Properties

Label 1922.4.a.x.1.15
Level $1922$
Weight $4$
Character 1922.1
Self dual yes
Analytic conductor $113.402$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1922,4,Mod(1,1922)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1922, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1922.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1922 = 2 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1922.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,-64,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(113.401671031\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.15
Character \(\chi\) \(=\) 1922.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -0.915774 q^{3} +4.00000 q^{4} +5.16716 q^{5} +1.83155 q^{6} -2.76909 q^{7} -8.00000 q^{8} -26.1614 q^{9} -10.3343 q^{10} -48.5280 q^{11} -3.66310 q^{12} +36.7499 q^{13} +5.53817 q^{14} -4.73195 q^{15} +16.0000 q^{16} +109.156 q^{17} +52.3227 q^{18} -109.456 q^{19} +20.6687 q^{20} +2.53586 q^{21} +97.0560 q^{22} +5.46425 q^{23} +7.32619 q^{24} -98.3004 q^{25} -73.4997 q^{26} +48.6838 q^{27} -11.0763 q^{28} -11.8771 q^{29} +9.46391 q^{30} -32.0000 q^{32} +44.4407 q^{33} -218.312 q^{34} -14.3083 q^{35} -104.645 q^{36} -332.952 q^{37} +218.911 q^{38} -33.6546 q^{39} -41.3373 q^{40} +247.094 q^{41} -5.07172 q^{42} +17.3041 q^{43} -194.112 q^{44} -135.180 q^{45} -10.9285 q^{46} +81.6399 q^{47} -14.6524 q^{48} -335.332 q^{49} +196.601 q^{50} -99.9620 q^{51} +146.999 q^{52} -182.822 q^{53} -97.3676 q^{54} -250.752 q^{55} +22.1527 q^{56} +100.237 q^{57} +23.7541 q^{58} +221.015 q^{59} -18.9278 q^{60} -14.4425 q^{61} +72.4431 q^{63} +64.0000 q^{64} +189.893 q^{65} -88.8814 q^{66} -611.554 q^{67} +436.623 q^{68} -5.00402 q^{69} +28.6167 q^{70} +1005.57 q^{71} +209.291 q^{72} -464.909 q^{73} +665.904 q^{74} +90.0210 q^{75} -437.822 q^{76} +134.378 q^{77} +67.3091 q^{78} +711.985 q^{79} +82.6746 q^{80} +661.773 q^{81} -494.188 q^{82} -21.3995 q^{83} +10.1434 q^{84} +564.026 q^{85} -34.6083 q^{86} +10.8767 q^{87} +388.224 q^{88} -1211.40 q^{89} +270.360 q^{90} -101.764 q^{91} +21.8570 q^{92} -163.280 q^{94} -565.575 q^{95} +29.3048 q^{96} +1500.39 q^{97} +670.664 q^{98} +1269.56 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 64 q^{2} + 128 q^{4} + 112 q^{7} - 256 q^{8} + 288 q^{9} - 224 q^{14} + 512 q^{16} - 576 q^{18} + 304 q^{19} + 1200 q^{25} + 448 q^{28} - 1024 q^{32} - 272 q^{33} + 1152 q^{36} - 608 q^{38} + 1616 q^{39}+ \cdots - 6176 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −0.915774 −0.176241 −0.0881204 0.996110i \(-0.528086\pi\)
−0.0881204 + 0.996110i \(0.528086\pi\)
\(4\) 4.00000 0.500000
\(5\) 5.16716 0.462165 0.231083 0.972934i \(-0.425773\pi\)
0.231083 + 0.972934i \(0.425773\pi\)
\(6\) 1.83155 0.124621
\(7\) −2.76909 −0.149517 −0.0747583 0.997202i \(-0.523819\pi\)
−0.0747583 + 0.997202i \(0.523819\pi\)
\(8\) −8.00000 −0.353553
\(9\) −26.1614 −0.968939
\(10\) −10.3343 −0.326800
\(11\) −48.5280 −1.33016 −0.665080 0.746773i \(-0.731602\pi\)
−0.665080 + 0.746773i \(0.731602\pi\)
\(12\) −3.66310 −0.0881204
\(13\) 36.7499 0.784044 0.392022 0.919956i \(-0.371776\pi\)
0.392022 + 0.919956i \(0.371776\pi\)
\(14\) 5.53817 0.105724
\(15\) −4.73195 −0.0814524
\(16\) 16.0000 0.250000
\(17\) 109.156 1.55730 0.778652 0.627456i \(-0.215904\pi\)
0.778652 + 0.627456i \(0.215904\pi\)
\(18\) 52.3227 0.685143
\(19\) −109.456 −1.32162 −0.660811 0.750552i \(-0.729788\pi\)
−0.660811 + 0.750552i \(0.729788\pi\)
\(20\) 20.6687 0.231083
\(21\) 2.53586 0.0263509
\(22\) 97.0560 0.940564
\(23\) 5.46425 0.0495380 0.0247690 0.999693i \(-0.492115\pi\)
0.0247690 + 0.999693i \(0.492115\pi\)
\(24\) 7.32619 0.0623105
\(25\) −98.3004 −0.786403
\(26\) −73.4997 −0.554403
\(27\) 48.6838 0.347007
\(28\) −11.0763 −0.0747583
\(29\) −11.8771 −0.0760523 −0.0380261 0.999277i \(-0.512107\pi\)
−0.0380261 + 0.999277i \(0.512107\pi\)
\(30\) 9.46391 0.0575955
\(31\) 0 0
\(32\) −32.0000 −0.176777
\(33\) 44.4407 0.234428
\(34\) −218.312 −1.10118
\(35\) −14.3083 −0.0691014
\(36\) −104.645 −0.484470
\(37\) −332.952 −1.47938 −0.739688 0.672949i \(-0.765027\pi\)
−0.739688 + 0.672949i \(0.765027\pi\)
\(38\) 218.911 0.934528
\(39\) −33.6546 −0.138181
\(40\) −41.3373 −0.163400
\(41\) 247.094 0.941211 0.470605 0.882344i \(-0.344036\pi\)
0.470605 + 0.882344i \(0.344036\pi\)
\(42\) −5.07172 −0.0186329
\(43\) 17.3041 0.0613688 0.0306844 0.999529i \(-0.490231\pi\)
0.0306844 + 0.999529i \(0.490231\pi\)
\(44\) −194.112 −0.665080
\(45\) −135.180 −0.447810
\(46\) −10.9285 −0.0350287
\(47\) 81.6399 0.253370 0.126685 0.991943i \(-0.459566\pi\)
0.126685 + 0.991943i \(0.459566\pi\)
\(48\) −14.6524 −0.0440602
\(49\) −335.332 −0.977645
\(50\) 196.601 0.556071
\(51\) −99.9620 −0.274460
\(52\) 146.999 0.392022
\(53\) −182.822 −0.473822 −0.236911 0.971531i \(-0.576135\pi\)
−0.236911 + 0.971531i \(0.576135\pi\)
\(54\) −97.3676 −0.245371
\(55\) −250.752 −0.614753
\(56\) 22.1527 0.0528621
\(57\) 100.237 0.232924
\(58\) 23.7541 0.0537771
\(59\) 221.015 0.487690 0.243845 0.969814i \(-0.421591\pi\)
0.243845 + 0.969814i \(0.421591\pi\)
\(60\) −18.9278 −0.0407262
