Properties

Label 1922.4.a.x.1.2
Level $1922$
Weight $4$
Character 1922.1
Self dual yes
Analytic conductor $113.402$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1922,4,Mod(1,1922)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1922, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1922.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1922 = 2 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1922.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,-64,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(113.401671031\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Character \(\chi\) \(=\) 1922.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -9.30256 q^{3} +4.00000 q^{4} +18.9675 q^{5} +18.6051 q^{6} +21.8384 q^{7} -8.00000 q^{8} +59.5377 q^{9} -37.9350 q^{10} +25.0859 q^{11} -37.2103 q^{12} +15.5621 q^{13} -43.6768 q^{14} -176.446 q^{15} +16.0000 q^{16} -124.008 q^{17} -119.075 q^{18} +64.5895 q^{19} +75.8699 q^{20} -203.153 q^{21} -50.1718 q^{22} -37.7192 q^{23} +74.4205 q^{24} +234.765 q^{25} -31.1241 q^{26} -302.684 q^{27} +87.3535 q^{28} +18.2913 q^{29} +352.892 q^{30} -32.0000 q^{32} -233.363 q^{33} +248.015 q^{34} +414.219 q^{35} +238.151 q^{36} +376.777 q^{37} -129.179 q^{38} -144.767 q^{39} -151.740 q^{40} -58.6849 q^{41} +406.306 q^{42} +475.071 q^{43} +100.344 q^{44} +1129.28 q^{45} +75.4383 q^{46} +27.7443 q^{47} -148.841 q^{48} +133.915 q^{49} -469.531 q^{50} +1153.59 q^{51} +62.2482 q^{52} -112.800 q^{53} +605.368 q^{54} +475.816 q^{55} -174.707 q^{56} -600.848 q^{57} -36.5825 q^{58} -767.752 q^{59} -705.785 q^{60} +133.657 q^{61} +1300.21 q^{63} +64.0000 q^{64} +295.173 q^{65} +466.726 q^{66} +526.105 q^{67} -496.031 q^{68} +350.885 q^{69} -828.438 q^{70} +153.082 q^{71} -476.301 q^{72} +442.646 q^{73} -753.554 q^{74} -2183.92 q^{75} +258.358 q^{76} +547.835 q^{77} +289.534 q^{78} +465.698 q^{79} +303.480 q^{80} +1208.22 q^{81} +117.370 q^{82} +725.948 q^{83} -812.612 q^{84} -2352.11 q^{85} -950.142 q^{86} -170.156 q^{87} -200.687 q^{88} -594.589 q^{89} -2258.56 q^{90} +339.850 q^{91} -150.877 q^{92} -55.4886 q^{94} +1225.10 q^{95} +297.682 q^{96} +1235.23 q^{97} -267.830 q^{98} +1493.56 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 64 q^{2} + 128 q^{4} + 112 q^{7} - 256 q^{8} + 288 q^{9} - 224 q^{14} + 512 q^{16} - 576 q^{18} + 304 q^{19} + 1200 q^{25} + 448 q^{28} - 1024 q^{32} - 272 q^{33} + 1152 q^{36} - 608 q^{38} + 1616 q^{39}+ \cdots - 6176 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −9.30256 −1.79028 −0.895140 0.445786i \(-0.852924\pi\)
−0.895140 + 0.445786i \(0.852924\pi\)
\(4\) 4.00000 0.500000
\(5\) 18.9675 1.69650 0.848252 0.529593i \(-0.177655\pi\)
0.848252 + 0.529593i \(0.177655\pi\)
\(6\) 18.6051 1.26592
\(7\) 21.8384 1.17916 0.589581 0.807709i \(-0.299293\pi\)
0.589581 + 0.807709i \(0.299293\pi\)
\(8\) −8.00000 −0.353553
\(9\) 59.5377 2.20510
\(10\) −37.9350 −1.19961
\(11\) 25.0859 0.687607 0.343803 0.939042i \(-0.388285\pi\)
0.343803 + 0.939042i \(0.388285\pi\)
\(12\) −37.2103 −0.895140
\(13\) 15.5621 0.332011 0.166005 0.986125i \(-0.446913\pi\)
0.166005 + 0.986125i \(0.446913\pi\)
\(14\) −43.6768 −0.833793
\(15\) −176.446 −3.03721
\(16\) 16.0000 0.250000
\(17\) −124.008 −1.76919 −0.884596 0.466357i \(-0.845566\pi\)
−0.884596 + 0.466357i \(0.845566\pi\)
\(18\) −119.075 −1.55924
\(19\) 64.5895 0.779886 0.389943 0.920839i \(-0.372495\pi\)
0.389943 + 0.920839i \(0.372495\pi\)
\(20\) 75.8699 0.848252
\(21\) −203.153 −2.11103
\(22\) −50.1718 −0.486212
\(23\) −37.7192 −0.341956 −0.170978 0.985275i \(-0.554693\pi\)
−0.170978 + 0.985275i \(0.554693\pi\)
\(24\) 74.4205 0.632959
\(25\) 234.765 1.87812
\(26\) −31.1241 −0.234767
\(27\) −302.684 −2.15746
\(28\) 87.3535 0.589581
\(29\) 18.2913 0.117124 0.0585621 0.998284i \(-0.481348\pi\)
0.0585621 + 0.998284i \(0.481348\pi\)
\(30\) 352.892 2.14763
\(31\) 0 0
\(32\) −32.0000 −0.176777
\(33\) −233.363 −1.23101
\(34\) 248.015 1.25101
\(35\) 414.219 2.00045
\(36\) 238.151 1.10255
\(37\) 376.777 1.67410 0.837051 0.547126i \(-0.184278\pi\)
0.837051 + 0.547126i \(0.184278\pi\)
\(38\) −129.179 −0.551463
\(39\) −144.767 −0.594392
\(40\) −151.740 −0.599805
\(41\) −58.6849 −0.223538 −0.111769 0.993734i \(-0.535652\pi\)
−0.111769 + 0.993734i \(0.535652\pi\)
\(42\) 406.306 1.49272
\(43\) 475.071 1.68483 0.842415 0.538830i \(-0.181133\pi\)
0.842415 + 0.538830i \(0.181133\pi\)
\(44\) 100.344 0.343803
\(45\) 1129.28 3.74096
\(46\) 75.4383 0.241799
\(47\) 27.7443 0.0861048 0.0430524 0.999073i \(-0.486292\pi\)
0.0430524 + 0.999073i \(0.486292\pi\)
\(48\) −148.841 −0.447570
\(49\) 133.915 0.390423
\(50\) −469.531 −1.32803
\(51\) 1153.59 3.16735
\(52\) 62.2482 0.166005
\(53\) −112.800 −0.292344 −0.146172 0.989259i \(-0.546695\pi\)
−0.146172 + 0.989259i \(0.546695\pi\)
\(54\) 605.368 1.52556
\(55\) 475.816 1.16653
\(56\) −174.707 −0.416897
\(57\) −600.848 −1.39621
\(58\) −36.5825 −0.0828193
\(59\) −767.752 −1.69412 −0.847058 0.531501i \(-0.821628\pi\)
−0.847058 + 0.531501i \(0.821628\pi\)
\(60\) −705.785 −1.51861
