.70 0.244822
\(334\) −5302.23 −0.868638
\(335\) −1563.09 −0.254927
\(336\) −3227.30 −0.524000
\(337\) −5590.11 −0.903598 −0.451799 0.892120i \(-0.649218\pi\)
−0.451799 + 0.892120i \(0.649218\pi\)
\(338\) 3197.14 0.514501
\(339\) 14771.0 2.36653
\(340\) −1213.92 −0.193630
\(341\) 0 0
\(342\) 2219.74 0.350964
\(343\) 2374.08 0.373727
\(344\) 1581.45 0.247866
\(345\) 3432.10 0.535588
\(346\) 5189.36 0.806305
\(347\) 6904.37 1.06814 0.534072 0.845439i \(-0.320661\pi\)
0.534072 + 0.845439i \(0.320661\pi\)
\(348\) 6522.39 1.00470
\(349\) 8332.65 1.27804 0.639021 0.769189i \(-0.279340\pi\)
0.639021 + 0.769189i \(0.279340\pi\)
\(350\) 6444.03 0.984137
\(351\) −224.306 −0.0341100
\(352\) 2123.81 0.321589
\(353\) 4537.42 0.684144 0.342072 0.939674i \(-0.388871\pi\)
0.342072 + 0.939674i \(0.388871\pi\)
\(354\) 820.755 0.123228
\(355\) −1221.91 −0.182682
\(356\) 6357.28 0.946447
\(357\) 20407.4 3.02542
\(358\) −4094.97 −0.604541
\(359\) 3519.88 0.517471 0.258736 0.965948i \(-0.416694\pi\)
0.258736 + 0.965948i \(0.416694\pi\)
\(360\) −617.613 −0.0904197
\(361\) −4999.41 −0.728884
\(362\) −1849.26 −0.268495
\(363\) −22322.3 −3.22760
\(364\) −2717.86 −0.391359
\(365\) 1212.52 0.173880
\(366\) 2332.11 0.333064
\(367\) −12612.6 −1.79393 −0.896964 0.442103i \(-0.854232\pi\)
−0.896964 + 0.442103i \(0.854232\pi\)
\(368\) −2520.91 −0.357097
\(369\) −5396.08 −0.761270
\(370\) −346.772 −0.0487239
\(371\) 10741.6 1.50317
\(372\) 0 0
\(373\) 1996.68 0.277169 0.138585 0.990351i \(-0.455745\pi\)
0.138585 + 0.990351i \(0.455745\pi\)
\(374\) −13429.6 −1.85676
\(375\) 5249.80 0.722930
\(376\) 445.749 0.0611377
\(377\) 5492.81 0.750382
\(378\) −509.361 −0.0693087
\(379\) 595.707 0.0807372 0.0403686 0.999185i \(-0.487147\pi\)
0.0403686 + 0.999185i \(0.487147\pi\)
\(380\) −517.405 −0.0698482
\(381\) −16215.6 −2.18045
\(382\) −3194.00 −0.427799
\(383\) −9811.32 −1.30897 −0.654484 0.756076i \(-0.727114\pi\)
−0.654484 + 0.756076i \(0.727114\pi\)
\(384\) 929.542 0.123530
\(385\) −5529.53 −0.731976
\(386\) −6735.08 −0.888100
\(387\) −5087.79 −0.668287
\(388\) −2814.01 −0.368195
\(389\) −9410.62 −1.22657 −0.613287 0.789860i \(-0.710153\pi\)
−0.613287 + 0.789860i \(0.710153\pi\)
\(390\) −1065.76 −0.138376
\(391\) 15940.7 2.06178
\(392\) −3427.79 −0.441657
\(393\) 7572.74 0.971996
\(394\) 4073.80 0.520901
\(395\) 3288.78 0.418927
\(396\) −6832.65 −0.867054
\(397\) 3847.61 0.486414 0.243207 0.969974i \(-0.421801\pi\)
0.243207 + 0.969974i \(0.421801\pi\)
\(398\) −5301.42 −0.667679
\(399\) 8698.17 1.09136
\(400\) −1856.04 −0.232005
\(401\) −1522.21 −0.189565 −0.0947827 0.995498i \(-0.530216\pi\)
−0.0947827 + 0.995498i \(0.530216\pi\)
\(402\) −7568.51 −0.939012
\(403\) 0 0
\(404\) −2243.96 −0.276339
\(405\) −2284.18 −0.280252
\(406\) 12473.2 1.52472
\(407\) −3836.34 −0.467224
\(408\) −5877.84 −0.713227
\(409\) −8174.62 −0.988286 −0.494143 0.869381i \(-0.664518\pi\)
−0.494143 + 0.869381i \(0.664518\pi\)
\(410\) 1257.79 0.151506
\(411\) 2580.66 0.309719
\(412\) −5482.09 −0.655542
\(413\) 1569.58 0.187008
\(414\) 8110.21 0.962790
\(415\) −3982.30 −0.471044
\(416\) 782.811 0.0922607
