Properties

Label 1922.2.a.m.1.3
Level $1922$
Weight $2$
Character 1922.1
Self dual yes
Analytic conductor $15.347$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1922,2,Mod(1,1922)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1922.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1922, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1922 = 2 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1922.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,6,4,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.3472472685\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{15})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} + 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 62)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.82709\) of defining polynomial
Character \(\chi\) \(=\) 1922.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +2.61803 q^{3} +1.00000 q^{4} -0.338261 q^{5} -2.61803 q^{6} +3.37441 q^{7} -1.00000 q^{8} +3.85410 q^{9} +0.338261 q^{10} -3.95630 q^{11} +2.61803 q^{12} +5.65418 q^{13} -3.37441 q^{14} -0.885579 q^{15} +1.00000 q^{16} +6.25085 q^{17} -3.85410 q^{18} +0.963852 q^{19} -0.338261 q^{20} +8.83432 q^{21} +3.95630 q^{22} +0.812307 q^{23} -2.61803 q^{24} -4.88558 q^{25} -5.65418 q^{26} +2.23607 q^{27} +3.37441 q^{28} -4.65983 q^{29} +0.885579 q^{30} -1.00000 q^{32} -10.3577 q^{33} -6.25085 q^{34} -1.14143 q^{35} +3.85410 q^{36} -1.98331 q^{37} -0.963852 q^{38} +14.8028 q^{39} +0.338261 q^{40} +6.92015 q^{41} -8.83432 q^{42} +8.12920 q^{43} -3.95630 q^{44} -1.30369 q^{45} -0.812307 q^{46} -1.49797 q^{47} +2.61803 q^{48} +4.38664 q^{49} +4.88558 q^{50} +16.3649 q^{51} +5.65418 q^{52} -8.89183 q^{53} -2.23607 q^{54} +1.33826 q^{55} -3.37441 q^{56} +2.52340 q^{57} +4.65983 q^{58} -7.81604 q^{59} -0.885579 q^{60} -7.56231 q^{61} +13.0053 q^{63} +1.00000 q^{64} -1.91259 q^{65} +10.3577 q^{66} +0.576239 q^{67} +6.25085 q^{68} +2.12665 q^{69} +1.14143 q^{70} +7.49159 q^{71} -3.85410 q^{72} +11.0342 q^{73} +1.98331 q^{74} -12.7906 q^{75} +0.963852 q^{76} -13.3502 q^{77} -14.8028 q^{78} +14.5363 q^{79} -0.338261 q^{80} -5.70820 q^{81} -6.92015 q^{82} -1.59102 q^{83} +8.83432 q^{84} -2.11442 q^{85} -8.12920 q^{86} -12.1996 q^{87} +3.95630 q^{88} +7.44224 q^{89} +1.30369 q^{90} +19.0795 q^{91} +0.812307 q^{92} +1.49797 q^{94} -0.326034 q^{95} -2.61803 q^{96} +0.0742058 q^{97} -4.38664 q^{98} -15.2480 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 6 q^{3} + 4 q^{4} + 3 q^{5} - 6 q^{6} + q^{7} - 4 q^{8} + 2 q^{9} - 3 q^{10} - 7 q^{11} + 6 q^{12} + 10 q^{13} - q^{14} + 7 q^{15} + 4 q^{16} + 3 q^{17} - 2 q^{18} + 12 q^{19} + 3 q^{20}+ \cdots - 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 2.61803 1.51152 0.755761 0.654847i \(-0.227267\pi\)
0.755761 + 0.654847i \(0.227267\pi\)
\(4\) 1.00000 0.500000
\(5\) −0.338261 −0.151275 −0.0756375 0.997135i \(-0.524099\pi\)
−0.0756375 + 0.997135i \(0.524099\pi\)
\(6\) −2.61803 −1.06881
\(7\) 3.37441 1.27541 0.637703 0.770282i \(-0.279885\pi\)
0.637703 + 0.770282i \(0.279885\pi\)
\(8\) −1.00000 −0.353553
\(9\) 3.85410 1.28470
\(10\) 0.338261 0.106968
\(11\) −3.95630 −1.19287 −0.596434 0.802662i \(-0.703416\pi\)
−0.596434 + 0.802662i \(0.703416\pi\)
\(12\) 2.61803 0.755761
\(13\) 5.65418 1.56819 0.784094 0.620642i \(-0.213128\pi\)
0.784094 + 0.620642i \(0.213128\pi\)
\(14\) −3.37441 −0.901849
\(15\) −0.885579 −0.228656
\(16\) 1.00000 0.250000
\(17\) 6.25085 1.51605 0.758027 0.652223i \(-0.226163\pi\)
0.758027 + 0.652223i \(0.226163\pi\)
\(18\) −3.85410 −0.908421
\(19\) 0.963852 0.221123 0.110561 0.993869i \(-0.464735\pi\)
0.110561 + 0.993869i \(0.464735\pi\)
\(20\) −0.338261 −0.0756375