\(61\) 133.657 0.280541 0.140270 0.990113i \(-0.455203\pi\)
0.140270 + 0.990113i \(0.455203\pi\)
\(62\) 0 0
\(63\) 1300.21 2.60017
\(64\) 64.0000 0.125000
\(65\) 295.173 0.563257
\(66\) 466.726 0.870454
\(67\) 526.105 0.959313 0.479656 0.877456i \(-0.340761\pi\)
0.479656 + 0.877456i \(0.340761\pi\)
\(68\) −496.031 −0.884596
\(69\) 350.885 0.612197
\(70\) −828.438 −1.41453
\(71\) 153.082 0.255881 0.127940 0.991782i \(-0.459163\pi\)
0.127940 + 0.991782i \(0.459163\pi\)
\(72\) −476.301 −0.779620
\(73\) 442.646 0.709695 0.354848 0.934924i \(-0.384533\pi\)
0.354848 + 0.934924i \(0.384533\pi\)
\(74\) −753.554 −1.18377
\(75\) −2183.92 −3.36237
\(76\) 258.358 0.389943
\(77\) 547.835 0.810800
\(78\) 289.534 0.420298
\(79\) 465.698 0.663230 0.331615 0.943415i \(-0.392407\pi\)
0.331615 + 0.943415i \(0.392407\pi\)
\(80\) 303.480 0.424126
\(81\) 1208.22 1.65736
\(82\) 117.370 0.158065
\(83\) 725.948 0.960038 0.480019 0.877258i \(-0.340630\pi\)
0.480019 + 0.877258i \(0.340630\pi\)
\(84\) −812.612 −1.05551
\(85\) −2352.11 −3.00144
\(86\) −950.142 −1.19135
\(87\) −170.156 −0.209685
\(88\) −200.687 −0.243106
\(89\) −594.589 −0.708160 −0.354080 0.935215i \(-0.615206\pi\)
−0.354080 + 0.935215i \(0.615206\pi\)
\(90\) −2258.56 −2.64526
\(91\) 339.850 0.391494
\(92\) −150.877 −0.170978
\(93\) 0 0
\(94\) −55.4886 −0.0608853
\(95\) 1225.10 1.32308
\(96\) 297.682 0.316480
\(97\) 1235.23 1.29297 0.646487 0.762925i \(-0.276237\pi\)
0.646487 + 0.762925i \(0.276237\pi\)
\(98\) −267.830 −0.276071
\(99\) 1493.56 1.51624
\(100\) 939.062 0.939062
\(101\) −364.786 −0.359382 −0.179691 0.983723i \(-0.557510\pi\)
−0.179691 + 0.983723i \(0.557510\pi\)
\(102\) −2307.18 −2.23965
\(103\) −205.239 −0.196338 −0.0981691 0.995170i \(-0.531299\pi\)
−0.0981691 + 0.995170i \(0.531299\pi\)
\(104\) −124.496 −0.117383
\(105\) −3853.30 −3.58137
\(106\) 225.599 0.206718
\(107\) 582.226 0.526037 0.263018 0.964791i \(-0.415282\pi\)
0.263018 + 0.964791i \(0.415282\pi\)
\(108\) −1210.74 −1.07873
\(109\) −1530.87 −1.34524 −0.672620 0.739988i \(-0.734831\pi\)
−0.672620 + 0.739988i \(0.734831\pi\)
\(110\) −951.632 −0.824860
\(111\) −3504.99 −2.99711
\(112\) 349.414 0.294790
\(113\) −1785.59 −1.48650 −0.743249 0.669015i \(-0.766716\pi\)
−0.743249 + 0.669015i \(0.766716\pi\)
\(114\) 1201.70 0.987273
\(115\) −715.438 −0.580130
\(116\) 73.1650 0.0585621
\(117\) 926.529 0.732116
\(118\) 1535.50 1.19792
\(119\) −2708.13 −2.08616
\(120\) 1411.57 1.07382
\(121\) −701.699 −0.527197
\(122\) −267.313 −0.198372
\(123\) 545.920 0.400195
\(124\) 0 0
\(125\) 2081.97 1.48974
\(126\) −2600.41 −1.83860
\(127\) 608.657 0.425272 0.212636 0.977131i \(-0.431795\pi\)
0.212636 + 0.977131i \(0.431795\pi\)
\(128\) −128.000 −0.0883883
\(129\) −4419.38 −3.01631
\(130\) −590.346 −0.398283
\(131\) 1386.49 0.924717 0.462359 0.886693i \(-0.347003\pi\)
0.462359 + 0.886693i \(0.347003\pi\)
\(132\) −933.452 −0.615504
\(133\) 1410.53 0.919612
\(134\) −1052.21 −0.678337
\(135\) −5741.15 −3.66015
\(136\) 992.061 0.625504
\(137\) 1995.24 1.24427 0.622135 0.782910i \(-0.286265\pi\)
0.622135 + 0.782910i \(0.286265\pi\)
\(138\) −701.770 −0.432889
\(139\) 2580.90 1.57489 0.787444 0.616387i \(-0.211404\pi\)
0.787444 + 0.616387i \(0.211404\pi\)
\(140\) 1656.88 1.00023
\(141\) −258.093 −0.154152
\(142\) −306.165 −0.180935
\(143\) 390.388 0.228293
\(144\) 952.603 0.551275
\(145\) 346.939 0.198701
\(146\) −885.291 −0.501830
\(147\) −1245.75 −0.698966
\(148\) 1507.11 0.837051
\(149\) −669.372 −0.368034 −0.184017 0.982923i \(-0.558910\pi\)
−0.184017 + 0.982923i \(0.558910\pi\)
\(150\) 4367.84 2.37755
\(151\) −2676.03 −1.44220 −0.721101 0.692830i \(-0.756364\pi\)
−0.721101 + 0.692830i \(0.756364\pi\)
\(152\) −516.716 −0.275731
\(153\) −7383.13 −3.90125
\(154\) −1095.67 −0.573322
\(155\) 0 0
\(156\) −579.068 −0.297196
\(157\) 1048.81 0.533149 0.266575 0.963814i \(-0.414108\pi\)
0.266575 + 0.963814i \(0.414108\pi\)
\(158\) −931.397 −0.468974
\(159\) 1049.32 0.523377
\(160\) −606.959 −0.299902
\(161\) −823.726 −0.403222
\(162\) −2416.44 −1.17193
\(163\) 3445.12 1.65548 0.827738 0.561114i \(-0.189627\pi\)
0.827738 + 0.561114i \(0.189627\pi\)
\(164\) −234.740 −0.111769
\(165\) −4426.31 −2.08841
\(166\) −1451.90 −0.678849
\(167\) 2344.03 1.08615 0.543074 0.839685i \(-0.317260\pi\)
0.543074 + 0.839685i \(0.317260\pi\)
\(168\) 1625.22 0.746361
\(169\) −1954.82 −0.889769
\(170\) 4704.23 2.12234
\(171\) 3845.51 1.71973
\(172\) 1900.28 0.842415
\(173\) 4008.38 1.76157 0.880785 0.473517i \(-0.157016\pi\)
0.880785 + 0.473517i \(0.157016\pi\)
\(174\) 340.311 0.148270
\(175\) 5126.90 2.21461
\(176\) 401.374 0.171902
\(177\) 7142.06 3.03294
\(178\) 1189.18 0.500745
\(179\) −1351.91 −0.564506 −0.282253 0.959340i \(-0.591082\pi\)
−0.282253 + 0.959340i \(0.591082\pi\)
\(180\) 4517.12 1.87048
\(181\) −3079.15 −1.26448 −0.632241 0.774772i \(-0.717865\pi\)
−0.632241 + 0.774772i \(0.717865\pi\)
\(182\) −679.700 −0.276828
\(183\) −1243.35 −0.502246
\(184\) 301.753 0.120900
\(185\) 7146.51 2.84012
\(186\) 0 0
\(187\) −3110.84 −1.21651
\(188\) 110.977 0.0430524