\(417\) 19422.9 2.28092
\(418\) −5724.04 −0.669790
\(419\) −8671.32 −1.01103 −0.505515 0.862818i \(-0.668698\pi\)
−0.505515 + 0.862818i \(0.668698\pi\)
\(420\) −2420.15 −0.281170
\(421\) 1211.88 0.140293 0.0701467 0.997537i \(-0.477653\pi\)
0.0701467 + 0.997537i \(0.477653\pi\)
\(422\) −856.959 −0.0988533
\(423\) −1434.05 −0.164837
\(424\) −3093.85 −0.354365
\(425\) 11736.4 1.33953
\(426\) −5916.51 −0.672901
\(427\) 4459.86 0.505451
\(428\) 5857.14 0.661485
\(429\) −11790.5 −1.32692
\(430\) 1185.93 0.133001
\(431\) 15543.7 1.73716 0.868579 0.495551i \(-0.165034\pi\)
0.868579 + 0.495551i \(0.165034\pi\)
\(432\) 146.708 0.0163391
\(433\) 4281.07 0.475138 0.237569 0.971371i \(-0.423649\pi\)
0.237569 + 0.971371i \(0.423649\pi\)
\(434\) 0 0
\(435\) 4891.13 0.539108
\(436\) 2745.91 0.301617
\(437\) 6794.32 0.743744
\(438\) 5871.05 0.640479
\(439\) 6616.42 0.719327 0.359664 0.933082i \(-0.382891\pi\)
0.359664 + 0.933082i \(0.382891\pi\)
\(440\) 1592.64 0.172559
\(441\) 11027.8 1.19078
\(442\) −4950.01 −0.532687
\(443\) −2299.95 −0.246668 −0.123334 0.992365i \(-0.539359\pi\)
−0.123334 + 0.992365i \(0.539359\pi\)
\(444\) −1679.08 −0.179472
\(445\) 4767.32 0.507848
\(446\) −8599.08 −0.912956
\(447\) 7729.93 0.817927
\(448\) 1777.63 0.187466
\(449\) −978.282 −0.102824 −0.0514120 0.998678i \(-0.516372\pi\)
−0.0514120 + 0.998678i \(0.516372\pi\)
\(450\) 5971.20 0.625522
\(451\) 13914.9 1.45283
\(452\) −8136.01 −0.846650
\(453\) 9849.18 1.02153
\(454\) −5341.80 −0.552210
\(455\) −2038.12 −0.209997
\(456\) −2505.29 −0.257282
\(457\) 427.099 0.0437174 0.0218587 0.999761i \(-0.493042\pi\)
0.0218587 + 0.999761i \(0.493042\pi\)
\(458\) −1002.80 −0.102310
\(459\) −927.692 −0.0943375
\(460\) −1890.43 −0.191612
\(461\) −8967.28 −0.905960 −0.452980 0.891521i \(-0.649639\pi\)
−0.452980 + 0.891521i \(0.649639\pi\)
\(462\) −26774.1 −2.69620
\(463\) −3002.65 −0.301393 −0.150697 0.988580i \(-0.548152\pi\)
−0.150697 + 0.988580i \(0.548152\pi\)
\(464\) −3592.59 −0.359444
\(465\) 0 0
\(466\) −30.1726 −0.00299940
\(467\) 3088.95 0.306081 0.153040 0.988220i \(-0.451094\pi\)
0.153040 + 0.988220i \(0.451094\pi\)
\(468\) −2518.44 −0.248750
\(469\) −14473.8 −1.42503
\(470\) 334.267 0.0328055
\(471\) −11718.4 −1.14640
\(472\) −452.079 −0.0440860
\(473\) 13119.9 1.27538
\(474\) 15924.3 1.54310
\(475\) 5002.36 0.483209
\(476\) −11240.6 −1.08238
\(477\) 9953.45 0.955424
\(478\) −6115.50 −0.585181
\(479\) 12382.2 1.18112 0.590559 0.806994i \(-0.298907\pi\)
0.590559 + 0.806994i \(0.298907\pi\)
\(480\) 697.063 0.0662842
\(481\) −1414.03 −0.134042
\(482\) 8892.93 0.840377
\(483\) 31780.3 2.99390
\(484\) 12295.3 1.15471
\(485\) −2110.22 −0.197567
\(486\) −10564.9 −0.986079
\(487\) 18783.9 1.74780 0.873900 0.486105i \(-0.161583\pi\)
0.873900 + 0.486105i \(0.161583\pi\)
\(488\) −1284.55 −0.119157
\(489\) 11611.1 1.07376
\(490\) −2570.50 −0.236986
\(491\) −12311.2 −1.13156 −0.565782 0.824555i \(-0.691426\pi\)
−0.565782 + 0.824555i \(0.691426\pi\)
\(492\) 6090.23 0.558066
\(493\) 22717.3 2.07532
\(494\) −2109.82 −0.192156
\(495\) −5123.79 −0.465247
\(496\) 0 0
\(497\) −11314.5 −1.02118
