Properties

Label 2-1922-1.1-c3-0-104
Degree $2$
Conductor $1922$
Sign $1$
Analytic cond. $113.401$
Root an. cond. $10.6490$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 8·3-s + 4·4-s − 3·5-s + 16·6-s − 35·7-s + 8·8-s + 37·9-s − 6·10-s + 46·11-s + 32·12-s − 20·13-s − 70·14-s − 24·15-s + 16·16-s − 8·17-s + 74·18-s + 97·19-s − 12·20-s − 280·21-s + 92·22-s − 28·23-s + 64·24-s − 116·25-s − 40·26-s + 80·27-s − 140·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.53·3-s + 1/2·4-s − 0.268·5-s + 1.08·6-s − 1.88·7-s + 0.353·8-s + 1.37·9-s − 0.189·10-s + 1.26·11-s + 0.769·12-s − 0.426·13-s − 1.33·14-s − 0.413·15-s + 1/4·16-s − 0.114·17-s + 0.968·18-s + 1.17·19-s − 0.134·20-s − 2.90·21-s + 0.891·22-s − 0.253·23-s + 0.544·24-s − 0.927·25-s − 0.301·26-s + 0.570·27-s − 0.944·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1922 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1922 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1922\)    =    \(2 \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(113.401\)
Root analytic conductor: \(10.6490\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1922,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.456590337\)
\(L(\frac12)\) \(\approx\) \(5.456590337\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p T \)
31 \( 1 \)
good3 \( 1 - 8 T + p^{3} T^{2} \)
5 \( 1 + 3 T + p^{3} T^{2} \)
7 \( 1 + 5 p T + p^{3} T^{2} \)
11 \( 1 - 46 T + p^{3} T^{2} \)
13 \( 1 + 20 T + p^{3} T^{2} \)
17 \( 1 + 8 T + p^{3} T^{2} \)
19 \( 1 - 97 T + p^{3} T^{2} \)
23 \( 1 + 28 T + p^{3} T^{2} \)
29 \( 1 - 206 T + p^{3} T^{2} \)
37 \( 1 - 282 T + p^{3} T^{2} \)
41 \( 1 - 367 T + p^{3} T^{2} \)
43 \( 1 - 562 T + p^{3} T^{2} \)
47 \( 1 + 148 T + p^{3} T^{2} \)
53 \( 1 - 84 T + p^{3} T^{2} \)
59 \( 1 + 301 T + p^{3} T^{2} \)
61 \( 1 - 236 T + p^{3} T^{2} \)
67 \( 1 - 60 T + p^{3} T^{2} \)
71 \( 1 - 699 T + p^{3} T^{2} \)
73 \( 1 - 814 T + p^{3} T^{2} \)
79 \( 1 + 670 T + p^{3} T^{2} \)
83 \( 1 - 650 T + p^{3} T^{2} \)
89 \( 1 + 1566 T + p^{3} T^{2} \)
97 \( 1 + 615 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.034834947508519839063630203995, −7.948230129233789304935582477063, −7.26940299258945945091082117802, −6.52443270865379911678196139565, −5.80465818765950829276294731975, −4.25485496914090638317713521136, −3.78195707837039850144605993236, −2.99690071163460346807815726605, −2.41628020855094404640111324252, −0.907747399641993119843953839689, 0.907747399641993119843953839689, 2.41628020855094404640111324252, 2.99690071163460346807815726605, 3.78195707837039850144605993236, 4.25485496914090638317713521136, 5.80465818765950829276294731975, 6.52443270865379911678196139565, 7.26940299258945945091082117802, 7.948230129233789304935582477063, 9.034834947508519839063630203995

Graph of the $Z$-function along the critical line