\(189\) −6610.13 −2.54400
\(190\) −2450.20 −0.935559
\(191\) −2232.93 −0.845912 −0.422956 0.906150i \(-0.639008\pi\)
−0.422956 + 0.906150i \(0.639008\pi\)
\(192\) −595.364 −0.223785
\(193\) −1348.32 −0.502870 −0.251435 0.967874i \(-0.580903\pi\)
−0.251435 + 0.967874i \(0.580903\pi\)
\(194\) −2470.46 −0.914271
\(195\) −2745.87 −1.00839
\(196\) 535.660 0.195211
\(197\) −1794.32 −0.648932 −0.324466 0.945897i \(-0.605185\pi\)
−0.324466 + 0.945897i \(0.605185\pi\)
\(198\) −2987.11 −1.07214
\(199\) −117.294 −0.0417827 −0.0208914 0.999782i \(-0.506650\pi\)
−0.0208914 + 0.999782i \(0.506650\pi\)
\(200\) −1878.12 −0.664017
\(201\) −4894.13 −1.71744
\(202\) 729.572 0.254121
\(203\) 399.451 0.138108
\(204\) 4614.36 1.58367
\(205\) −1113.11 −0.379233
\(206\) 410.479 0.138832
\(207\) −2245.71 −0.754047
\(208\) 248.993 0.0830027
\(209\) 1620.28 0.536255
\(210\) 7706.60 2.53241
\(211\) −798.694 −0.260589 −0.130295 0.991475i \(-0.541592\pi\)
−0.130295 + 0.991475i \(0.541592\pi\)
\(212\) −451.198 −0.146172
\(213\) −1424.06 −0.458098
\(214\) −1164.45 −0.371964
\(215\) 9010.90 2.85832
\(216\) 2421.47 0.762779
\(217\) 0 0
\(218\) 3061.75 0.951228
\(219\) −4117.74 −1.27055
\(220\) 1903.26 0.583264
\(221\) −1929.81 −0.587391
\(222\) 7009.98 2.11928
\(223\) 227.475 0.0683089 0.0341544 0.999417i \(-0.489126\pi\)
0.0341544 + 0.999417i \(0.489126\pi\)
\(224\) −698.828 −0.208448
\(225\) 13977.4 4.14145
\(226\) 3571.18 1.05111
\(227\) −332.128 −0.0971106 −0.0485553 0.998820i \(-0.515462\pi\)
−0.0485553 + 0.998820i \(0.515462\pi\)
\(228\) −2403.39 −0.698107
\(229\) −583.422 −0.168356 −0.0841781 0.996451i \(-0.526826\pi\)
−0.0841781 + 0.996451i \(0.526826\pi\)
\(230\) 1430.88 0.410214
\(231\) −5096.27 −1.45156
\(232\) −146.330 −0.0414096
\(233\) −3160.09 −0.888517 −0.444259 0.895899i \(-0.646533\pi\)
−0.444259 + 0.895899i \(0.646533\pi\)
\(234\) −1853.06 −0.517684
\(235\) 526.240 0.146077
\(236\) −3071.01 −0.847058
\(237\) −4332.19 −1.18737
\(238\) 5416.25 1.47514
\(239\) 1518.84 0.411068 0.205534 0.978650i \(-0.434107\pi\)
0.205534 + 0.978650i \(0.434107\pi\)
\(240\) −2823.14 −0.759304
\(241\) 992.640 0.265318 0.132659 0.991162i \(-0.457649\pi\)
0.132659 + 0.991162i \(0.457649\pi\)
\(242\) 1403.40 0.372784
\(243\) −3067.06 −0.809680
\(244\) 534.627 0.140270
\(245\) 2540.03 0.662354
\(246\) −1091.84 −0.282981
\(247\) 1005.15 0.258931
\(248\) 0 0
\(249\) −6753.18 −1.71874
\(250\) −4163.95 −1.05340
\(251\) −4305.84 −1.08280 −0.541399 0.840766i \(-0.682105\pi\)
−0.541399 + 0.840766i \(0.682105\pi\)
\(252\) 5200.83 1.30008
\(253\) −946.219 −0.235131
\(254\) −1217.31 −0.300713
\(255\) 21880.7 5.37342
\(256\) 256.000 0.0625000
\(257\) −2895.77 −0.702854 −0.351427 0.936215i \(-0.614303\pi\)
−0.351427 + 0.936215i \(0.614303\pi\)
\(258\) 8838.76 2.13286
\(259\) 8228.20 1.97404
\(260\) 1180.69 0.281629
\(261\) 1089.02 0.258270
\(262\) −2772.98 −0.653874
\(263\) −4412.96 −1.03466 −0.517329 0.855787i \(-0.673074\pi\)
−0.517329 + 0.855787i \(0.673074\pi\)
\(264\) 1866.90 0.435227
\(265\) −2139.52 −0.495962
\(266\) −2821.06 −0.650264
\(267\) 5531.20 1.26780
\(268\) 2104.42 0.479656
\(269\) 8138.00 1.84455 0.922273 0.386540i \(-0.126330\pi\)
0.922273 + 0.386540i \(0.126330\pi\)
\(270\) 11482.3 2.58811
\(271\) 2388.72 0.535440 0.267720 0.963497i \(-0.413730\pi\)
0.267720 + 0.963497i \(0.413730\pi\)
\(272\) −1984.12 −0.442298
\(273\) −3161.48 −0.700884
\(274\) −3990.48 −0.879832
\(275\) 5889.30 1.29141
\(276\) 1403.54 0.306098
\(277\) −649.874 −0.140964 −0.0704822 0.997513i \(-0.522454\pi\)
−0.0704822 + 0.997513i \(0.522454\pi\)
\(278\) −5161.81 −1.11361
\(279\) 0 0
\(280\) −3313.75 −0.707267
\(281\) −5883.65 −1.24907 −0.624536 0.780996i \(-0.714712\pi\)
−0.624536 + 0.780996i \(0.714712\pi\)
\(282\) 516.187 0.109002
\(283\) 4596.12 0.965410 0.482705 0.875783i \(-0.339654\pi\)
0.482705 + 0.875783i \(0.339654\pi\)
\(284\) 612.330 0.127940
\(285\) −11396.6 −2.36868
\(286\) −780.776 −0.161427
\(287\) −1281.58 −0.263587
\(288\) −1905.21 −0.389810
\(289\) 10464.9 2.13004
\(290\) −693.878 −0.140503
\(291\) −11490.8 −2.31478
\(292\) 1770.58 0.354848
\(293\) 5288.10 1.05438 0.527192 0.849746i \(-0.323245\pi\)
0.527192 + 0.849746i \(0.323245\pi\)
\(294\) 2491.51 0.494243
\(295\) −14562.3 −2.87407
\(296\) −3014.22 −0.591884
\(297\) −7593.09 −1.48349
\(298\) 1338.74 0.260239
\(299\) −586.988 −0.113533
\(300\) −8735.68 −1.68118
\(301\) 10374.8 1.98669
\(302\) 5352.07 1.01979
\(303\) 3393.44 0.643393
\(304\) 1033.43 0.194972
\(305\) 2535.13 0.475938
\(306\) 14766.3 2.75860
\(307\) 871.911 0.162093 0.0810466 0.996710i \(-0.474174\pi\)
0.0810466 + 0.996710i \(0.474174\pi\)
\(308\) 2191.34 0.405400
\(309\) 1909.25 0.351500
\(310\) 0 0
\(311\) 6496.00 1.18442 0.592210 0.805784i \(-0.298256\pi\)
0.592210 + 0.805784i \(0.298256\pi\)
\(312\) 1158.14 0.210149
\(313\) 3021.30 0.545603 0.272802 0.962070i \(-0.412050\pi\)
0.272802 + 0.962070i \(0.412050\pi\)
\(314\) −2097.63 −0.376994
\(315\) 24661.7 4.41120
\(316\) 1862.79 0.331615
\(317\) −2402.80 −0.425725 −0.212862 0.977082i \(-0.568279\pi\)