\(498\) −19282.4 −1.73507
\(499\) −12099.7 −1.08548 −0.542742 0.839900i \(-0.682614\pi\)
−0.542742 + 0.839900i \(0.682614\pi\)
\(500\) −2891.64 −0.258636
\(501\) −19252.5 −1.71685
\(502\) −3402.57 −0.302518
\(503\) 13826.6 1.22564 0.612822 0.790221i \(-0.290034\pi\)
0.612822 + 0.790221i \(0.290034\pi\)
\(504\) −5718.93 −0.505439
\(505\) −1682.74 −0.148279
\(506\) −20913.8 −1.83741
\(507\) 11608.9 1.01690
\(508\) 8931.70 0.780079
\(509\) −16677.5 −1.45229 −0.726146 0.687541i \(-0.758690\pi\)
−0.726146 + 0.687541i \(0.758690\pi\)
\(510\) −4407.79 −0.382706
\(511\) 11227.6 0.971977
\(512\) −512.000 −0.0441942
\(513\) −395.406 −0.0340304
\(514\) 4145.15 0.355710
\(515\) −4111.01 −0.351753
\(516\) 5742.28 0.489903
\(517\) 3697.99 0.314579
\(518\) −3211.02 −0.272363
\(519\) 18842.7 1.59365
\(520\) 587.029 0.0495056
\(521\) 11591.6 0.974738 0.487369 0.873196i \(-0.337957\pi\)
0.487369 + 0.873196i \(0.337957\pi\)
\(522\) 11558.0 0.969117
\(523\) −11916.0 −0.996272 −0.498136 0.867099i \(-0.665982\pi\)
−0.498136 + 0.867099i \(0.665982\pi\)
\(524\) −4171.13 −0.347742
\(525\) 23398.4 1.94513
\(526\) −15416.6 −1.27794
\(527\) 0 0
\(528\) 7711.59 0.635614
\(529\) 12657.2 1.04029
\(530\) −2320.07 −0.190146
\(531\) 1454.41 0.118863
\(532\) −4791.03 −0.390446
\(533\) 5128.86 0.416802
\(534\) 23083.5 1.87063
\(535\) 4392.26 0.354942
\(536\) 4168.80 0.335942
\(537\) −14868.9 −1.19486
\(538\) 4067.02 0.325914
\(539\) −28437.4 −2.27251
\(540\) 110.016 0.00876732
\(541\) −7724.63 −0.613878 −0.306939 0.951729i \(-0.599305\pi\)
−0.306939 + 0.951729i \(0.599305\pi\)
\(542\) −9429.52 −0.747293
\(543\) −6714.72 −0.530675
\(544\) 3237.57 0.255165
\(545\) 2059.15 0.161843
\(546\) −9868.63 −0.773514
\(547\) 9613.26 0.751432 0.375716 0.926735i \(-0.377397\pi\)
0.375716 + 0.926735i \(0.377397\pi\)
\(548\) −1421.45 −0.110805
\(549\) 4132.61 0.321267
\(550\) −15397.9 −1.19376
\(551\) 9682.68 0.748632
\(552\) −9153.50 −0.705795
\(553\) 30453.2 2.34177
\(554\) 10697.4 0.820380
\(555\) −1259.14 −0.0963017
\(556\) −10698.3 −0.816025
\(557\) 1862.26 0.141664 0.0708319 0.997488i \(-0.477435\pi\)
0.0708319 + 0.997488i \(0.477435\pi\)
\(558\) 0 0
\(559\) 4835.84 0.365893
\(560\) 1333.04 0.100591
\(561\) −48763.3 −3.66985
\(562\) 9644.76 0.723914
\(563\) −19241.5 −1.44037 −0.720187 0.693780i \(-0.755944\pi\)
−0.720187 + 0.693780i \(0.755944\pi\)
\(564\) 1618.53 0.120837
\(565\) −6101.18 −0.454298
\(566\) 5795.05 0.430360
\(567\) −21150.9 −1.56659
\(568\) 3258.86 0.240737
\(569\) 17092.3 1.25931 0.629655 0.776875i \(-0.283196\pi\)
0.629655 + 0.776875i \(0.283196\pi\)
\(570\) −1878.71 −0.138054
\(571\) −16223.0 −1.18899 −0.594494 0.804100i \(-0.702648\pi\)
−0.594494 + 0.804100i \(0.702648\pi\)
\(572\) 6494.29 0.474720
\(573\) −11597.5 −0.845535
\(574\) 11646.8 0.846910
\(575\) 18277.0 1.32557
\(576\) 1647.19 0.119154
\(577\) 4128.91 0.297901 0.148951 0.988845i \(-0.452410\pi\)
0.148951 + 0.988845i \(0.452410\pi\)
\(578\) −10646.3 −0.766141
\(579\) −24455.2 −1.75531
\(580\) −2694.08 −0.192872
\(581\) −36875.0 −2.63310
\(582\) −10217.7 −0.727730
\(583\) −25666.9 −1.82336