\(61\) −14.4425 −0.0303144 −0.0151572 0.999885i \(-0.504825\pi\)
−0.0151572 + 0.999885i \(0.504825\pi\)
\(62\) 0 0
\(63\) 72.4431 0.144873
\(64\) 64.0000 0.125000
\(65\) 189.893 0.362358
\(66\) −88.8814 −0.165766
\(67\) −611.554 −1.11512 −0.557562 0.830136i \(-0.688263\pi\)
−0.557562 + 0.830136i \(0.688263\pi\)
\(68\) 436.623 0.778652
\(69\) −5.00402 −0.00873062
\(70\) 28.6167 0.0488621
\(71\) 1005.57 1.68083 0.840416 0.541943i \(-0.182311\pi\)
0.840416 + 0.541943i \(0.182311\pi\)
\(72\) 209.291 0.342572
\(73\) −464.909 −0.745391 −0.372695 0.927954i \(-0.621566\pi\)
−0.372695 + 0.927954i \(0.621566\pi\)
\(74\) 665.904 1.04608
\(75\) 90.0210 0.138596
\(76\) −437.822 −0.660811
\(77\) 134.378 0.198881
\(78\) 67.3091 0.0977085
\(79\) 711.985 1.01398 0.506991 0.861951i \(-0.330758\pi\)
0.506991 + 0.861951i \(0.330758\pi\)
\(80\) 82.6746 0.115541
\(81\) 661.773 0.907782
\(82\) −494.188 −0.665536
\(83\) −21.3995 −0.0283001 −0.0141500 0.999900i \(-0.504504\pi\)
−0.0141500 + 0.999900i \(0.504504\pi\)
\(84\) 10.1434 0.0131755
\(85\) 564.026 0.719732
\(86\) −34.6083 −0.0433943
\(87\) 10.8767 0.0134035
\(88\) 388.224 0.470282
\(89\) −1211.40 −1.44278 −0.721392 0.692527i \(-0.756497\pi\)
−0.721392 + 0.692527i \(0.756497\pi\)
\(90\) 270.360 0.316649
\(91\) −101.764 −0.117228
\(92\) 21.8570 0.0247690
\(93\) 0 0
\(94\) −163.280 −0.179160
\(95\) −565.575 −0.610808
\(96\) 29.3048 0.0311553
\(97\) 1500.39 1.57053 0.785267 0.619158i \(-0.212526\pi\)
0.785267 + 0.619158i \(0.212526\pi\)
\(98\) 670.664 0.691299
\(99\) 1269.56 1.28884
\(100\) −393.202 −0.393202
\(101\) −175.935 −0.173329 −0.0866644 0.996238i \(-0.527621\pi\)
−0.0866644 + 0.996238i \(0.527621\pi\)
\(102\) 199.924 0.194073
\(103\) 934.861 0.894316 0.447158 0.894455i \(-0.352436\pi\)
0.447158 + 0.894455i \(0.352436\pi\)
\(104\) −293.999 −0.277202
\(105\) 13.1032 0.0121785
\(106\) 365.645 0.335043
\(107\) 1399.38 1.26433 0.632164 0.774835i \(-0.282167\pi\)
0.632164 + 0.774835i \(0.282167\pi\)
\(108\) 194.735 0.173504
\(109\) 1002.49 0.880929 0.440464 0.897770i \(-0.354814\pi\)
0.440464 + 0.897770i \(0.354814\pi\)
\(110\) 501.505 0.434696
\(111\) 304.909 0.260727
\(112\) −44.3054 −0.0373792
\(113\) −1164.13 −0.969133 −0.484566 0.874755i \(-0.661023\pi\)
−0.484566 + 0.874755i \(0.661023\pi\)
\(114\) −200.473 −0.164702
\(115\) 28.2347 0.0228948
\(116\) −47.5083 −0.0380261
\(117\) −961.426 −0.759691
\(118\) −442.030 −0.344849
\(119\) −302.262 −0.232843
\(120\) 37.8556 0.0287978
\(121\) 1023.97 0.769323
\(122\) 28.8850 0.0214355
\(123\) −226.282 −0.165880
\(124\) 0 0
\(125\) −1153.83 −0.825613
\(126\) −144.886 −0.102440
\(127\) −2195.23 −1.53382 −0.766910 0.641754i \(-0.778207\pi\)
−0.766910 + 0.641754i \(0.778207\pi\)
\(128\) −128.000 −0.0883883
\(129\) −15.8467 −0.0108157
\(130\) −379.785 −0.256226
\(131\) 1051.91 0.701572 0.350786 0.936456i \(-0.385914\pi\)
0.350786 + 0.936456i \(0.385914\pi\)
\(132\) 177.763 0.117214
\(133\) 303.092 0.197604
\(134\) 1223.11 0.788511
\(135\) 251.557 0.160375
\(136\) −873.246 −0.550590
\(137\) −1749.63 −1.09110 −0.545551 0.838077i \(-0.683680\pi\)
−0.545551 + 0.838077i \(0.683680\pi\)
\(138\) 10.0080 0.00617348
\(139\) 1786.32 1.09003 0.545013 0.838428i \(-0.316525\pi\)
0.545013 + 0.838428i \(0.316525\pi\)
\(140\) −57.2333 −0.0345507
\(141\) −74.7637 −0.0446542
\(142\) −2011.14 −1.18853
\(143\) −1783.40 −1.04290
\(144\) −418.582 −0.242235
\(145\) −61.3708 −0.0351487
\(146\) 929.819 0.527071
\(147\) 307.088 0.172301
\(148\) −1331.81 −0.739688
\(149\) −2487.93 −1.36792 −0.683958 0.729522i \(-0.739743\pi\)
−0.683958 + 0.729522i \(0.739743\pi\)
\(150\) −180.042 −0.0980024
\(151\) 3235.02 1.74346 0.871729 0.489989i \(-0.162999\pi\)
0.871729 + 0.489989i \(0.162999\pi\)
\(152\) 875.644 0.467264
\(153\) −2855.66 −1.50893
\(154\) −268.757 −0.140630
\(155\) 0 0
\(156\) −134.618 −0.0690903
\(157\) 1075.13 0.546527 0.273263 0.961939i \(-0.411897\pi\)
0.273263 + 0.961939i \(0.411897\pi\)
\(158\) −1423.97 −0.716993
\(159\) 167.424 0.0835068
\(160\) −165.349 −0.0817000
\(161\) −15.1310 −0.00740676
\(162\) −1323.55 −0.641899
\(163\) −913.394 −0.438911 −0.219456 0.975622i \(-0.570428\pi\)
−0.219456 + 0.975622i \(0.570428\pi\)
\(164\) 988.377 0.470605
\(165\) 229.632 0.108345
\(166\) 42.7991 0.0200112
\(167\) 3516.67 1.62951 0.814754 0.579806i \(-0.196872\pi\)
0.814754 + 0.579806i \(0.196872\pi\)
\(168\) −20.2869 −0.00931646
\(169\) −846.447 −0.385274
\(170\) −1128.05 −0.508927
\(171\) 2863.51 1.28057
\(172\) 69.2166 0.0306844
\(173\) −2899.75 −1.27436 −0.637178 0.770716i \(-0.719899\pi\)
−0.637178 + 0.770716i \(0.719899\pi\)
\(174\) −21.7534 −0.00947772
\(175\) 272.202 0.117580
\(176\) −776.448 −0.332540
\(177\) −202.400 −0.0859508
\(178\) 2422.79 1.02020
\(179\) −3206.74 −1.33901 −0.669506 0.742806i \(-0.733494\pi\)
−0.669506 + 0.742806i \(0.733494\pi\)
\(180\) −540.720 −0.223905
\(181\) −333.405 −0.136916 −0.0684579 0.997654i \(-0.521808\pi\)
−0.0684579 + 0.997654i \(0.521808\pi\)
\(182\) 203.527 0.0828925
\(183\) 13.2261 0.00534263
\(184\) −43.7140 −0.0175143
\(185\) −1720.42 −0.683717
\(186\) 0 0
\(187\) −5297.11 −2.07146
\(188\) 326.560 0.126685