−0.212862 + 0.977082i \(0.568279\pi\)
\(318\) −2098.65 −0.370083
\(319\) 458.852 0.0805354
\(320\) 1213.92 0.212063
\(321\) −5416.20 −0.941753
\(322\) 1647.45 0.285121
\(323\) −8009.59 −1.37977
\(324\) 4832.87 0.828682
\(325\) 3653.43 0.623557
\(326\) −6890.24 −1.17060
\(327\) 14241.0 2.40835
\(328\) 469.480 0.0790325
\(329\) 605.891 0.101531
\(330\) 8852.62 1.47673
\(331\) −7141.13 −1.18584 −0.592919 0.805262i \(-0.702024\pi\)
−0.592919 + 0.805262i \(0.702024\pi\)
\(332\) 2903.79 0.480019
\(333\) 22432.4 3.69156
\(334\) −4688.06 −0.768022
\(335\) 9978.89 1.62748
\(336\) −3250.45 −0.527757
\(337\) 2276.13 0.367918 0.183959 0.982934i \(-0.441109\pi\)
0.183959 + 0.982934i \(0.441109\pi\)
\(338\) 3909.64 0.629162
\(339\) 16610.6 2.66125
\(340\) −9408.45 −1.50072
\(341\) 0 0
\(342\) −7691.02 −1.21603
\(343\) −4566.08 −0.718790
\(344\) −3800.57 −0.595677
\(345\) 6655.41 1.03859
\(346\) −8016.76 −1.24562
\(347\) 5773.95 0.893262 0.446631 0.894718i \(-0.352624\pi\)
0.446631 + 0.894718i \(0.352624\pi\)
\(348\) −680.622 −0.104842
\(349\) 9491.57 1.45579 0.727897 0.685686i \(-0.240498\pi\)
0.727897 + 0.685686i \(0.240498\pi\)
\(350\) −10253.8 −1.56597
\(351\) −4710.38 −0.716301
\(352\) −802.748 −0.121553
\(353\) −11012.8 −1.66049 −0.830246 0.557397i \(-0.811800\pi\)
−0.830246 + 0.557397i \(0.811800\pi\)
\(354\) −14284.1 −2.14461
\(355\) 2903.59 0.434103
\(356\) −2378.35 −0.354080
\(357\) 25192.5 3.73482
\(358\) 2703.82 0.399166
\(359\) 11646.8 1.71224 0.856119 0.516779i \(-0.172869\pi\)
0.856119 + 0.516779i \(0.172869\pi\)
\(360\) −9034.24 −1.32263
\(361\) −2687.20 −0.391777
\(362\) 6158.29 0.894123
\(363\) 6527.60 0.943829
\(364\) 1359.40 0.195747
\(365\) 8395.87 1.20400
\(366\) 2486.70 0.355142
\(367\) 2966.12 0.421880 0.210940 0.977499i \(-0.432347\pi\)
0.210940 + 0.977499i \(0.432347\pi\)
\(368\) −603.507 −0.0854890
\(369\) −3493.97 −0.492923
\(370\) −14293.0 −2.00827
\(371\) −2463.36 −0.344720
\(372\) 0 0
\(373\) 1235.77 0.171544 0.0857721 0.996315i \(-0.472664\pi\)
0.0857721 + 0.996315i \(0.472664\pi\)
\(374\) 6221.68 0.860202
\(375\) −19367.7 −2.66705
\(376\) −221.955 −0.0304426
\(377\) 284.649 0.0388865
\(378\) 13220.3 1.79888
\(379\) 5873.24 0.796011 0.398005 0.917383i \(-0.369703\pi\)
0.398005 + 0.917383i \(0.369703\pi\)
\(380\) 4900.40 0.661540
\(381\) −5662.07 −0.761356
\(382\) 4465.86 0.598150
\(383\) 4313.92 0.575538 0.287769 0.957700i \(-0.407086\pi\)
0.287769 + 0.957700i \(0.407086\pi\)
\(384\) 1190.73 0.158240
\(385\) 10391.1 1.37552
\(386\) 2696.63 0.355583
\(387\) 28284.6 3.71522
\(388\) 4940.92 0.646487
\(389\) −1530.70 −0.199511 −0.0997554 0.995012i \(-0.531806\pi\)
−0.0997554 + 0.995012i \(0.531806\pi\)
\(390\) 5491.73 0.713038
\(391\) 4677.47 0.604986
\(392\) −1071.32 −0.138035
\(393\) −12897.9 −1.65550
\(394\) 3588.63 0.458865
\(395\) 8833.13 1.12517
\(396\) 5974.22 0.758121
\(397\) −9667.94 −1.22222 −0.611108 0.791547i \(-0.709276\pi\)
−0.611108 + 0.791547i \(0.709276\pi\)
\(398\) 234.588 0.0295448
\(399\) −13121.5 −1.64636
\(400\) 3756.25 0.469531
\(401\) 9816.18 1.22243 0.611217 0.791463i \(-0.290680\pi\)
0.611217 + 0.791463i \(0.290680\pi\)
\(402\) 9788.25 1.21441
\(403\) 0 0
\(404\) −1459.14 −0.179691
\(405\) 22916.9 2.81172
\(406\) −798.903 −0.0976573
\(407\) 9451.78 1.15112
\(408\) −9228.71 −1.11983
\(409\) −8740.43 −1.05669 −0.528345 0.849030i \(-0.677187\pi\)
−0.528345 + 0.849030i \(0.677187\pi\)
\(410\) 2226.21 0.268158
\(411\) −18560.9 −2.22759
\(412\) −820.957 −0.0981691
\(413\) −16766.5 −1.99764
\(414\) 4491.42 0.533192
\(415\) 13769.4 1.62871
\(416\) −497.986 −0.0586917
\(417\) −24009.0 −2.81949
\(418\) −3240.57 −0.379190
\(419\) 4645.87 0.541684 0.270842 0.962624i \(-0.412698\pi\)
0.270842 + 0.962624i \(0.412698\pi\)
\(420\) −15413.2 −1.79068
\(421\) −11711.8 −1.35582 −0.677910 0.735145i \(-0.737114\pi\)
−0.677910 + 0.735145i \(0.737114\pi\)
\(422\) 1597.39 0.184264
\(423\) 1651.83 0.189870
\(424\) 902.396 0.103359
\(425\) −29112.7 −3.32276
\(426\) 2848.12 0.323924
\(427\) 2918.85 0.330803
\(428\) 2328.90 0.263018
\(429\) −3631.61 −0.408708
\(430\) −18021.8 −2.02114
\(431\) 10459.7 1.16897 0.584486 0.811404i \(-0.301296\pi\)
0.584486 + 0.811404i \(0.301296\pi\)
\(432\) −4842.94 −0.539366
\(433\) −9768.26 −1.08414 −0.542070 0.840333i \(-0.682359\pi\)
−0.542070 + 0.840333i \(0.682359\pi\)
\(434\) 0 0
\(435\) −3227.42 −0.355731
\(436\) −6123.49 −0.672620
\(437\) −2436.26 −0.266687
\(438\) 8235.48 0.898416
\(439\) −9060.88 −0.985084 −0.492542 0.870289i \(-0.663932\pi\)
−0.492542 + 0.870289i \(0.663932\pi\)
\(440\) −3806.53 −0.412430
\(441\) 7972.99 0.860921
\(442\) 3859.63 0.415348
\(443\) 8595.64 0.921877 0.460938 0.887432i \(-0.347513\pi\)
0.460938 + 0.887432i \(0.347513\pi\)
\(444\) −14020.0 −1.49855
\(445\) −11277.9 −1.20140
\(446\) −454.951 −0.0483017
\(447\) 6226.88 0.658884
\(448\) 1397.66 0.147395
\(449\) −18201.4 −1.91309 −0.956546 0.291580i \(-0.905819\pi\)
−0.956546 + 0.291580i \(0.905819\pi\)
\(450\) −27954.8 −2.92845
\(451\) −1472.16 −0.153706
\(452\) −7142.37 −0.743249