\(584\) −3233.83 −0.229138
\(585\) −1888.57 −0.133475
\(586\) 138.492 0.00976292
\(587\) 9701.50 0.682153 0.341076 0.940036i \(-0.389209\pi\)
0.341076 + 0.940036i \(0.389209\pi\)
\(588\) −12446.4 −0.872927
\(589\) 0 0
\(590\) −339.013 −0.0236558
\(591\) 14792.1 1.02955
\(592\) 924.851 0.0642080
\(593\) −9888.10 −0.684748 −0.342374 0.939564i \(-0.611231\pi\)
−0.342374 + 0.939564i \(0.611231\pi\)
\(594\) 1217.11 0.0840717
\(595\) −8429.31 −0.580786
\(596\) −4257.71 −0.292622
\(597\) −19249.6 −1.31965
\(598\) −7708.59 −0.527136
\(599\) 3291.60 0.224526 0.112263 0.993679i \(-0.464190\pi\)
0.112263 + 0.993679i \(0.464190\pi\)
\(600\) −6739.32 −0.458553
\(601\) −5313.08 −0.360607 −0.180304 0.983611i \(-0.557708\pi\)
−0.180304 + 0.983611i \(0.557708\pi\)
\(602\) 10981.4 0.743466
\(603\) −13411.7 −0.905752
\(604\) −5425.02 −0.365465
\(605\) 9220.26 0.619598
\(606\) −8147.86 −0.546179
\(607\) −8296.83 −0.554791 −0.277395 0.960756i \(-0.589471\pi\)
−0.277395 + 0.960756i \(0.589471\pi\)
\(608\) 1379.93 0.0920455
\(609\) 45290.5 3.01357
\(610\) −963.281 −0.0639379
\(611\) 1363.04 0.0902497
\(612\) −10415.8 −0.687964
\(613\) −18295.9 −1.20549 −0.602745 0.797934i \(-0.705926\pi\)
−0.602745 + 0.797934i \(0.705926\pi\)
\(614\) −5512.25 −0.362307
\(615\) 4567.05 0.299449
\(616\) 14747.4 0.964594
\(617\) 18054.1 1.17801 0.589003 0.808131i \(-0.299521\pi\)
0.589003 + 0.808131i \(0.299521\pi\)
\(618\) −19905.6 −1.29567
\(619\) 12744.5 0.827533 0.413767 0.910383i \(-0.364213\pi\)
0.413767 + 0.910383i \(0.364213\pi\)
\(620\) 0 0
\(621\) −1444.68 −0.0933545
\(622\) 9040.58 0.582788
\(623\) 44144.1 2.83883
\(624\) 2842.41 0.182351
\(625\) 12331.9 0.789240
\(626\) 19142.0 1.22215
\(627\) −20784.1 −1.32383
\(628\) 6454.60 0.410138
\(629\) −5848.18 −0.370719
\(630\) −4288.62 −0.271211
\(631\) 7305.73 0.460913 0.230457 0.973083i \(-0.425978\pi\)
0.230457 + 0.973083i \(0.425978\pi\)
\(632\) −8771.26 −0.552060
\(633\) −3111.64 −0.195382
\(634\) −234.984 −0.0147199
\(635\) 6697.87 0.418578
\(636\) −11233.8 −0.700395
\(637\) −10481.7 −0.651962
\(638\) −29804.5 −1.84949
\(639\) −10484.3 −0.649066
\(640\) −383.948 −0.0237139
\(641\) 6609.83 0.407290 0.203645 0.979045i \(-0.434721\pi\)
0.203645 + 0.979045i \(0.434721\pi\)
\(642\) 21267.4 1.30741
\(643\) 25720.6 1.57748 0.788740 0.614726i \(-0.210734\pi\)
0.788740 + 0.614726i \(0.210734\pi\)
\(644\) −17504.9 −1.07110
\(645\) 4306.13 0.262874
\(646\) −8725.83 −0.531445
\(647\) −10699.0 −0.650111 −0.325055 0.945695i \(-0.605383\pi\)
−0.325055 + 0.945695i \(0.605383\pi\)
\(648\) 6091.97 0.369314
\(649\) −3750.50 −0.226841
\(650\) −5675.50 −0.342479
\(651\) 0 0
\(652\) −6395.48 −0.384151
\(653\) 32452.1 1.94479 0.972395 0.233343i \(-0.0749664\pi\)
0.972395 + 0.233343i \(0.0749664\pi\)
\(654\) 9970.45 0.596140
\(655\) −3127.93 −0.186593
\(656\) −3354.55 −0.199654
\(657\) 10403.8 0.617793
\(658\) 3095.22 0.183380
\(659\) 10849.9 0.641353 0.320676 0.947189i \(-0.396090\pi\)
0.320676 + 0.947189i \(0.396090\pi\)
\(660\) 5782.91 0.341060
\(661\) −16809.2 −0.989113 −0.494557 0.869145i \(-0.664670\pi\)