\(189\) −134.810 −0.0518834
\(190\) 1131.15 0.431906
\(191\) 1894.64 0.717755 0.358877 0.933385i \(-0.383160\pi\)
0.358877 + 0.933385i \(0.383160\pi\)
\(192\) −58.6095 −0.0220301
\(193\) 2460.46 0.917657 0.458828 0.888525i \(-0.348269\pi\)
0.458828 + 0.888525i \(0.348269\pi\)
\(194\) −3000.78 −1.11053
\(195\) −173.899 −0.0638623
\(196\) −1341.33 −0.488822
\(197\) −4239.92 −1.53341 −0.766705 0.642000i \(-0.778105\pi\)
−0.766705 + 0.642000i \(0.778105\pi\)
\(198\) −2539.12 −0.911350
\(199\) 2536.76 0.903647 0.451824 0.892107i \(-0.350774\pi\)
0.451824 + 0.892107i \(0.350774\pi\)
\(200\) 786.403 0.278036
\(201\) 560.046 0.196530
\(202\) 351.871 0.122562
\(203\) 32.8886 0.0113711
\(204\) −399.848 −0.137230
\(205\) 1276.78 0.434995
\(206\) −1869.72 −0.632377
\(207\) −142.952 −0.0479994
\(208\) 587.998 0.196011
\(209\) 5311.66 1.75797
\(210\) −26.2064 −0.00861149
\(211\) −1333.05 −0.434933 −0.217467 0.976068i \(-0.569779\pi\)
−0.217467 + 0.976068i \(0.569779\pi\)
\(212\) −731.289 −0.236911
\(213\) −920.873 −0.296231
\(214\) −2798.76 −0.894014
\(215\) 89.4134 0.0283625
\(216\) −389.470 −0.122686
\(217\) 0 0
\(218\) −2004.98 −0.622911
\(219\) 425.752 0.131368
\(220\) −1003.01 −0.307377
\(221\) 4011.46 1.22100
\(222\) −609.817 −0.184362
\(223\) 6074.25 1.82404 0.912022 0.410142i \(-0.134521\pi\)
0.912022 + 0.410142i \(0.134521\pi\)
\(224\) 88.6108 0.0264311
\(225\) 2571.67 0.761977
\(226\) 2328.26 0.685280
\(227\) 4249.70 1.24257 0.621284 0.783586i \(-0.286611\pi\)
0.621284 + 0.783586i \(0.286611\pi\)
\(228\) 400.946 0.116462
\(229\) 1395.51 0.402697 0.201348 0.979520i \(-0.435468\pi\)
0.201348 + 0.979520i \(0.435468\pi\)
\(230\) −56.4694 −0.0161890
\(231\) −123.060 −0.0350509
\(232\) 95.0165 0.0268885
\(233\) −1622.55 −0.456210 −0.228105 0.973637i \(-0.573253\pi\)
−0.228105 + 0.973637i \(0.573253\pi\)
\(234\) 1922.85 0.537183
\(235\) 421.847 0.117099
\(236\) 884.060 0.243845
\(237\) −652.017 −0.178705
\(238\) 604.524 0.164645
\(239\) 834.389 0.225825 0.112912 0.993605i \(-0.463982\pi\)
0.112912 + 0.993605i \(0.463982\pi\)
\(240\) −75.7113 −0.0203631
\(241\) −1582.61 −0.423008 −0.211504 0.977377i \(-0.567836\pi\)
−0.211504 + 0.977377i \(0.567836\pi\)
\(242\) −2047.94 −0.543994
\(243\) −1920.50 −0.506996
\(244\) −57.7701 −0.0151572
\(245\) −1732.72 −0.451833
\(246\) 452.565 0.117295
\(247\) −4022.48 −1.03621
\(248\) 0 0
\(249\) 19.5971 0.00498763
\(250\) 2307.66 0.583797
\(251\) 1711.78 0.430464 0.215232 0.976563i \(-0.430949\pi\)
0.215232 + 0.976563i \(0.430949\pi\)
\(252\) 289.772 0.0724363
\(253\) −265.169 −0.0658935
\(254\) 4390.46 1.08458
\(255\) −516.520 −0.126846
\(256\) 256.000 0.0625000
\(257\) 7420.43 1.80106 0.900532 0.434790i \(-0.143177\pi\)
0.900532 + 0.434790i \(0.143177\pi\)
\(258\) 31.6934 0.00764784
\(259\) 921.973 0.221191
\(260\) 759.570 0.181179
\(261\) 310.720 0.0736900
\(262\) −2103.82 −0.496087
\(263\) 4558.38 1.06875 0.534376 0.845247i \(-0.320547\pi\)
0.534376 + 0.845247i \(0.320547\pi\)
\(264\) −355.526 −0.0828829
\(265\) −944.673 −0.218984
\(266\) −606.184 −0.139727
\(267\) 1109.37 0.254277
\(268\) −2446.22 −0.557562
\(269\) −4893.07 −1.10905 −0.554527 0.832166i \(-0.687101\pi\)
−0.554527 + 0.832166i \(0.687101\pi\)
\(270\) −503.114 −0.113402
\(271\) 7527.82 1.68739 0.843694 0.536824i \(-0.180376\pi\)
0.843694 + 0.536824i \(0.180376\pi\)
\(272\) 1746.49 0.389326
\(273\) 93.1924 0.0206603
\(274\) 3499.26 0.771526
\(275\) 4770.32 1.04604
\(276\) −20.0161 −0.00436531
\(277\) −4365.22 −0.946861 −0.473430 0.880831i \(-0.656984\pi\)
−0.473430 + 0.880831i \(0.656984\pi\)
\(278\) −3572.64 −0.770765
\(279\) 0 0
\(280\) 114.467 0.0244310
\(281\) 5895.33 1.25155 0.625775 0.780003i \(-0.284783\pi\)
0.625775 + 0.780003i \(0.284783\pi\)
\(282\) 149.527 0.0315753
\(283\) 5152.63 1.08230 0.541152 0.840925i \(-0.317988\pi\)
0.541152 + 0.840925i \(0.317988\pi\)
\(284\) 4022.27 0.840416
\(285\) 517.939 0.107649
\(286\) 3566.80 0.737444
\(287\) −684.225 −0.140727
\(288\) 837.163 0.171286
\(289\) 7001.99 1.42520
\(290\) 122.742 0.0248539
\(291\) −1374.02 −0.276792
\(292\) −1859.64 −0.372695
\(293\) 3843.62 0.766371 0.383186 0.923671i \(-0.374827\pi\)
0.383186 + 0.923671i \(0.374827\pi\)
\(294\) −614.177 −0.121835
\(295\) 1142.02 0.225393
\(296\) 2663.61 0.523039
\(297\) −2362.53 −0.461575
\(298\) 4975.87 0.967262
\(299\) 200.810 0.0388400
\(300\) 360.084 0.0692982
\(301\) −47.9167 −0.00917565
\(302\) −6470.04 −1.23281
\(303\) 161.117 0.0305476
\(304\) −1751.29 −0.330406
\(305\) −74.6269 −0.0140102
\(306\) 5711.33 1.06698
\(307\) 10347.6 1.92368 0.961839 0.273618i \(-0.0882203\pi\)
0.961839 + 0.273618i \(0.0882203\pi\)
\(308\) 537.513 0.0994405
\(309\) −856.121 −0.157615
\(310\) 0 0
\(311\) 3853.49 0.702609 0.351305 0.936261i \(-0.385738\pi\)
0.351305 + 0.936261i \(0.385738\pi\)
\(312\) 269.237 0.0488542
\(313\) −35.3480 −0.00638334 −0.00319167 0.999995i \(-0.501016\pi\)
−0.00319167 + 0.999995i \(0.501016\pi\)
\(314\) −2150.26 −0.386453
\(315\) 374.325 0.0669550
\(316\) 2847.94 0.506991
\(317\) −432.260 −0.0765873 −0.0382936 0.999267i \(-0.512192\pi\)
−0.0382936 + 0.999267i \(0.512192\pi\)