\(453\) 24894.0 2.58194
\(454\) 664.256 0.0686676
\(455\) 6446.10 0.664171
\(456\) 4806.78 0.493636
\(457\) −9393.41 −0.961499 −0.480750 0.876858i \(-0.659635\pi\)
−0.480750 + 0.876858i \(0.659635\pi\)
\(458\) 1166.84 0.119046
\(459\) 37535.1 3.81697
\(460\) −2861.75 −0.290065
\(461\) 6976.95 0.704878 0.352439 0.935835i \(-0.385352\pi\)
0.352439 + 0.935835i \(0.385352\pi\)
\(462\) 10192.5 1.02641
\(463\) −2767.72 −0.277812 −0.138906 0.990306i \(-0.544359\pi\)
−0.138906 + 0.990306i \(0.544359\pi\)
\(464\) 292.660 0.0292810
\(465\) 0 0
\(466\) 6320.18 0.628277
\(467\) −846.452 −0.0838739 −0.0419370 0.999120i \(-0.513353\pi\)
−0.0419370 + 0.999120i \(0.513353\pi\)
\(468\) 3706.12 0.366058
\(469\) 11489.3 1.13119
\(470\) −1052.48 −0.103292
\(471\) −9756.66 −0.954486
\(472\) 6142.02 0.598960
\(473\) 11917.6 1.15850
\(474\) 8664.38 0.839595
\(475\) 15163.4 1.46472
\(476\) −10832.5 −1.04308
\(477\) −6715.82 −0.644647
\(478\) −3037.67 −0.290669
\(479\) 15707.9 1.49836 0.749179 0.662368i \(-0.230448\pi\)
0.749179 + 0.662368i \(0.230448\pi\)
\(480\) 5646.28 0.536909
\(481\) 5863.42 0.555819
\(482\) −1985.28 −0.187608
\(483\) 7662.76 0.721879
\(484\) −2806.79 −0.263598
\(485\) 23429.2 2.19354
\(486\) 6134.12 0.572530
\(487\) −18323.6 −1.70497 −0.852485 0.522752i \(-0.824906\pi\)
−0.852485 + 0.522752i \(0.824906\pi\)
\(488\) −1069.25 −0.0991862
\(489\) −32048.5 −2.96376
\(490\) −5080.06 −0.468355
\(491\) −9001.40 −0.827347 −0.413674 0.910425i \(-0.635755\pi\)
−0.413674 + 0.910425i \(0.635755\pi\)
\(492\) 2183.68 0.200098
\(493\) −2268.26 −0.207215
\(494\) −2010.29 −0.183092
\(495\) 28329.0 2.57231
\(496\) 0 0
\(497\) 3343.07 0.301725
\(498\) 13506.4 1.21533
\(499\) −35.0587 −0.00314517 −0.00157259 0.999999i \(-0.500501\pi\)
−0.00157259 + 0.999999i \(0.500501\pi\)
\(500\) 8327.90 0.744870
\(501\) −21805.5 −1.94451
\(502\) 8611.68 0.765653
\(503\) −12851.8 −1.13923 −0.569614 0.821912i \(-0.692907\pi\)
−0.569614 + 0.821912i \(0.692907\pi\)
\(504\) −10401.7 −0.919299
\(505\) −6919.07 −0.609692
\(506\) 1892.44 0.166263
\(507\) 18184.9 1.59293
\(508\) 2434.63 0.212636
\(509\) 18255.4 1.58970 0.794848 0.606809i \(-0.207551\pi\)
0.794848 + 0.606809i \(0.207551\pi\)
\(510\) −43761.4 −3.79958
\(511\) 9666.66 0.836845
\(512\) −512.000 −0.0441942
\(513\) −19550.2 −1.68258
\(514\) 5791.55 0.496993
\(515\) −3892.87 −0.333088
\(516\) −17677.5 −1.50816
\(517\) 695.991 0.0592063
\(518\) −16456.4 −1.39585
\(519\) −37288.2 −3.15370
\(520\) −2361.38 −0.199141
\(521\) 17386.3 1.46201 0.731006 0.682371i \(-0.239051\pi\)
0.731006 + 0.682371i \(0.239051\pi\)
\(522\) −2178.04 −0.182625
\(523\) 5237.42 0.437890 0.218945 0.975737i \(-0.429739\pi\)
0.218945 + 0.975737i \(0.429739\pi\)
\(524\) 5545.95 0.462359
\(525\) −47693.3 −3.96477
\(526\) 8825.93 0.731613
\(527\) 0 0
\(528\) −3733.81 −0.307752
\(529\) −10744.3 −0.883066
\(530\) 4279.05 0.350698
\(531\) −45710.2 −3.73569
\(532\) 5642.12 0.459806
\(533\) −913.259 −0.0742169
\(534\) −11062.4 −0.896473
\(535\) 11043.4 0.892423
\(536\) −4208.84 −0.339168
\(537\) 12576.2 1.01062
\(538\) −16276.0 −1.30429
\(539\) 3359.38 0.268457
\(540\) −22964.6 −1.83007
\(541\) 20273.6 1.61115 0.805575 0.592494i \(-0.201857\pi\)
0.805575 + 0.592494i \(0.201857\pi\)
\(542\) −4777.44 −0.378614
\(543\) 28644.0 2.26377
\(544\) 3968.25 0.312752
\(545\) −29036.8 −2.28220
\(546\) 6322.96 0.495600
\(547\) −14019.5 −1.09585 −0.547927 0.836526i \(-0.684583\pi\)
−0.547927 + 0.836526i \(0.684583\pi\)
\(548\) 7980.97 0.622135
\(549\) 7957.61 0.618620
\(550\) −11778.6 −0.913165
\(551\) 1181.42 0.0913435
\(552\) −2807.08 −0.216444
\(553\) 10170.1 0.782055
\(554\) 1299.75 0.0996769
\(555\) −66480.9 −5.08460
\(556\) 10323.6 0.787444
\(557\) −7755.85 −0.589993 −0.294996 0.955498i \(-0.595318\pi\)
−0.294996 + 0.955498i \(0.595318\pi\)
\(558\) 0 0
\(559\) 7393.08 0.559381
\(560\) 6627.51 0.500113
\(561\) 28938.8 2.17789
\(562\) 11767.3 0.883227
\(563\) −15219.7 −1.13931 −0.569657 0.821882i \(-0.692924\pi\)
−0.569657 + 0.821882i \(0.692924\pi\)
\(564\) −1032.37 −0.0770758
\(565\) −33868.2 −2.52185
\(566\) −9192.24 −0.682648
\(567\) 26385.5 1.95430
\(568\) −1224.66 −0.0904676
\(569\) 8097.99 0.596635 0.298318 0.954467i \(-0.403574\pi\)
0.298318 + 0.954467i \(0.403574\pi\)
\(570\) 22793.1 1.67491
\(571\) −18568.4 −1.36088 −0.680441 0.732803i \(-0.738212\pi\)
−0.680441 + 0.732803i \(0.738212\pi\)
\(572\) 1561.55 0.114146
\(573\) 20772.0 1.51442
\(574\) 2563.17 0.186384
\(575\) −8855.16 −0.642236
\(576\) 3810.41 0.275637
\(577\) 20991.7 1.51455 0.757274 0.653097i \(-0.226531\pi\)
0.757274 + 0.653097i \(0.226531\pi\)
\(578\) −20929.8 −1.50617
\(579\) 12542.8 0.900278
\(580\) 1387.76 0.0993507
\(581\) 15853.5 1.13204
\(582\) 22981.6 1.63680
\(583\) −2829.68 −0.201017
\(584\) −3541.16 −0.250915
\(585\) 17573.9 1.24204
\(586\) −10576.2 −0.745562
\(587\) −17.6164 −0.00123868 −0.000619342 1.00000i \(-0.500197\pi\)
−0.000619342 1.00000i \(0.500197\pi\)
\(588\) −4983.01 −0.349483
\(589\) 0 0
\(590\) 29124.7 2.03228
\(591\) 16691.7 1.16177
\(592\) 6028.43 0.418525