−0.494557 + 0.869145i \(0.664670\pi\)
\(662\) 15095.3 0.886244
\(663\) −17973.6 −1.05285
\(664\) 10620.9 0.620739
\(665\) −3592.79 −0.209507
\(666\) −2975.40 −0.173115
\(667\) 35377.4 2.05370
\(668\) 10604.5 0.614220
\(669\) −31223.5 −1.80444
\(670\) 3126.18 0.180261
\(671\) −10656.8 −0.613115
\(672\) 6454.61 0.370524
\(673\) 9275.00 0.531241 0.265620 0.964078i \(-0.414423\pi\)
0.265620 + 0.964078i \(0.414423\pi\)
\(674\) 11180.2 0.638940
\(675\) −1063.66 −0.0606522
\(676\) −6394.28 −0.363807
\(677\) −7049.47 −0.400196 −0.200098 0.979776i \(-0.564126\pi\)
−0.200098 + 0.979776i \(0.564126\pi\)
\(678\) −29542.1 −1.67339
\(679\) −19540.1 −1.10439
\(680\) 2427.85 0.136917
\(681\) −19396.2 −1.09143
\(682\) 0 0
\(683\) 2417.75 0.135450 0.0677251 0.997704i \(-0.478426\pi\)
0.0677251 + 0.997704i \(0.478426\pi\)
\(684\) −4439.48 −0.248169
\(685\) −1065.94 −0.0594564
\(686\) −4748.16 −0.264265
\(687\) −3641.20 −0.202213
\(688\) −3162.90 −0.175268
\(689\) −9460.55 −0.523103
\(690\) −6864.19 −0.378718
\(691\) −6258.42 −0.344546 −0.172273 0.985049i \(-0.555111\pi\)
−0.172273 + 0.985049i \(0.555111\pi\)
\(692\) −10378.7 −0.570144
\(693\) −47444.9 −2.60070
\(694\) −13808.7 −0.755292
\(695\) −8022.65 −0.437865
\(696\) −13044.8 −0.710433
\(697\) 21212.1 1.15275
\(698\) −16665.3 −0.903712
\(699\) −109.558 −0.00592825
\(700\) −12888.1 −0.695890
\(701\) 515.948 0.0277990 0.0138995 0.999903i \(-0.495576\pi\)
0.0138995 + 0.999903i \(0.495576\pi\)
\(702\) 448.613 0.0241194
\(703\) −2492.64 −0.133729
\(704\) −4247.61 −0.227398
\(705\) 1213.73 0.0648394
\(706\) −9074.85 −0.483763
\(707\) −15581.7 −0.828869
\(708\) −1641.51 −0.0871351
\(709\) −3084.27 −0.163374 −0.0816870 0.996658i \(-0.526031\pi\)
−0.0816870 + 0.996658i \(0.526031\pi\)
\(710\) 2443.82 0.129176
\(711\) 28218.6 1.48844
\(712\) −12714.6 −0.669239
\(713\) 0 0
\(714\) −40814.9 −2.13930
\(715\) 4870.06 0.254727
\(716\) 8189.94 0.427475
\(717\) −22205.5 −1.15660
\(718\) −7039.76 −0.365907
\(719\) −5604.23 −0.290685 −0.145342 0.989381i \(-0.546428\pi\)
−0.145342 + 0.989381i \(0.546428\pi\)
\(720\) 1235.23 0.0639364
\(721\) −38066.9 −1.96627
\(722\) 9998.83 0.515399
\(723\) 32290.4 1.66099
\(724\) 3698.53 0.189855
\(725\) 26046.8 1.33428
\(726\) 44644.7 2.28226
\(727\) −16591.2 −0.846402 −0.423201 0.906036i \(-0.639094\pi\)
−0.423201 + 0.906036i \(0.639094\pi\)
\(728\) 5435.73 0.276733
\(729\) −17801.1 −0.904387
\(730\) −2425.04 −0.122952
\(731\) 20000.2 1.01195
\(732\) −4664.23 −0.235512
\(733\) 26698.6 1.34534 0.672670 0.739943i \(-0.265147\pi\)
0.672670 + 0.739943i \(0.265147\pi\)
\(734\) 25225.2 1.26850
\(735\) −9333.54 −0.468398
\(736\) 5041.83 0.252506
\(737\) 34584.9 1.72856
\(738\) 10792.2 0.538299
\(739\) −3054.04 −0.152022 −0.0760112 0.997107i \(-0.524218\pi\)
−0.0760112 + 0.997107i \(0.524218\pi\)
\(740\) 693.545 0.0344530
\(741\) −7660.80 −0.379793
\(742\) −21483.3 −1.06290
\(743\) −1359.08 −0.0671060 −0.0335530 0.999437i \(-0.510682\pi\)
−0.0335530 + 0.999437i \(0.510682\pi\)
\(744\) 0 0
\(745\) −3192.85 −0.157016
\(746\) −3993.36 −0.195988
\(747\) −34169.2 −1.67361
\(748\) 26859.2 1.31293
\(749\) 40671.2 1.98410