\(318\) −334.848 −0.0590482
\(319\) 576.371 0.101162
\(320\) 330.699 0.0577707
\(321\) −1281.51 −0.222826
\(322\) 30.2620 0.00523737
\(323\) −11947.7 −2.05817
\(324\) 2647.09 0.453891
\(325\) −3612.53 −0.616575
\(326\) 1826.79 0.310357
\(327\) −918.055 −0.155256
\(328\) −1976.75 −0.332768
\(329\) −226.068 −0.0378831
\(330\) −459.265 −0.0766112
\(331\) −10140.0 −1.68383 −0.841913 0.539613i \(-0.818571\pi\)
−0.841913 + 0.539613i \(0.818571\pi\)
\(332\) −85.5982 −0.0141500
\(333\) 8710.47 1.43343
\(334\) −7033.34 −1.15224
\(335\) −3160.00 −0.515371
\(336\) 40.5737 0.00658773
\(337\) 8818.30 1.42541 0.712705 0.701464i \(-0.247470\pi\)
0.712705 + 0.701464i \(0.247470\pi\)
\(338\) 1692.89 0.272430
\(339\) 1066.08 0.170801
\(340\) 2256.10 0.359866
\(341\) 0 0
\(342\) −5727.01 −0.905501
\(343\) 1878.36 0.295691
\(344\) −138.433 −0.0216971
\(345\) −25.8566 −0.00403499
\(346\) 5799.50 0.901106
\(347\) −1729.22 −0.267520 −0.133760 0.991014i \(-0.542705\pi\)
−0.133760 + 0.991014i \(0.542705\pi\)
\(348\) 43.5068 0.00670176
\(349\) 8253.61 1.26592 0.632959 0.774185i \(-0.281840\pi\)
0.632959 + 0.774185i \(0.281840\pi\)
\(350\) −544.405 −0.0831419
\(351\) 1789.12 0.272069
\(352\) 1552.90 0.235141
\(353\) 24.4799 0.00369103 0.00184552 0.999998i \(-0.499413\pi\)
0.00184552 + 0.999998i \(0.499413\pi\)
\(354\) 404.800 0.0607764
\(355\) 5195.94 0.776822
\(356\) −4845.59 −0.721392
\(357\) 276.804 0.0410364
\(358\) 6413.49 0.946825
\(359\) 807.552 0.118721 0.0593607 0.998237i \(-0.481094\pi\)
0.0593607 + 0.998237i \(0.481094\pi\)
\(360\) 1081.44 0.158325
\(361\) 5121.51 0.746685
\(362\) 666.809 0.0968141
\(363\) −937.724 −0.135586
\(364\) −407.054 −0.0586138
\(365\) −2402.26 −0.344494
\(366\) −26.4522 −0.00377781
\(367\) −8656.53 −1.23125 −0.615623 0.788041i \(-0.711096\pi\)
−0.615623 + 0.788041i \(0.711096\pi\)
\(368\) 87.4280 0.0123845
\(369\) −6464.32 −0.911976
\(370\) 3440.83 0.483461
\(371\) 506.251 0.0708443
\(372\) 0 0
\(373\) 7263.93 1.00834 0.504171 0.863604i \(-0.331798\pi\)
0.504171 + 0.863604i \(0.331798\pi\)
\(374\) 10594.2 1.46474
\(375\) 1056.65 0.145507
\(376\) −653.119 −0.0895800
\(377\) −436.481 −0.0596284
\(378\) 269.619 0.0366871
\(379\) 3293.79 0.446413 0.223206 0.974771i \(-0.428348\pi\)
0.223206 + 0.974771i \(0.428348\pi\)
\(380\) −2262.30 −0.305404
\(381\) 2010.34 0.270322
\(382\) −3789.27 −0.507529
\(383\) −12397.7 −1.65403 −0.827013 0.562183i \(-0.809962\pi\)
−0.827013 + 0.562183i \(0.809962\pi\)
\(384\) 117.219 0.0155776
\(385\) 694.355 0.0919158
\(386\) −4920.92 −0.648881
\(387\) −452.700 −0.0594626
\(388\) 6001.57 0.785267
\(389\) 8920.39 1.16268 0.581339 0.813662i \(-0.302529\pi\)
0.581339 + 0.813662i \(0.302529\pi\)
\(390\) 347.797 0.0451574
\(391\) 596.455 0.0771458
\(392\) 2682.66 0.345650
\(393\) −963.314 −0.123646
\(394\) 8479.84 1.08428
\(395\) 3678.94 0.468627
\(396\) 5078.24 0.644422
\(397\) −13226.6 −1.67211 −0.836053 0.548649i \(-0.815142\pi\)
−0.836053 + 0.548649i \(0.815142\pi\)
\(398\) −5073.51 −0.638975
\(399\) −277.564 −0.0348260
\(400\) −1572.81 −0.196601
\(401\) 3260.02 0.405979 0.202990 0.979181i \(-0.434934\pi\)
0.202990 + 0.979181i \(0.434934\pi\)
\(402\) −1120.09 −0.138968
\(403\) 0 0
\(404\) −703.741 −0.0866644
\(405\) 3419.49 0.419545
\(406\) −65.7773 −0.00804057
\(407\) 16157.5 1.96781
\(408\) 799.696 0.0970364
\(409\) −682.917 −0.0825625 −0.0412813 0.999148i \(-0.513144\pi\)
−0.0412813 + 0.999148i \(0.513144\pi\)
\(410\) −2553.55 −0.307588
\(411\) 1602.27 0.192297
\(412\) 3739.44 0.447158
\(413\) −612.010 −0.0729177
\(414\) 285.904 0.0339407
\(415\) −110.575 −0.0130793
\(416\) −1176.00 −0.138601
\(417\) −1635.86 −0.192107
\(418\) −10623.3 −1.24307
\(419\) 5479.25 0.638852 0.319426 0.947611i \(-0.396510\pi\)
0.319426 + 0.947611i \(0.396510\pi\)
\(420\) 52.4128 0.00608924
\(421\) 13823.8 1.60031 0.800157 0.599790i \(-0.204749\pi\)
0.800157 + 0.599790i \(0.204749\pi\)
\(422\) 2666.10 0.307544
\(423\) −2135.81 −0.245500
\(424\) 1462.58 0.167521
\(425\) −10730.1 −1.22467
\(426\) 1841.75 0.209467
\(427\) 39.9926 0.00453250
\(428\) 5597.51 0.632164
\(429\) 1633.19 0.183802
\(430\) −178.827 −0.0200553
\(431\) −11057.2 −1.23575 −0.617875 0.786277i \(-0.712006\pi\)
−0.617875 + 0.786277i \(0.712006\pi\)
\(432\) 778.941 0.0867518
\(433\) −2806.32 −0.311462 −0.155731 0.987800i \(-0.549773\pi\)
−0.155731 + 0.987800i \(0.549773\pi\)
\(434\) 0 0
\(435\) 56.2017 0.00619464
\(436\) 4009.96 0.440464
\(437\) −598.092 −0.0654706
\(438\) −851.504 −0.0928914
\(439\) 12658.5 1.37621 0.688106 0.725610i \(-0.258442\pi\)
0.688106 + 0.725610i \(0.258442\pi\)
\(440\) 2006.02 0.217348
\(441\) 8772.74 0.947278
\(442\) −8022.92 −0.863374
\(443\) −6579.42 −0.705638 −0.352819 0.935692i \(-0.614777\pi\)
−0.352819 + 0.935692i \(0.614777\pi\)
\(444\) 1219.63 0.130363
\(445\) −6259.48 −0.666805
\(446\) −12148.5 −1.28979
\(447\) 2278.38 0.241082
\(448\) −177.222 −0.0186896
\(449\) 18640.8 1.95928 0.979638 0.200774i \(-0.0643457\pi\)
0.979638 + 0.200774i \(0.0643457\pi\)
\(450\) −5143.34 −0.538799
\(451\) −11991.0 −1.25196
\(452\) −4656.51 −0.484566
\(453\) −2962.55 −0.307268