\(593\) −78.1858 −0.00541435 −0.00270717 0.999996i \(-0.500862\pi\)
−0.00270717 + 0.999996i \(0.500862\pi\)
\(594\) 15186.2 1.04898
\(595\) −51366.4 −3.53919
\(596\) −2677.49 −0.184017
\(597\) 1091.14 0.0748027
\(598\) 1173.98 0.0802800
\(599\) −9483.09 −0.646859 −0.323430 0.946252i \(-0.604836\pi\)
−0.323430 + 0.946252i \(0.604836\pi\)
\(600\) 17471.4 1.18878
\(601\) −926.229 −0.0628647 −0.0314323 0.999506i \(-0.510007\pi\)
−0.0314323 + 0.999506i \(0.510007\pi\)
\(602\) −20749.6 −1.40480
\(603\) 31323.1 2.11538
\(604\) −10704.1 −0.721101
\(605\) −13309.5 −0.894391
\(606\) −6786.89 −0.454948
\(607\) 17485.7 1.16923 0.584616 0.811310i \(-0.301245\pi\)
0.584616 + 0.811310i \(0.301245\pi\)
\(608\) −2066.86 −0.137866
\(609\) −3715.92 −0.247252
\(610\) −5070.26 −0.336539
\(611\) 431.759 0.0285877
\(612\) −29532.5 −1.95062
\(613\) 25714.1 1.69426 0.847131 0.531383i \(-0.178328\pi\)
0.847131 + 0.531383i \(0.178328\pi\)
\(614\) −1743.82 −0.114617
\(615\) 10354.7 0.678932
\(616\) −4382.68 −0.286661
\(617\) 11716.5 0.764487 0.382244 0.924062i \(-0.375152\pi\)
0.382244 + 0.924062i \(0.375152\pi\)
\(618\) −3818.50 −0.248548
\(619\) 1989.80 0.129203 0.0646017 0.997911i \(-0.479422\pi\)
0.0646017 + 0.997911i \(0.479422\pi\)
\(620\) 0 0
\(621\) 11417.0 0.737758
\(622\) −12992.0 −0.837511
\(623\) −12984.9 −0.835036
\(624\) −2316.27 −0.148598
\(625\) 10144.1 0.649225
\(626\) −6042.59 −0.385800
\(627\) −15072.8 −0.960047
\(628\) 4195.26 0.266575
\(629\) −46723.2 −2.96181
\(630\) −49323.3 −3.11919
\(631\) 4620.99 0.291535 0.145768 0.989319i \(-0.453435\pi\)
0.145768 + 0.989319i \(0.453435\pi\)
\(632\) −3725.59 −0.234487
\(633\) 7429.90 0.466528
\(634\) 4805.60 0.301033
\(635\) 11544.7 0.721476
\(636\) 4197.30 0.261688
\(637\) 2083.99 0.129625
\(638\) −917.704 −0.0569471
\(639\) 9114.17 0.564243
\(640\) −2427.84 −0.149951
\(641\) −8759.36 −0.539741 −0.269870 0.962897i \(-0.586981\pi\)
−0.269870 + 0.962897i \(0.586981\pi\)
\(642\) 10832.4 0.665920
\(643\) −7774.25 −0.476806 −0.238403 0.971166i \(-0.576624\pi\)
−0.238403 + 0.971166i \(0.576624\pi\)
\(644\) −3294.90 −0.201611
\(645\) −83824.5 −5.11719
\(646\) 16019.2 0.975644
\(647\) −2402.26 −0.145970 −0.0729851 0.997333i \(-0.523253\pi\)
−0.0729851 + 0.997333i \(0.523253\pi\)
\(648\) −9665.75 −0.585967
\(649\) −19259.7 −1.16489
\(650\) −7306.87 −0.440921
\(651\) 0 0
\(652\) 13780.5 0.827738
\(653\) −15093.7 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(654\) −28482.1 −1.70296
\(655\) 26298.2 1.56879
\(656\) −938.959 −0.0558844
\(657\) 26354.1 1.56495
\(658\) −1211.78 −0.0717936
\(659\) −26356.7 −1.55798 −0.778991 0.627035i \(-0.784268\pi\)
−0.778991 + 0.627035i \(0.784268\pi\)
\(660\) −17705.2 −1.04420
\(661\) 18450.5 1.08569 0.542846 0.839832i \(-0.317347\pi\)
0.542846 + 0.839832i \(0.317347\pi\)
\(662\) 14282.3 0.838513
\(663\) 17952.2 1.05159
\(664\) −5807.58 −0.339425
\(665\) 26754.2 1.56013
\(666\) −44864.8 −2.61033
\(667\) −689.931 −0.0400513
\(668\) 9376.13 0.543074
\(669\) −2116.10 −0.122292
\(670\) −19957.8 −1.15080
\(671\) 3352.90 0.192902
\(672\) 6500.89 0.373181
\(673\) 12446.1 0.712873 0.356436 0.934320i \(-0.383992\pi\)
0.356436 + 0.934320i \(0.383992\pi\)
\(674\) −4552.25 −0.260158
\(675\) −71059.7 −4.05198
\(676\) −7819.29 −0.444884
\(677\) −3150.64 −0.178861 −0.0894304 0.995993i \(-0.528505\pi\)
−0.0894304 + 0.995993i \(0.528505\pi\)
\(678\) −33221.2 −1.88179
\(679\) 26975.4 1.52463
\(680\) 18816.9 1.06117
\(681\) 3089.64 0.173855
\(682\) 0 0
\(683\) 14458.8 0.810028 0.405014 0.914310i \(-0.367267\pi\)
0.405014 + 0.914310i \(0.367267\pi\)
\(684\) 15382.0 0.859863
\(685\) 37844.7 2.11091
\(686\) 9132.16 0.508261
\(687\) 5427.32 0.301405
\(688\) 7601.14 0.421207
\(689\) −1755.39 −0.0970612
\(690\) −13310.8 −0.734397
\(691\) 31082.0 1.71116 0.855582 0.517668i \(-0.173200\pi\)
0.855582 + 0.517668i \(0.173200\pi\)
\(692\) 16033.5 0.880785
\(693\) 32616.8 1.78789
\(694\) −11547.9 −0.631631
\(695\) 48953.2 2.67180
\(696\) 1361.24 0.0741348
\(697\) 7277.38 0.395481
\(698\) −18983.1 −1.02940
\(699\) 29397.0 1.59069
\(700\) 20507.6 1.10731
\(701\) −15840.0 −0.853449 −0.426725 0.904382i \(-0.640333\pi\)
−0.426725 + 0.904382i \(0.640333\pi\)
\(702\) 9420.77 0.506501
\(703\) 24335.8 1.30561
\(704\) 1605.50 0.0859509
\(705\) −4895.38 −0.261519
\(706\) 22025.7 1.17415
\(707\) −7966.33 −0.423769
\(708\) 28568.3 1.51647
\(709\) −24026.9 −1.27271 −0.636354 0.771397i \(-0.719558\pi\)
−0.636354 + 0.771397i \(0.719558\pi\)
\(710\) −5807.18 −0.306957
\(711\) 27726.6 1.46249
\(712\) 4756.71 0.250373
\(713\) 0 0
\(714\) −50385.1 −2.64091
\(715\) 7404.68 0.387300
\(716\) −5407.65 −0.282253
\(717\) −14129.1 −0.735927
\(718\) −23293.6 −1.21073
\(719\) 25697.5 1.33290 0.666450 0.745550i \(-0.267813\pi\)
0.666450 + 0.745550i \(0.267813\pi\)
\(720\) 18068.5 0.935240
\(721\) −4482.10 −0.231515
\(722\) 5374.40 0.277028
\(723\) −9234.10 −0.474993
\(724\) −12316.6 −0.632241
\(725\) 4294.15 0.219974
\(726\) −13055.2 −0.667388
\(727\) −28437.5 −1.45074 −0.725369 0.688360i \(-0.758331\pi\)
−0.725369 + 0.688360i \(0.758331\pi\)