\(750\) −10499.6 −0.511189
\(751\) −28992.8 −1.40874 −0.704370 0.709834i \(-0.748770\pi\)
−0.704370 + 0.709834i \(0.748770\pi\)
\(752\) −891.499 −0.0432309
\(753\) −12354.8 −0.597921
\(754\) −10985.6 −0.530600
\(755\) −4068.21 −0.196102
\(756\) 1018.72 0.0490087
\(757\) 33394.5 1.60336 0.801680 0.597754i \(-0.203940\pi\)
0.801680 + 0.597754i \(0.203940\pi\)
\(758\) −1191.41 −0.0570898
\(759\) −75938.5 −3.63161
\(760\) 1034.81 0.0493901
\(761\) 5289.49 0.251963 0.125982 0.992033i \(-0.459792\pi\)
0.125982 + 0.992033i \(0.459792\pi\)
\(762\) 32431.2 1.54181
\(763\) 19067.2 0.904689
\(764\) 6387.99 0.302499
\(765\) −7810.80 −0.369150
\(766\) 19622.6 0.925580
\(767\) −1382.39 −0.0650786
\(768\) −1859.08 −0.0873489
\(769\) 29830.7 1.39886 0.699429 0.714702i \(-0.253438\pi\)
0.699429 + 0.714702i \(0.253438\pi\)
\(770\) 11059.1 0.517585
\(771\) 15051.2 0.703053
\(772\) 13470.2 0.627981
\(773\) 18777.3 0.873705 0.436853 0.899533i \(-0.356093\pi\)
0.436853 + 0.899533i \(0.356093\pi\)
\(774\) 10175.6 0.472550
\(775\) 0 0
\(776\) 5628.02 0.260353
\(777\) −11659.3 −0.538320
\(778\) 18821.2 0.867319
\(779\) 9041.12 0.415830
\(780\) 2131.52 0.0978468
\(781\) 27035.9 1.23870
\(782\) −31881.3 −1.45790
\(783\) −2058.84 −0.0939680
\(784\) 6855.59 0.312299
\(785\) 4840.29 0.220073
\(786\) −15145.5 −0.687305
\(787\) −17683.0 −0.800930 −0.400465 0.916312i \(-0.631151\pi\)
−0.400465 + 0.916312i \(0.631151\pi\)
\(788\) −8147.60 −0.368333
\(789\) −55978.1 −2.52582
\(790\) −6577.55 −0.296226
\(791\) −56495.3 −2.53950
\(792\) 13665.3 0.613100
\(793\) −3927.96 −0.175897
\(794\) −7695.23 −0.343946
\(795\) −8424.25 −0.375820
\(796\) 10602.8 0.472121
\(797\) −27842.5 −1.23743 −0.618714 0.785616i \(-0.712346\pi\)
−0.618714 + 0.785616i \(0.712346\pi\)
\(798\) −17396.3 −0.771709
\(799\) 5637.28 0.249603
\(800\) 3712.08 0.164052
\(801\) 40904.9 1.80438
\(802\) 3044.43 0.134043
\(803\) −26828.2 −1.17901
\(804\) 15137.0 0.663982
\(805\) −13126.9 −0.574734
\(806\) 0 0
\(807\) 14767.4 0.644162
\(808\) 4487.91 0.195401
\(809\) 18385.8 0.799023 0.399511 0.916728i \(-0.369180\pi\)
0.399511 + 0.916728i \(0.369180\pi\)
\(810\) 4568.36 0.198168
\(811\) −43648.0 −1.88988 −0.944938 0.327249i \(-0.893878\pi\)
−0.944938 + 0.327249i \(0.893878\pi\)
\(812\) −24946.4 −1.07814
\(813\) −34238.8 −1.47701
\(814\) 7672.67 0.330377
\(815\) −4795.96 −0.206129
\(816\) 11755.7 0.504328
\(817\) 8524.59 0.365040
\(818\) 16349.2 0.698824
\(819\) −17487.7 −0.746115
\(820\) −2515.57 −0.107131
\(821\) −20987.7 −0.892174 −0.446087 0.894990i \(-0.647183\pi\)
−0.446087 + 0.894990i \(0.647183\pi\)
\(822\) −5161.33 −0.219005
\(823\) 1502.09 0.0636204 0.0318102 0.999494i \(-0.489873\pi\)
0.0318102 + 0.999494i \(0.489873\pi\)
\(824\) 10964.2 0.463538
\(825\) −55910.2 −2.35945
\(826\) −3139.17 −0.132234
\(827\) 35311.1 1.48475 0.742373 0.669986i \(-0.233700\pi\)
0.742373 + 0.669986i \(0.233700\pi\)
\(828\) −16220.4 −0.680795
\(829\) 10254.1 0.429603 0.214802 0.976658i \(-0.431089\pi\)
0.214802 + 0.976658i \(0.431089\pi\)
\(830\) 7964.59 0.333078
\(831\) 38842.7 1.62147
\(832\) −1565.62 −0.0652382