\(454\) −8499.41 −0.878628
\(455\) −525.829 −0.0541786
\(456\) −801.892 −0.0823510
\(457\) 5850.71 0.598872 0.299436 0.954116i \(-0.403202\pi\)
0.299436 + 0.954116i \(0.403202\pi\)
\(458\) −2791.01 −0.284750
\(459\) 5314.12 0.540396
\(460\) 112.939 0.0114474
\(461\) 14207.6 1.43539 0.717693 0.696360i \(-0.245198\pi\)
0.717693 + 0.696360i \(0.245198\pi\)
\(462\) 246.120 0.0247847
\(463\) 8035.18 0.806536 0.403268 0.915082i \(-0.367874\pi\)
0.403268 + 0.915082i \(0.367874\pi\)
\(464\) −190.033 −0.0190131
\(465\) 0 0
\(466\) 3245.10 0.322589
\(467\) 2373.97 0.235234 0.117617 0.993059i \(-0.462474\pi\)
0.117617 + 0.993059i \(0.462474\pi\)
\(468\) −3845.71 −0.379846
\(469\) 1693.45 0.166729
\(470\) −843.694 −0.0828015
\(471\) −984.576 −0.0963203
\(472\) −1768.12 −0.172424
\(473\) −839.736 −0.0816302
\(474\) 1304.03 0.126363
\(475\) 10759.5 1.03933
\(476\) −1209.05 −0.116421
\(477\) 4782.88 0.459105
\(478\) −1668.78 −0.159682
\(479\) −20610.0 −1.96596 −0.982980 0.183713i \(-0.941188\pi\)
−0.982980 + 0.183713i \(0.941188\pi\)
\(480\) 151.423 0.0143989
\(481\) −12235.9 −1.15990
\(482\) 3165.22 0.299112
\(483\) 13.8566 0.00130537
\(484\) 4095.88 0.384662
\(485\) 7752.77 0.725846
\(486\) 3840.99 0.358500
\(487\) −6337.51 −0.589692 −0.294846 0.955545i \(-0.595268\pi\)
−0.294846 + 0.955545i \(0.595268\pi\)
\(488\) 115.540 0.0107177
\(489\) 836.463 0.0773541
\(490\) 3465.43 0.319494
\(491\) −6928.02 −0.636776 −0.318388 0.947960i \(-0.603142\pi\)
−0.318388 + 0.947960i \(0.603142\pi\)
\(492\) −905.130 −0.0829398
\(493\) −1296.45 −0.118437
\(494\) 8044.95 0.732711
\(495\) 6560.02 0.595658
\(496\) 0 0
\(497\) −2784.51 −0.251312
\(498\) −39.1943 −0.00352678
\(499\) 11924.2 1.06974 0.534870 0.844935i \(-0.320361\pi\)
0.534870 + 0.844935i \(0.320361\pi\)
\(500\) −4615.32 −0.412807
\(501\) −3220.47 −0.287186
\(502\) −3423.56 −0.304384
\(503\) 7551.92 0.669430 0.334715 0.942319i \(-0.391360\pi\)
0.334715 + 0.942319i \(0.391360\pi\)
\(504\) −579.545 −0.0512202
\(505\) −909.087 −0.0801066
\(506\) 530.339 0.0465937
\(507\) 775.155 0.0679010
\(508\) −8780.92 −0.766910
\(509\) −2076.02 −0.180782 −0.0903908 0.995906i \(-0.528812\pi\)
−0.0903908 + 0.995906i \(0.528812\pi\)
\(510\) 1033.04 0.0896937
\(511\) 1287.37 0.111448
\(512\) −512.000 −0.0441942
\(513\) −5328.71 −0.458613
\(514\) −14840.9 −1.27354
\(515\) 4830.58 0.413322
\(516\) −63.3867 −0.00540784
\(517\) −3961.82 −0.337023
\(518\) −1843.95 −0.156406
\(519\) 2655.51 0.224594
\(520\) −1519.14 −0.128113
\(521\) 14969.7 1.25880 0.629399 0.777082i \(-0.283301\pi\)
0.629399 + 0.777082i \(0.283301\pi\)
\(522\) −621.440 −0.0521067
\(523\) 1892.57 0.158234 0.0791169 0.996865i \(-0.474790\pi\)
0.0791169 + 0.996865i \(0.474790\pi\)
\(524\) 4207.65 0.350786
\(525\) −249.276 −0.0207225
\(526\) −9116.76 −0.755721
\(527\) 0 0
\(528\) 711.051 0.0586071
\(529\) −12137.1 −0.997546
\(530\) 1889.35 0.154845
\(531\) −5782.05 −0.472542
\(532\) 1212.37 0.0988022
\(533\) 9080.68 0.737951
\(534\) −2218.73 −0.179801
\(535\) 7230.82 0.584328
\(536\) 4892.43 0.394256
\(537\) 2936.65 0.235989
\(538\) 9786.13 0.784220
\(539\) 16273.0 1.30042
\(540\) 1006.23 0.0801874
\(541\) 24138.1 1.91826 0.959131 0.282962i \(-0.0913170\pi\)
0.959131 + 0.282962i \(0.0913170\pi\)
\(542\) −15055.6 −1.19316
\(543\) 305.323 0.0241302
\(544\) −3492.99 −0.275295
\(545\) 5180.03 0.407135
\(546\) −186.385 −0.0146090
\(547\) 14517.6 1.13478 0.567392 0.823448i \(-0.307953\pi\)
0.567392 + 0.823448i \(0.307953\pi\)
\(548\) −6998.52 −0.545551
\(549\) 377.836 0.0293728
\(550\) −9540.65 −0.739663
\(551\) 1300.01 0.100512
\(552\) 40.0322 0.00308674
\(553\) −1971.55 −0.151607
\(554\) 8730.43 0.669532
\(555\) 1575.51 0.120499
\(556\) 7145.28 0.545013
\(557\) 689.679 0.0524644 0.0262322 0.999656i \(-0.491649\pi\)
0.0262322 + 0.999656i \(0.491649\pi\)
\(558\) 0 0
\(559\) 635.925 0.0481158
\(560\) −228.933 −0.0172753
\(561\) 4850.96 0.365076
\(562\) −11790.7 −0.884980
\(563\) −16924.1 −1.26690 −0.633451 0.773783i \(-0.718362\pi\)
−0.633451 + 0.773783i \(0.718362\pi\)
\(564\) −299.055 −0.0223271
\(565\) −6015.24 −0.447899
\(566\) −10305.3 −0.765304
\(567\) −1832.51 −0.135729
\(568\) −8044.55 −0.594264
\(569\) 19315.8 1.42313 0.711566 0.702619i \(-0.247986\pi\)
0.711566 + 0.702619i \(0.247986\pi\)
\(570\) −1035.88 −0.0761195
\(571\) 4131.46 0.302795 0.151398 0.988473i \(-0.451623\pi\)
0.151398 + 0.988473i \(0.451623\pi\)
\(572\) −7133.59 −0.521452
\(573\) −1735.06 −0.126498
\(574\) 1368.45 0.0995088
\(575\) −537.138 −0.0389569
\(576\) −1674.33 −0.121117
\(577\) 3387.46 0.244405 0.122203 0.992505i \(-0.461004\pi\)
0.122203 + 0.992505i \(0.461004\pi\)
\(578\) −14004.0 −1.00777
\(579\) −2253.22 −0.161729
\(580\) −245.483 −0.0175744
\(581\) 59.2572 0.00423133
\(582\) 2748.04 0.195722
\(583\) 8872.01 0.630259
\(584\) 3719.27 0.263535
\(585\) −4967.85 −0.351103
\(586\) −7687.24 −0.541906
\(587\) −9312.37 −0.654792 −0.327396 0.944887i \(-0.606171\pi\)
−0.327396 + 0.944887i \(0.606171\pi\)
\(588\) 1228.35 0.0861504
\(589\) 0 0
\(590\) −2284.04 −0.159377
\(591\) 3882.81 0.270249
\(592\) −5327.23 −0.369844
\(593\) 7254.28 0.502357 0.251178 0.967941i \(-0.419182\pi\)
