Properties

Label 1922.4.a.b
Level $1922$
Weight $4$
Character orbit 1922.a
Self dual yes
Analytic conductor $113.402$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1922,4,Mod(1,1922)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1922, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1922.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1922 = 2 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1922.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,2,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(113.401671031\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 62)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 2 q^{2} + 8 q^{3} + 4 q^{4} - 3 q^{5} + 16 q^{6} - 35 q^{7} + 8 q^{8} + 37 q^{9} - 6 q^{10} + 46 q^{11} + 32 q^{12} - 20 q^{13} - 70 q^{14} - 24 q^{15} + 16 q^{16} - 8 q^{17} + 74 q^{18} + 97 q^{19}+ \cdots + 1702 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 8.00000 4.00000 −3.00000 16.0000 −35.0000 8.00000 37.0000 −6.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(31\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1922.4.a.b 1
31.b odd 2 1 62.4.a.b 1
93.c even 2 1 558.4.a.b 1
124.d even 2 1 496.4.a.b 1
155.c odd 2 1 1550.4.a.c 1
248.b even 2 1 1984.4.a.a 1
248.g odd 2 1 1984.4.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
62.4.a.b 1 31.b odd 2 1
496.4.a.b 1 124.d even 2 1
558.4.a.b 1 93.c even 2 1
1550.4.a.c 1 155.c odd 2 1
1922.4.a.b 1 1.a even 1 1 trivial
1984.4.a.a 1 248.b even 2 1
1984.4.a.d 1 248.g odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 8 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1922))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 2 \) Copy content Toggle raw display
$3$ \( T - 8 \) Copy content Toggle raw display
$5$ \( T + 3 \) Copy content Toggle raw display
$7$ \( T + 35 \) Copy content Toggle raw display
$11$ \( T - 46 \) Copy content Toggle raw display
$13$ \( T + 20 \) Copy content Toggle raw display
$17$ \( T + 8 \) Copy content Toggle raw display
$19$ \( T - 97 \) Copy content Toggle raw display
$23$ \( T + 28 \) Copy content Toggle raw display
$29$ \( T - 206 \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T - 282 \) Copy content Toggle raw display
$41$ \( T - 367 \) Copy content Toggle raw display
$43$ \( T - 562 \) Copy content Toggle raw display
$47$ \( T + 148 \) Copy content Toggle raw display
$53$ \( T - 84 \) Copy content Toggle raw display
$59$ \( T + 301 \) Copy content Toggle raw display
$61$ \( T - 236 \) Copy content Toggle raw display
$67$ \( T - 60 \) Copy content Toggle raw display
$71$ \( T - 699 \) Copy content Toggle raw display
$73$ \( T - 814 \) Copy content Toggle raw display
$79$ \( T + 670 \) Copy content Toggle raw display
$83$ \( T - 650 \) Copy content Toggle raw display
$89$ \( T + 1566 \) Copy content Toggle raw display
$97$ \( T + 615 \) Copy content Toggle raw display
show more
show less