\(728\) −2718.80 −0.138414
\(729\) −4090.35 −0.207811
\(730\) −16791.7 −0.851357
\(731\) −58912.5 −2.98079
\(732\) −4973.40 −0.251123
\(733\) 5168.75 0.260453 0.130226 0.991484i \(-0.458430\pi\)
0.130226 + 0.991484i \(0.458430\pi\)
\(734\) −5932.23 −0.298314
\(735\) −23628.8 −1.18580
\(736\) 1207.01 0.0604499
\(737\) 13197.8 0.659630
\(738\) 6987.93 0.348549
\(739\) 21290.6 1.05979 0.529896 0.848063i \(-0.322231\pi\)
0.529896 + 0.848063i \(0.322231\pi\)
\(740\) 28586.0 1.42006
\(741\) −9350.43 −0.463558
\(742\) 4926.72 0.243754
\(743\) 33625.8 1.66031 0.830155 0.557533i \(-0.188252\pi\)
0.830155 + 0.557533i \(0.188252\pi\)
\(744\) 0 0
\(745\) −12696.3 −0.624371
\(746\) −2471.55 −0.121300
\(747\) 43221.2 2.11698
\(748\) −12443.4 −0.608255
\(749\) 12714.9 0.620282
\(750\) 38735.4 1.88589
\(751\) 33731.6 1.63899 0.819496 0.573085i \(-0.194254\pi\)
0.819496 + 0.573085i \(0.194254\pi\)
\(752\) 443.909 0.0215262
\(753\) 40055.3 1.93851
\(754\) −569.299 −0.0274969
\(755\) −50757.6 −2.44670
\(756\) −26440.5 −1.27200
\(757\) −5859.05 −0.281309 −0.140654 0.990059i \(-0.544921\pi\)
−0.140654 + 0.990059i \(0.544921\pi\)
\(758\) −11746.5 −0.562865
\(759\) 8802.26 0.420951
\(760\) −9800.80 −0.467779
\(761\) 7835.81 0.373256 0.186628 0.982431i \(-0.440244\pi\)
0.186628 + 0.982431i \(0.440244\pi\)
\(762\) 11324.1 0.538360
\(763\) −33431.8 −1.58625
\(764\) −8931.72 −0.422956
\(765\) −140039. −6.61848
\(766\) −8627.84 −0.406967
\(767\) −11947.8 −0.562464
\(768\) −2381.46 −0.111892
\(769\) 21548.5 1.01048 0.505240 0.862979i \(-0.331404\pi\)
0.505240 + 0.862979i \(0.331404\pi\)
\(770\) −20782.1 −0.972643
\(771\) 26938.1 1.25830
\(772\) −5393.27 −0.251435
\(773\) 14264.6 0.663729 0.331864 0.943327i \(-0.392322\pi\)
0.331864 + 0.943327i \(0.392322\pi\)
\(774\) −56569.3 −2.62705
\(775\) 0 0
\(776\) −9881.83 −0.457135
\(777\) −76543.3 −3.53408
\(778\) 3061.41 0.141075
\(779\) −3790.43 −0.174334
\(780\) −10983.5 −0.504194
\(781\) 3840.21 0.175945
\(782\) −9354.93 −0.427790
\(783\) −5536.47 −0.252691
\(784\) 2142.64 0.0976057
\(785\) 19893.4 0.904490
\(786\) 25795.8 1.17062
\(787\) 3550.43 0.160812 0.0804061 0.996762i \(-0.474378\pi\)
0.0804061 + 0.996762i \(0.474378\pi\)
\(788\) −7177.26 −0.324466
\(789\) 41051.9 1.85233
\(790\) −17666.3 −0.795616
\(791\) −38994.4 −1.75282
\(792\) −11948.4 −0.536072
\(793\) 2079.97 0.0931425
\(794\) 19335.9 0.864238
\(795\) 19903.1 0.887910
\(796\) −469.177 −0.0208914
\(797\) −43580.8 −1.93690 −0.968450 0.249207i \(-0.919830\pi\)
−0.968450 + 0.249207i \(0.919830\pi\)
\(798\) 26243.1 1.16415
\(799\) −3440.51 −0.152336
\(800\) −7512.49 −0.332008
\(801\) −35400.4 −1.56156
\(802\) −19632.4 −0.864392
\(803\) 11104.2 0.487991
\(804\) −19576.5 −0.858719
\(805\) −15624.0 −0.684067
\(806\) 0 0
\(807\) −75704.3 −3.30225
\(808\) 2918.29 0.127061
\(809\) −1507.80 −0.0655271 −0.0327636 0.999463i \(-0.510431\pi\)
−0.0327636 + 0.999463i \(0.510431\pi\)
\(810\) −45833.7 −1.98819
\(811\) 201.334 0.00871736 0.00435868 0.999991i \(-0.498613\pi\)
0.00435868 + 0.999991i \(0.498613\pi\)
\(812\) 1597.81 0.0690542
\(813\) −22221.2 −0.958588
\(814\) −18903.6 −0.813967
\(815\) 65345.3 2.80852
\(816\) 18457.4 0.791837
\(817\) 30684.6 1.31398
\(818\) 17480.9 0.747193
\(819\) 20233.9 0.863284
\(820\) −4452.42 −0.189616
\(821\) −28841.4 −1.22603 −0.613016 0.790070i \(-0.710044\pi\)
−0.613016 + 0.790070i \(0.710044\pi\)
\(822\) 37121.7 1.57514
\(823\) 724.347 0.0306794 0.0153397 0.999882i \(-0.495117\pi\)
0.0153397 + 0.999882i \(0.495117\pi\)
\(824\) 1641.91 0.0694160
\(825\) −54785.6 −2.31199
\(826\) 33532.9 1.41254
\(827\) 43558.9 1.83155 0.915775 0.401692i \(-0.131578\pi\)
0.915775 + 0.401692i \(0.131578\pi\)
\(828\) −8982.85 −0.377024
\(829\) 20555.5 0.861185 0.430592 0.902546i \(-0.358305\pi\)
0.430592 + 0.902546i \(0.358305\pi\)
\(830\) −27538.8 −1.15167
\(831\) 6045.49 0.252366
\(832\) 995.972 0.0415013
\(833\) −16606.5 −0.690733
\(834\) 48018.0 1.99368
\(835\) 44460.4 1.84265
\(836\) 6481.13 0.268128
\(837\) 0 0
\(838\) −9291.75 −0.383029
\(839\) 26258.1 1.08049 0.540244 0.841509i \(-0.318332\pi\)
0.540244 + 0.841509i \(0.318332\pi\)
\(840\) 30826.4 1.26620
\(841\) −24054.4 −0.986282
\(842\) 23423.7 0.958709
\(843\) 54733.0 2.23619
\(844\) −3194.78 −0.130295
\(845\) −37078.1 −1.50950
\(846\) −3303.67 −0.134258
\(847\) −15324.0 −0.621650
\(848\) −1804.79 −0.0730859
\(849\) −42755.7 −1.72835
\(850\) 58225.4 2.34955
\(851\) −14211.7 −0.572469
\(852\) −5696.24 −0.229049
\(853\) 43343.6 1.73981 0.869905 0.493219i \(-0.164180\pi\)
0.869905 + 0.493219i \(0.164180\pi\)
\(854\) −5837.69 −0.233913
\(855\) 72939.6 2.91752
\(856\) −4657.81 −0.185982
\(857\) 8997.06 0.358616 0.179308 0.983793i \(-0.442614\pi\)
0.179308 + 0.983793i \(0.442614\pi\)
\(858\) 7263.22 0.289000
\(859\) −11429.9 −0.453999 −0.226999 0.973895i \(-0.572891\pi\)
−0.226999 + 0.973895i \(0.572891\pi\)
\(860\) 36043.6 1.42916
\(861\) 11922.0 0.471895
\(862\) −20919.5 −0.826589
\(863\) −22401.8 −0.883622 −0.441811 0.897108i \(-0.645664\pi\)
−0.441811 + 0.897108i \(0.645664\pi\)