0.251178 + 0.967941i \(0.419182\pi\)
\(594\) 4725.06 0.326383
\(595\) −1561.84 −0.107612
\(596\) −9951.73 −0.683958
\(597\) −2323.09 −0.159260
\(598\) −401.621 −0.0274640
\(599\) −4162.23 −0.283914 −0.141957 0.989873i \(-0.545339\pi\)
−0.141957 + 0.989873i \(0.545339\pi\)
\(600\) −720.168 −0.0490012
\(601\) −5369.44 −0.364432 −0.182216 0.983258i \(-0.558327\pi\)
−0.182216 + 0.983258i \(0.558327\pi\)
\(602\) 95.8334 0.00648817
\(603\) 15999.1 1.08049
\(604\) 12940.1 0.871729
\(605\) 5291.02 0.355554
\(606\) −322.234 −0.0216004
\(607\) 15058.5 1.00693 0.503464 0.864016i \(-0.332059\pi\)
0.503464 + 0.864016i \(0.332059\pi\)
\(608\) 3502.58 0.233632
\(609\) −30.1186 −0.00200405
\(610\) 149.254 0.00990673
\(611\) 3000.26 0.198654
\(612\) −11422.7 −0.754466
\(613\) 615.520 0.0405557 0.0202778 0.999794i \(-0.493545\pi\)
0.0202778 + 0.999794i \(0.493545\pi\)
\(614\) −20695.2 −1.36025
\(615\) −1169.24 −0.0766638
\(616\) −1075.03 −0.0703150
\(617\) 15501.7 1.01147 0.505733 0.862690i \(-0.331222\pi\)
0.505733 + 0.862690i \(0.331222\pi\)
\(618\) 1712.24 0.111451
\(619\) 702.135 0.0455916 0.0227958 0.999740i \(-0.492743\pi\)
0.0227958 + 0.999740i \(0.492743\pi\)
\(620\) 0 0
\(621\) 266.020 0.0171901
\(622\) −7706.98 −0.496820
\(623\) 3354.46 0.215720
\(624\) −538.473 −0.0345452
\(625\) 6325.52 0.404834
\(626\) 70.6960 0.00451371
\(627\) −4864.28 −0.309826
\(628\) 4300.52 0.273263
\(629\) −36343.6 −2.30384
\(630\) −748.650 −0.0473444
\(631\) −20880.4 −1.31733 −0.658665 0.752436i \(-0.728879\pi\)
−0.658665 + 0.752436i \(0.728879\pi\)
\(632\) −5695.88 −0.358497
\(633\) 1220.77 0.0766529
\(634\) 864.521 0.0541554
\(635\) −11343.1 −0.708879
\(636\) 669.696 0.0417534
\(637\) −12323.4 −0.766517
\(638\) −1152.74 −0.0715321
\(639\) −26307.0 −1.62862
\(640\) −661.397 −0.0408500
\(641\) 1854.24 0.114256 0.0571280 0.998367i \(-0.481806\pi\)
0.0571280 + 0.998367i \(0.481806\pi\)
\(642\) 2563.03 0.157562
\(643\) −8596.20 −0.527218 −0.263609 0.964630i \(-0.584913\pi\)
−0.263609 + 0.964630i \(0.584913\pi\)
\(644\) −60.5239 −0.00370338
\(645\) −81.8824 −0.00499863
\(646\) 23895.4 1.45534
\(647\) −30338.2 −1.84346 −0.921728 0.387837i \(-0.873222\pi\)
−0.921728 + 0.387837i \(0.873222\pi\)
\(648\) −5294.19 −0.320950
\(649\) −10725.4 −0.648705
\(650\) 7225.05 0.435985
\(651\) 0 0
\(652\) −3653.58 −0.219456
\(653\) −25490.7 −1.52761 −0.763804 0.645448i \(-0.776671\pi\)
−0.763804 + 0.645448i \(0.776671\pi\)
\(654\) 1836.11 0.109782
\(655\) 5435.40 0.324242
\(656\) 3953.51 0.235303
\(657\) 12162.7 0.722238
\(658\) 452.136 0.0267874
\(659\) 28789.8 1.70181 0.850905 0.525319i \(-0.176054\pi\)
0.850905 + 0.525319i \(0.176054\pi\)
\(660\) 918.530 0.0541723
\(661\) −27723.9 −1.63137 −0.815686 0.578496i \(-0.803640\pi\)
−0.815686 + 0.578496i \(0.803640\pi\)
\(662\) 20280.1 1.19065
\(663\) −3673.59 −0.215189
\(664\) 171.196 0.0100056
\(665\) 1566.13 0.0913259
\(666\) −17420.9 −1.01359
\(667\) −64.8993 −0.00376748
\(668\) 14066.7 0.814754
\(669\) −5562.64 −0.321471
\(670\) 6320.00 0.364422
\(671\) 700.867 0.0403229
\(672\) −81.1474 −0.00465823
\(673\) 3358.20 0.192346 0.0961732 0.995365i \(-0.469340\pi\)
0.0961732 + 0.995365i \(0.469340\pi\)
\(674\) −17636.6 −1.00792
\(675\) −4785.64 −0.272888
\(676\) −3385.79 −0.192637
\(677\) −22710.6 −1.28928 −0.644638 0.764488i \(-0.722992\pi\)
−0.644638 + 0.764488i \(0.722992\pi\)
\(678\) −2132.16 −0.120774
\(679\) −4154.72 −0.234821
\(680\) −4512.21 −0.254464
\(681\) −3891.77 −0.218991
\(682\) 0 0
\(683\) 33669.2 1.88626 0.943130 0.332424i \(-0.107867\pi\)
0.943130 + 0.332424i \(0.107867\pi\)
\(684\) 11454.0 0.640286
\(685\) −9040.63 −0.504270
\(686\) −3756.72 −0.209085
\(687\) −1277.97 −0.0709716
\(688\) 276.866 0.0153422
\(689\) −6718.70 −0.371498
\(690\) 51.7132 0.00285317
\(691\) 20114.3 1.10736 0.553680 0.832730i \(-0.313223\pi\)
0.553680 + 0.832730i \(0.313223\pi\)
\(692\) −11599.0 −0.637178
\(693\) −3515.52 −0.192704
\(694\) 3458.44 0.189165
\(695\) 9230.21 0.503772
\(696\) −87.0137 −0.00473886
\(697\) 26971.8 1.46575
\(698\) −16507.2 −0.895140
\(699\) 1485.89 0.0804028
\(700\) 1088.81 0.0587902
\(701\) −29681.9 −1.59924 −0.799621 0.600505i \(-0.794966\pi\)
−0.799621 + 0.600505i \(0.794966\pi\)
\(702\) −3578.25 −0.192382
\(703\) 36443.4 1.95518
\(704\) −3105.79 −0.166270
\(705\) −386.316 −0.0206376
\(706\) −48.9598 −0.00260995
\(707\) 487.180 0.0259156
\(708\) −809.599 −0.0429754
\(709\) −20451.8 −1.08334 −0.541668 0.840593i \(-0.682207\pi\)
−0.541668 + 0.840593i \(0.682207\pi\)
\(710\) −10391.9 −0.549296
\(711\) −18626.5 −0.982486
\(712\) 9691.17 0.510101
\(713\) 0 0
\(714\) −553.607 −0.0290171
\(715\) −9215.11 −0.481994
\(716\) −12827.0 −0.669506
\(717\) −764.112 −0.0397996
\(718\) −1615.10 −0.0839487
\(719\) −27476.2 −1.42516 −0.712578 0.701593i \(-0.752473\pi\)
−0.712578 + 0.701593i \(0.752473\pi\)
\(720\) −2162.88 −0.111952
\(721\) −2588.71 −0.133715
\(722\) −10243.0 −0.527986
\(723\) 1449.31 0.0745513
\(724\) −1333.62 −0.0684579
\(725\) 1167.52 0.0598078
\(726\) 1875.45 0.0958739
\(727\) −18123.2 −0.924555 −0.462278 0.886735i \(-0.652968\pi\)