\(833\) −43350.4 −1.80313
\(834\) −38845.9 −1.61286
\(835\) 7952.27 0.329581
\(836\) 11448.1 0.473613
\(837\) 0 0
\(838\) 17342.6 0.714906
\(839\) −3721.24 −0.153124 −0.0765622 0.997065i \(-0.524394\pi\)
−0.0765622 + 0.997065i \(0.524394\pi\)
\(840\) 4840.30 0.198817
\(841\) 26027.8 1.06719
\(842\) −2423.77 −0.0992025
\(843\) 35020.4 1.43080
\(844\) 1713.92 0.0698998
\(845\) −4795.06 −0.195213
\(846\) 2868.10 0.116557
\(847\) 85377.1 3.46351
\(848\) 6187.70 0.250574
\(849\) 21042.0 0.850599
\(850\) −23472.9 −0.947191
\(851\) −9107.30 −0.366856
\(852\) 11833.0 0.475813
\(853\) −26083.3 −1.04698 −0.523491 0.852031i \(-0.675371\pi\)
−0.523491 + 0.852031i \(0.675371\pi\)
\(854\) −8919.72 −0.357408
\(855\) −3329.16 −0.133164
\(856\) −11714.3 −0.467741
\(857\) −19018.4 −0.758059 −0.379029 0.925385i \(-0.623742\pi\)
−0.379029 + 0.925385i \(0.623742\pi\)
\(858\) 23580.9 0.938275
\(859\) 23095.2 0.917342 0.458671 0.888606i \(-0.348326\pi\)
0.458671 + 0.888606i \(0.348326\pi\)
\(860\) −2371.85 −0.0940460
\(861\) 42289.6 1.67390
\(862\) −31087.5 −1.22836
\(863\) 25483.1 1.00516 0.502580 0.864530i \(-0.332384\pi\)
0.502580 + 0.864530i \(0.332384\pi\)
\(864\) −293.417 −0.0115535
\(865\) −7782.98 −0.305930
\(866\) −8562.13 −0.335974
\(867\) −38657.1 −1.51426
\(868\) 0 0
\(869\) −72767.4 −2.84058
\(870\) −9782.26 −0.381207
\(871\) 12747.6 0.495908
\(872\) −5491.81 −0.213275
\(873\) −18106.3 −0.701953
\(874\) −13588.6 −0.525907
\(875\) −20079.1 −0.775769
\(876\) −11742.1 −0.452887
\(877\) −32841.6 −1.26452 −0.632258 0.774758i \(-0.717872\pi\)
−0.632258 + 0.774758i \(0.717872\pi\)
\(878\) −13232.8 −0.508641
\(879\) 502.869 0.0192962
\(880\) −3185.28 −0.122018
\(881\) −28768.9 −1.10017 −0.550084 0.835109i \(-0.685404\pi\)
−0.550084 + 0.835109i \(0.685404\pi\)
\(882\) −22055.6 −0.842007
\(883\) 22367.2 0.852454 0.426227 0.904616i \(-0.359842\pi\)
0.426227 + 0.904616i \(0.359842\pi\)
\(884\) 9900.01 0.376667
\(885\) −1230.97 −0.0467553
\(886\) 4599.90 0.174421
\(887\) 25158.7 0.952364 0.476182 0.879347i \(-0.342020\pi\)
0.476182 + 0.879347i \(0.342020\pi\)
\(888\) 3358.16 0.126906
\(889\) 62020.5 2.33982
\(890\) −9534.63 −0.359103
\(891\) 50539.7 1.90027
\(892\) 17198.2 0.645557
\(893\) 2402.75 0.0900392
\(894\) −15459.9 −0.578362
\(895\) 6141.62 0.229376
\(896\) −3555.25 −0.132559
\(897\) −27990.1 −1.04187
\(898\) 1956.56 0.0727076
\(899\) 0 0
\(900\) −11942.4 −0.442311
\(901\) −39127.1 −1.44674
\(902\) −27829.7 −1.02730
\(903\) 39873.6 1.46945
\(904\) 16272.0 0.598672
\(905\) 2773.52 0.101873
\(906\) −19698.4 −0.722334
\(907\) 11928.8 0.436701 0.218351 0.975870i \(-0.429932\pi\)
0.218351 + 0.975870i \(0.429932\pi\)
\(908\) 10683.6 0.390471
\(909\) −14438.4 −0.526833
\(910\) 4076.24 0.148490
\(911\) −14709.7 −0.534966 −0.267483 0.963563i \(-0.586192\pi\)
−0.267483 + 0.963563i \(0.586192\pi\)
\(912\) 5010.57 0.181926
\(913\) 88112.2 3.19396
\(914\) −854.197 −0.0309128
\(915\) −3497.70 −0.126372
\(916\) 2005.60 0.0723438
\(917\) −28963.7 −1.04304
\(918\) 1855.38 0.0667067
\(919\) −14697.9 −0.527571 −0.263786 0.964581i \(-0.584971\pi\)