\(864\) 9685.88 0.381389
\(865\) 76028.9 2.98851
\(866\) 19536.5 0.766602
\(867\) −97350.4 −3.81337
\(868\) 0 0
\(869\) 11682.5 0.456041
\(870\) 6454.84 0.251540
\(871\) 8187.28 0.318502
\(872\) 12247.0 0.475614
\(873\) 73542.7 2.85114
\(874\) 4872.52 0.188576
\(875\) 45467.0 1.75664
\(876\) −16471.0 −0.635276
\(877\) −37976.8 −1.46224 −0.731121 0.682247i \(-0.761003\pi\)
−0.731121 + 0.682247i \(0.761003\pi\)
\(878\) 18121.8 0.696560
\(879\) −49192.9 −1.88764
\(880\) 7613.06 0.291632
\(881\) 12930.7 0.494489 0.247244 0.968953i \(-0.420475\pi\)
0.247244 + 0.968953i \(0.420475\pi\)
\(882\) −15946.0 −0.608763
\(883\) 2136.97 0.0814438 0.0407219 0.999171i \(-0.487034\pi\)
0.0407219 + 0.999171i \(0.487034\pi\)
\(884\) −7719.26 −0.293695
\(885\) 135467. 5.14539
\(886\) −17191.3 −0.651865
\(887\) 11911.7 0.450908 0.225454 0.974254i \(-0.427614\pi\)
0.225454 + 0.974254i \(0.427614\pi\)
\(888\) 28039.9 1.05964
\(889\) 13292.1 0.501465
\(890\) 22555.7 0.849516
\(891\) 30309.2 1.13961
\(892\) 909.902 0.0341544
\(893\) 1791.99 0.0671520
\(894\) −12453.8 −0.465901
\(895\) −25642.4 −0.957687
\(896\) −2795.31 −0.104224
\(897\) 5460.49 0.203256
\(898\) 36402.9 1.35276
\(899\) 0 0
\(900\) 55909.6 2.07072
\(901\) 13988.0 0.517212
\(902\) 2944.33 0.108687
\(903\) −96512.1 −3.55672
\(904\) 14284.7 0.525557
\(905\) −58403.7 −2.14520
\(906\) −49787.9 −1.82571
\(907\) 44982.2 1.64676 0.823380 0.567491i \(-0.192086\pi\)
0.823380 + 0.567491i \(0.192086\pi\)
\(908\) −1328.51 −0.0485553
\(909\) −21718.5 −0.792472
\(910\) −12892.2 −0.469640
\(911\) 50390.0 1.83260 0.916299 0.400495i \(-0.131162\pi\)
0.916299 + 0.400495i \(0.131162\pi\)
\(912\) −9613.56 −0.349054
\(913\) 18211.0 0.660129
\(914\) 18786.8 0.679883
\(915\) −23583.2 −0.852063
\(916\) −2333.69 −0.0841781
\(917\) 30278.6 1.09039
\(918\) −75070.2 −2.69901
\(919\) −27195.4 −0.976163 −0.488081 0.872798i \(-0.662303\pi\)
−0.488081 + 0.872798i \(0.662303\pi\)
\(920\) 5723.50 0.205107
\(921\) −8111.01 −0.290192
\(922\) −13953.9 −0.498424
\(923\) 2382.28 0.0849552
\(924\) −20385.1 −0.725779
\(925\) 88454.2 3.14417
\(926\) 5535.43 0.196442
\(927\) −12219.5 −0.432945
\(928\) −585.320 −0.0207048
\(929\) −26189.3 −0.924912 −0.462456 0.886642i \(-0.653032\pi\)
−0.462456 + 0.886642i \(0.653032\pi\)
\(930\) 0 0
\(931\) 8649.50 0.304485
\(932\) −12640.4 −0.444259
\(933\) −60429.5 −2.12044
\(934\) 1692.90 0.0593078
\(935\) −59004.8 −2.06381
\(936\) −7412.23 −0.258842
\(937\) 50513.0 1.76114 0.880569 0.473918i \(-0.157161\pi\)
0.880569 + 0.473918i \(0.157161\pi\)
\(938\) −22978.6 −0.799869
\(939\) −28105.8 −0.976782
\(940\) 2104.96 0.0730385
\(941\) −34916.3 −1.20961 −0.604803 0.796375i \(-0.706748\pi\)
−0.604803 + 0.796375i \(0.706748\pi\)
\(942\) 19513.3 0.674924
\(943\) 2213.55 0.0764401
\(944\) −12284.0 −0.423529
\(945\) −125377. −4.31590
\(946\) −23835.1 −0.819183
\(947\) 32012.8 1.09850 0.549248 0.835659i \(-0.314914\pi\)
0.549248 + 0.835659i \(0.314914\pi\)
\(948\) −17328.8 −0.593683
\(949\) 6888.48 0.235626
\(950\) −30326.8 −1.03572
\(951\) 22352.2 0.762166
\(952\) 21665.0 0.737571
\(953\) 25598.0 0.870094 0.435047 0.900408i \(-0.356732\pi\)
0.435047 + 0.900408i \(0.356732\pi\)
\(954\) 13431.6 0.455834
\(955\) −42353.1 −1.43509
\(956\) 6075.34 0.205534
\(957\) −4268.50 −0.144181
\(958\) −31415.9 −1.05950
\(959\) 43572.9 1.46720
\(960\) −11292.6 −0.379652
\(961\) 0 0
\(962\) −11726.8 −0.393024
\(963\) 34664.4 1.15996
\(964\) 3970.56 0.132659
\(965\) −25574.2 −0.853121
\(966\) −15325.5 −0.510446
\(967\) 22569.5 0.750555 0.375277 0.926913i \(-0.377547\pi\)
0.375277 + 0.926913i \(0.377547\pi\)
\(968\) 5613.59 0.186392
\(969\) 74509.7 2.47017
\(970\) −46858.4 −1.55106
\(971\) 12779.3 0.422357 0.211178 0.977448i \(-0.432270\pi\)
0.211178 + 0.977448i \(0.432270\pi\)
\(972\) −12268.2 −0.404840
\(973\) 56362.7 1.85705
\(974\) 36647.2 1.20560
\(975\) −33986.3 −1.11634
\(976\) 2138.51 0.0701352
\(977\) −5941.92 −0.194574 −0.0972871 0.995256i \(-0.531016\pi\)
−0.0972871 + 0.995256i \(0.531016\pi\)
\(978\) 64096.9 2.09570
\(979\) −14915.8 −0.486936
\(980\) 10160.1 0.331177
\(981\) −91144.6 −2.96639
\(982\) 18002.8 0.585023
\(983\) 8224.44 0.266856 0.133428 0.991059i \(-0.457402\pi\)
0.133428 + 0.991059i \(0.457402\pi\)
\(984\) −4367.36 −0.141490
\(985\) −34033.7 −1.10092
\(986\) 4536.51 0.146523
\(987\) −5636.34 −0.181770
\(988\) 4020.58 0.129465
\(989\) −17919.3 −0.576138
\(990\) −56658.0 −1.81890
\(991\) 17785.8 0.570114 0.285057 0.958511i \(-0.407987\pi\)
0.285057 + 0.958511i \(0.407987\pi\)
\(992\) 0 0
\(993\) 66430.8 2.12298
\(994\) −6686.15 −0.213352
\(995\) −2224.77 −0.0708845
\(996\) −27012.7 −0.859368
\(997\) −8265.00 −0.262543 −0.131271 0.991346i \(-0.541906\pi\)
−0.131271 + 0.991346i \(0.541906\pi\)
\(998\) 70.1173 0.00222397
\(999\) −114044. −3.61181
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1922.4.a.x.1.2 32
31.30 odd 2 inner 1922.4.a.x.1.31 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1922.4.a.x.1.2 32 1.1 even 1 trivial
1922.4.a.x.1.31 yes 32 31.30 odd 2 inner