−0.462278 + 0.886735i \(0.652968\pi\)
\(728\) 814.109 0.0414462
\(729\) −16109.1 −0.818429
\(730\) 4804.53 0.243594
\(731\) 1888.85 0.0955698
\(732\) 52.9043 0.00267131
\(733\) 18487.3 0.931576 0.465788 0.884896i \(-0.345771\pi\)
0.465788 + 0.884896i \(0.345771\pi\)
\(734\) 17313.1 0.870622
\(735\) 1586.78 0.0796315
\(736\) −174.856 −0.00875717
\(737\) 29677.5 1.48329
\(738\) 12928.6 0.644864
\(739\) 29885.3 1.48762 0.743809 0.668392i \(-0.233017\pi\)
0.743809 + 0.668392i \(0.233017\pi\)
\(740\) −6881.67 −0.341858
\(741\) 3683.68 0.182623
\(742\) −1012.50 −0.0500945
\(743\) 14694.6 0.725563 0.362781 0.931874i \(-0.381827\pi\)
0.362781 + 0.931874i \(0.381827\pi\)
\(744\) 0 0
\(745\) −12855.6 −0.632203
\(746\) −14527.9 −0.713006
\(747\) 559.841 0.0274210
\(748\) −21188.5 −1.03573
\(749\) −3875.00 −0.189038
\(750\) −2113.29 −0.102889
\(751\) 6746.22 0.327794 0.163897 0.986477i \(-0.447594\pi\)
0.163897 + 0.986477i \(0.447594\pi\)
\(752\) 1306.24 0.0633426
\(753\) −1567.60 −0.0758654
\(754\) 872.961 0.0421636
\(755\) 16715.9 0.805765
\(756\) −539.239 −0.0259417
\(757\) 16302.4 0.782720 0.391360 0.920238i \(-0.372005\pi\)
0.391360 + 0.920238i \(0.372005\pi\)
\(758\) −6587.57 −0.315661
\(759\) 242.835 0.0116131
\(760\) 4524.60 0.215953
\(761\) −19843.3 −0.945227 −0.472613 0.881270i \(-0.656689\pi\)
−0.472613 + 0.881270i \(0.656689\pi\)
\(762\) −4020.67 −0.191146
\(763\) −2775.98 −0.131713
\(764\) 7578.55 0.358877
\(765\) −14755.7 −0.697376
\(766\) 24795.4 1.16957
\(767\) 8122.27 0.382371
\(768\) −234.438 −0.0110150
\(769\) 7233.85 0.339219 0.169609 0.985511i \(-0.445749\pi\)
0.169609 + 0.985511i \(0.445749\pi\)
\(770\) −1388.71 −0.0649943
\(771\) −6795.43 −0.317421
\(772\) 9841.84 0.458828
\(773\) −14721.8 −0.685003 −0.342502 0.939517i \(-0.611274\pi\)
−0.342502 + 0.939517i \(0.611274\pi\)
\(774\) 905.400 0.0420464
\(775\) 0 0
\(776\) −12003.1 −0.555267
\(777\) −844.319 −0.0389830
\(778\) −17840.8 −0.822137
\(779\) −27045.8 −1.24392
\(780\) −695.595 −0.0319311
\(781\) −48798.2 −2.23577
\(782\) −1192.91 −0.0545503
\(783\) −578.221 −0.0263907
\(784\) −5365.31 −0.244411
\(785\) 5555.37 0.252586
\(786\) 1926.63 0.0874307
\(787\) 18989.6 0.860108 0.430054 0.902803i \(-0.358495\pi\)
0.430054 + 0.902803i \(0.358495\pi\)
\(788\) −16959.7 −0.766705
\(789\) −4174.44 −0.188358
\(790\) −7357.88 −0.331369
\(791\) 3223.57 0.144901
\(792\) −10156.5 −0.455675
\(793\) −530.761 −0.0237678
\(794\) 26453.3 1.18236
\(795\) 865.107 0.0385939
\(796\) 10147.0 0.451824
\(797\) −1756.41 −0.0780618 −0.0390309 0.999238i \(-0.512427\pi\)
−0.0390309 + 0.999238i \(0.512427\pi\)
\(798\) 555.127 0.0246257
\(799\) 8911.47 0.394575
\(800\) 3145.61 0.139018
\(801\) 31691.8 1.39797
\(802\) −6520.04 −0.287071
\(803\) 22561.1 0.991488
\(804\) 2240.18 0.0982651
\(805\) −78.1843 −0.00342315
\(806\) 0 0
\(807\) 4480.94 0.195461
\(808\) 1407.48 0.0612810
\(809\) 31426.4 1.36575 0.682876 0.730534i \(-0.260729\pi\)
0.682876 + 0.730534i \(0.260729\pi\)
\(810\) −6838.98 −0.296663
\(811\) −40043.1 −1.73379 −0.866896 0.498489i \(-0.833888\pi\)
−0.866896 + 0.498489i \(0.833888\pi\)
\(812\) 131.555 0.00568554
\(813\) −6893.78 −0.297387
\(814\) −32315.0 −1.39145
\(815\) −4719.66 −0.202850
\(816\) −1599.39 −0.0686151
\(817\) −1894.03 −0.0811063
\(818\) 1365.83 0.0583805
\(819\) 2662.27 0.113587
\(820\) 5107.11 0.217497
\(821\) 25691.7 1.09214 0.546069 0.837740i \(-0.316124\pi\)
0.546069 + 0.837740i \(0.316124\pi\)
\(822\) −3204.53 −0.135974
\(823\) −15468.1 −0.655146 −0.327573 0.944826i \(-0.606231\pi\)
−0.327573 + 0.944826i \(0.606231\pi\)
\(824\) −7478.89 −0.316189
\(825\) −4368.54 −0.184355
\(826\) 1224.02 0.0515606
\(827\) 17847.9 0.750461 0.375231 0.926932i \(-0.377564\pi\)
0.375231 + 0.926932i \(0.377564\pi\)
\(828\) −571.809 −0.0239997
\(829\) −22101.4 −0.925950 −0.462975 0.886371i \(-0.653218\pi\)
−0.462975 + 0.886371i \(0.653218\pi\)
\(830\) 221.150 0.00924846
\(831\) 3997.55 0.166875
\(832\) 2351.99 0.0980056
\(833\) −36603.4 −1.52249
\(834\) 3271.73 0.135840
\(835\) 18171.2 0.753102
\(836\) 21246.6 0.878984
\(837\) 0 0
\(838\) −10958.5 −0.451736
\(839\) −17592.5 −0.723910 −0.361955 0.932196i \(-0.617891\pi\)
−0.361955 + 0.932196i \(0.617891\pi\)
\(840\) −104.826 −0.00430574
\(841\) −24247.9 −0.994216
\(842\) −27647.7 −1.13159
\(843\) −5398.79 −0.220574
\(844\) −5332.20 −0.217467
\(845\) −4373.73 −0.178060
\(846\) 4271.62 0.173595
\(847\) −2835.46 −0.115027
\(848\) −2925.16 −0.118456
\(849\) −4718.64 −0.190746
\(850\) 21460.1 0.865972
\(851\) −1819.33 −0.0732854
\(852\) −3683.49 −0.148116
\(853\) 3048.40 0.122362 0.0611812 0.998127i \(-0.480513\pi\)
0.0611812 + 0.998127i \(0.480513\pi\)
\(854\) −79.9852 −0.00320496
\(855\) 14796.2 0.591836
\(856\) −11195.0 −0.447007
\(857\) −12355.4 −0.492475 −0.246238 0.969210i \(-0.579194\pi\)
−0.246238 + 0.969210i \(0.579194\pi\)
\(858\) −3266.38 −0.129968
\(859\) −32228.4 −1.28012 −0.640058 0.768327i \(-0.721090\pi\)
−0.640058 + 0.768327i \(0.721090\pi\)
\(860\) 357.653 0.0141813
\(861\) 626.596 0.0248018
\(862\) 22114.5 0.873807
\(863\) −7764.22 −0.306254 −0.153127 0.988207i \(-0.548934\pi\)