−0.263786 + 0.964581i \(0.584971\pi\)
\(920\) 3780.86 0.135490
\(921\) −20015.1 −0.716092
\(922\) 17934.6 0.640611
\(923\) 9965.13 0.355370
\(924\) 53548.2 1.90650
\(925\) −6705.31 −0.238345
\(926\) 6005.31 0.213117
\(927\) −35273.7 −1.24977
\(928\) 7185.18 0.254165
\(929\) 10488.0 0.370400 0.185200 0.982701i \(-0.440707\pi\)
0.185200 + 0.982701i \(0.440707\pi\)
\(930\) 0 0
\(931\) −18477.1 −0.650441
\(932\) 60.3453 0.00212090
\(933\) 32826.6 1.15187
\(934\) −6177.90 −0.216432
\(935\) 20141.7 0.704496
\(936\) 5036.87 0.175893
\(937\) 3135.35 0.109314 0.0546570 0.998505i \(-0.482593\pi\)
0.0546570 + 0.998505i \(0.482593\pi\)
\(938\) 28947.6 1.00765
\(939\) 69505.0 2.41556
\(940\) −668.533 −0.0231970
\(941\) −11316.6 −0.392042 −0.196021 0.980600i \(-0.562802\pi\)
−0.196021 + 0.980600i \(0.562802\pi\)
\(942\) 23436.8 0.810629
\(943\) 33033.3 1.14073
\(944\) 904.157 0.0311735
\(945\) 763.938 0.0262972
\(946\) −26239.8 −0.901828
\(947\) 30537.4 1.04787 0.523935 0.851758i \(-0.324463\pi\)
0.523935 + 0.851758i \(0.324463\pi\)
\(948\) −31848.7 −1.09114
\(949\) −9888.57 −0.338247
\(950\) −10004.7 −0.341680
\(951\) −853.235 −0.0290936
\(952\) 22481.2 0.765357
\(953\) 22493.5 0.764572 0.382286 0.924044i \(-0.375137\pi\)
0.382286 + 0.924044i \(0.375137\pi\)
\(954\) −19906.9 −0.675587
\(955\) 4790.35 0.162316
\(956\) 12231.0 0.413785
\(957\) −108221. −3.65547
\(958\) −24764.3 −0.835177
\(959\) −9870.35 −0.332357
\(960\) −1394.13 −0.0468700
\(961\) 0 0
\(962\) 2828.06 0.0947821
\(963\) 37686.9 1.26110
\(964\) −17785.9 −0.594236
\(965\) 10101.3 0.336965
\(966\) −63560.6 −2.11701
\(967\) −25244.5 −0.839514 −0.419757 0.907637i \(-0.637885\pi\)
−0.419757 + 0.907637i \(0.637885\pi\)
\(968\) −24590.7 −0.816503
\(969\) −31683.7 −1.05039
\(970\) 4220.44 0.139701
\(971\) 7656.12 0.253035 0.126517 0.991964i \(-0.459620\pi\)
0.126517 + 0.991964i \(0.459620\pi\)
\(972\) 21129.8 0.697263
\(973\) −74287.6 −2.44764
\(974\) −37567.8 −1.23588
\(975\) −20607.9 −0.676903
\(976\) 2569.10 0.0842570
\(977\) −6502.46 −0.212929 −0.106465 0.994316i \(-0.533953\pi\)
−0.106465 + 0.994316i \(0.533953\pi\)
\(978\) −23222.1 −0.759266
\(979\) −105482. −3.44352
\(980\) 5140.99 0.167575
\(981\) 17668.1 0.575024
\(982\) 24622.4 0.800136
\(983\) 36630.4 1.18853 0.594267 0.804268i \(-0.297442\pi\)
0.594267 + 0.804268i \(0.297442\pi\)
\(984\) −12180.5 −0.394612
\(985\) −6109.87 −0.197641
\(986\) −45434.6 −1.46748
\(987\) 11238.8 0.362447
\(988\) 4219.64 0.135875
\(989\) 31146.1 1.00140
\(990\) 10247.6 0.328979
\(991\) 23059.7 0.739169 0.369584 0.929197i \(-0.379500\pi\)
0.369584 + 0.929197i \(0.379500\pi\)
\(992\) 0 0
\(993\) 54811.2 1.75164
\(994\) 22629.1 0.722083
\(995\) 7951.06 0.253332
\(996\) 38564.7 1.22688
\(997\) 21458.2 0.681633 0.340817 0.940130i \(-0.389296\pi\)
0.340817 + 0.940130i \(0.389296\pi\)
\(998\) 24199.4 0.767552
\(999\) 530.013 0.0167857
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1922.4.a.x.1.5 32
31.30 odd 2 inner 1922.4.a.x.1.28 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1922.4.a.x.1.5 32 1.1 even 1 trivial
1922.4.a.x.1.28 yes 32 31.30 odd 2 inner