−0.153127 + 0.988207i \(0.548934\pi\)
\(864\) −1557.88 −0.0613428
\(865\) −14983.5 −0.588963
\(866\) 5612.63 0.220237
\(867\) −6412.24 −0.251178
\(868\) 0 0
\(869\) −34551.2 −1.34876
\(870\) −112.403 −0.00438027
\(871\) −22474.5 −0.874306
\(872\) −8019.93 −0.311455
\(873\) −39252.3 −1.52175
\(874\) 1196.18 0.0462947
\(875\) 3195.06 0.123443
\(876\) 1703.01 0.0656841
\(877\) −33655.6 −1.29586 −0.647931 0.761699i \(-0.724365\pi\)
−0.647931 + 0.761699i \(0.724365\pi\)
\(878\) −25317.0 −0.973129
\(879\) −3519.89 −0.135066
\(880\) −4012.04 −0.153688
\(881\) 23192.1 0.886902 0.443451 0.896299i \(-0.353754\pi\)
0.443451 + 0.896299i \(0.353754\pi\)
\(882\) −17545.5 −0.669827
\(883\) 5748.29 0.219078 0.109539 0.993983i \(-0.465063\pi\)
0.109539 + 0.993983i \(0.465063\pi\)
\(884\) 16045.8 0.610498
\(885\) −1045.83 −0.0397235
\(886\) 13158.8 0.498962
\(887\) 13125.7 0.496862 0.248431 0.968650i \(-0.420085\pi\)
0.248431 + 0.968650i \(0.420085\pi\)
\(888\) −2439.27 −0.0921808
\(889\) 6078.79 0.229332
\(890\) 12519.0 0.471502
\(891\) −32114.6 −1.20749
\(892\) 24297.0 0.912022
\(893\) −8935.94 −0.334860
\(894\) −4556.77 −0.170471
\(895\) −16569.8 −0.618845
\(896\) 354.443 0.0132155
\(897\) −183.897 −0.00684520
\(898\) −37281.6 −1.38542
\(899\) 0 0
\(900\) 10286.7 0.380988
\(901\) −19956.1 −0.737885
\(902\) 23982.0 0.885269
\(903\) 43.8808 0.00161712
\(904\) 9313.03 0.342640
\(905\) −1722.76 −0.0632777
\(906\) 5925.09 0.217271
\(907\) −14616.4 −0.535092 −0.267546 0.963545i \(-0.586213\pi\)
−0.267546 + 0.963545i \(0.586213\pi\)
\(908\) 16998.8 0.621284
\(909\) 4602.71 0.167945
\(910\) 1051.66 0.0383100
\(911\) 21826.9 0.793805 0.396902 0.917861i \(-0.370085\pi\)
0.396902 + 0.917861i \(0.370085\pi\)
\(912\) 1603.78 0.0582309
\(913\) 1038.48 0.0376436
\(914\) −11701.4 −0.423466
\(915\) 68.3414 0.00246918
\(916\) 5582.02 0.201348
\(917\) −2912.84 −0.104897
\(918\) −10628.2 −0.382118
\(919\) 16021.5 0.575083 0.287541 0.957768i \(-0.407162\pi\)
0.287541 + 0.957768i \(0.407162\pi\)
\(920\) −225.877 −0.00809452
\(921\) −9476.07 −0.339030
\(922\) −28415.1 −1.01497
\(923\) 36954.5 1.31785
\(924\) −492.241 −0.0175255
\(925\) 32729.3 1.16339
\(926\) −16070.4 −0.570307
\(927\) −24457.2 −0.866538
\(928\) 380.066 0.0134443
\(929\) 18139.9 0.640636 0.320318 0.947310i \(-0.396210\pi\)
0.320318 + 0.947310i \(0.396210\pi\)
\(930\) 0 0
\(931\) 36704.0 1.29208
\(932\) −6490.21 −0.228105
\(933\) −3528.93 −0.123828
\(934\) −4747.95 −0.166336
\(935\) −27371.1 −0.957358
\(936\) 7691.41 0.268591
\(937\) −7809.38 −0.272275 −0.136137 0.990690i \(-0.543469\pi\)
−0.136137 + 0.990690i \(0.543469\pi\)
\(938\) −3386.89 −0.117896
\(939\) 32.3708 0.00112501
\(940\) 1687.39 0.0585495
\(941\) 30853.2 1.06885 0.534423 0.845217i \(-0.320529\pi\)
0.534423 + 0.845217i \(0.320529\pi\)
\(942\) 1969.15 0.0681087
\(943\) 1350.18 0.0466257
\(944\) 3536.24 0.121922
\(945\) −696.584 −0.0239787
\(946\) 1679.47 0.0577213
\(947\) 50075.1 1.71829 0.859146 0.511730i \(-0.170995\pi\)
0.859146 + 0.511730i \(0.170995\pi\)
\(948\) −2608.07 −0.0893524
\(949\) −17085.4 −0.584420
\(950\) −21519.0 −0.734916
\(951\) 395.853 0.0134978
\(952\) 2418.09 0.0823224
\(953\) −17737.3 −0.602905 −0.301453 0.953481i \(-0.597472\pi\)
−0.301453 + 0.953481i \(0.597472\pi\)
\(954\) −9565.76 −0.324636
\(955\) 9789.90 0.331721
\(956\) 3337.56 0.112912
\(957\) −527.825 −0.0178288
\(958\) 41220.0 1.39014
\(959\) 4844.88 0.163138
\(960\) −302.845 −0.0101815
\(961\) 0 0
\(962\) 24471.9 0.820171
\(963\) −36609.6 −1.22506
\(964\) −6330.45 −0.211504
\(965\) 12713.6 0.424109
\(966\) −27.7131 −0.000923039 0
\(967\) −27015.5 −0.898408 −0.449204 0.893429i \(-0.648292\pi\)
−0.449204 + 0.893429i \(0.648292\pi\)
\(968\) −8191.75 −0.271997
\(969\) 10941.4 0.362733
\(970\) −15505.5 −0.513251
\(971\) 6966.75 0.230251 0.115125 0.993351i \(-0.463273\pi\)
0.115125 + 0.993351i \(0.463273\pi\)
\(972\) −7681.99 −0.253498
\(973\) −4946.47 −0.162977
\(974\) 12675.0 0.416975
\(975\) 3308.26 0.108666
\(976\) −231.080 −0.00757859
\(977\) −27076.0 −0.886631 −0.443316 0.896366i \(-0.646198\pi\)
−0.443316 + 0.896366i \(0.646198\pi\)
\(978\) −1672.93 −0.0546976
\(979\) 58786.7 1.91913
\(980\) −6930.87 −0.225917
\(981\) −26226.5 −0.853566
\(982\) 13856.0 0.450269
\(983\) 34139.2 1.10770 0.553851 0.832616i \(-0.313158\pi\)
0.553851 + 0.832616i \(0.313158\pi\)
\(984\) 1810.26 0.0586473
\(985\) −21908.4 −0.708689
\(986\) 2592.90 0.0837473
\(987\) 207.027 0.00667654
\(988\) −16089.9 −0.518105
\(989\) 94.5542 0.00304009
\(990\) −13120.0 −0.421194
\(991\) 51547.9 1.65234 0.826172 0.563418i \(-0.190514\pi\)
0.826172 + 0.563418i \(0.190514\pi\)
\(992\) 0 0
\(993\) 9285.98 0.296759
\(994\) 5569.01 0.177705
\(995\) 13107.8 0.417634
\(996\) 78.3886 0.00249381
\(997\) 50209.2 1.59493 0.797463 0.603368i \(-0.206175\pi\)
0.797463 + 0.603368i \(0.206175\pi\)
\(998\) −23848.4 −0.756420
\(999\) −16209.4 −0.513355
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1922.4.a.x.1.15 32
31.30 odd 2 inner 1922.4.a.x.1.18 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1922.4.a.x.1.15 32 1.1 even 1 trivial
1922.4.a.x.1.18 yes 32 31.30 odd 2 inner