\(21\) 8.83432 1.92781
\(22\) 3.95630 0.843485
\(23\) 0.812307 0.169378 0.0846889 0.996407i \(-0.473010\pi\)
0.0846889 + 0.996407i \(0.473010\pi\)
\(24\) −2.61803 −0.534404
\(25\) −4.88558 −0.977116
\(26\) −5.65418 −1.10888
\(27\) 2.23607 0.430331
\(28\) 3.37441 0.637703
\(29\) −4.65983 −0.865308 −0.432654 0.901560i \(-0.642423\pi\)
−0.432654 + 0.901560i \(0.642423\pi\)
\(30\) 0.885579 0.161684
\(31\) 0 0
\(32\) −1.00000 −0.176777
\(33\) −10.3577 −1.80305
\(34\) −6.25085 −1.07201
\(35\) −1.14143 −0.192937
\(36\) 3.85410 0.642350
\(37\) −1.98331 −0.326054 −0.163027 0.986622i \(-0.552126\pi\)
−0.163027 + 0.986622i \(0.552126\pi\)
\(38\) −0.963852 −0.156357
\(39\) 14.8028 2.37035
\(40\) 0.338261 0.0534838
\(41\) 6.92015 1.08075 0.540373 0.841426i \(-0.318283\pi\)
0.540373 + 0.841426i \(0.318283\pi\)
\(42\) −8.83432 −1.36316
\(43\) 8.12920 1.23969 0.619846 0.784723i \(-0.287195\pi\)
0.619846 + 0.784723i \(0.287195\pi\)
\(44\) −3.95630 −0.596434
\(45\) −1.30369 −0.194343
\(46\) −0.812307 −0.119768
\(47\) −1.49797 −0.218501 −0.109250 0.994014i \(-0.534845\pi\)
−0.109250 + 0.994014i \(0.534845\pi\)
\(48\) 2.61803 0.377881
\(49\) 4.38664 0.626662
\(50\) 4.88558 0.690925
\(51\) 16.3649 2.29155
\(52\) 5.65418 0.784094
\(53\) −8.89183 −1.22139 −0.610693 0.791867i \(-0.709109\pi\)
−0.610693 + 0.791867i \(0.709109\pi\)
\(54\) −2.23607 −0.304290
\(55\) 1.33826 0.180451
\(56\) −3.37441 −0.450924
\(57\) 2.52340 0.334232
\(58\) 4.65983 0.611865
\(59\) −7.81604 −1.01756 −0.508781 0.860896i \(-0.669904\pi\)
−0.508781 + 0.860896i \(0.669904\pi\)
\(60\) −0.885579 −0.114328
\(61\) −7.56231 −0.968254 −0.484127 0.874998i \(-0.660863\pi\)
−0.484127 + 0.874998i \(0.660863\pi\)
\(62\) 0 0
\(63\) 13.0053 1.63852
\(64\) 1.00000 0.125000
\(65\) −1.91259 −0.237228
\(66\) 10.3577 1.27495
\(67\) 0.576239 0.0703988 0.0351994 0.999380i \(-0.488793\pi\)
0.0351994 + 0.999380i \(0.488793\pi\)
\(68\) 6.25085 0.758027
\(69\) 2.12665 0.256018
\(70\) 1.14143 0.136427
\(71\) 7.49159 0.889088 0.444544 0.895757i \(-0.353366\pi\)
0.444544 + 0.895757i \(0.353366\pi\)
\(72\) −3.85410 −0.454210
\(73\) 11.0342 1.29146 0.645730 0.763566i \(-0.276553\pi\)
0.645730 + 0.763566i \(0.276553\pi\)
\(74\) 1.98331 0.230555
\(75\) −12.7906 −1.47693
\(76\) 0.963852 0.110561
\(77\) −13.3502 −1.52139
\(78\) −14.8028 −1.67609
\(79\) 14.5363 1.63546 0.817729 0.575603i \(-0.195233\pi\)
0.817729 + 0.575603i \(0.195233\pi\)
\(80\) −0.338261 −0.0378188
\(81\) −5.70820 −0.634245
\(82\) −6.92015 −0.764202
\(83\) −1.59102 −0.174637 −0.0873187 0.996180i \(-0.527830\pi\)
−0.0873187 + 0.996180i \(0.527830\pi\)
\(84\) 8.83432 0.963903
\(85\) −2.11442 −0.229341
\(86\) −8.12920 −0.876595
\(87\) −12.1996 −1.30793
\(88\) 3.95630 0.421742
\(89\) 7.44224 0.788876 0.394438 0.918923i \(-0.370939\pi\)
0.394438 + 0.918923i \(0.370939\pi\)
\(90\) 1.30369 0.137421
\(91\) 19.0795 2.00008
\(92\) 0.812307 0.0846889
\(93\) 0 0
\(94\) 1.49797 0.154503
\(95\) −0.326034 −0.0334504
\(96\) −2.61803 −0.267202
\(97\) 0.0742058 0.00753446 0.00376723 0.999993i \(-0.498801\pi\)
0.00376723 + 0.999993i \(0.498801\pi\)
\(98\) −4.38664 −0.443117
\(99\) −15.2480 −1.53248
\(100\) −4.88558 −0.488558
\(101\) 5.15780 0.513220 0.256610 0.966515i \(-0.417394\pi\)
0.256610 + 0.966515i \(0.417394\pi\)
\(102\) −16.3649 −1.62037
\(103\) −3.92831 −0.387068 −0.193534 0.981094i \(-0.561995\pi\)
−0.193534 + 0.981094i \(0.561995\pi\)
\(104\) −5.65418 −0.554438
\(105\) −2.98831 −0.291629
\(106\) 8.89183 0.863651
\(107\) 0.583466 0.0564058 0.0282029 0.999602i \(-0.491022\pi\)
0.0282029 + 0.999602i \(0.491022\pi\)
\(108\) 2.23607 0.215166
\(109\) −3.86068 −0.369786 −0.184893 0.982759i \(-0.559194\pi\)
−0.184893 + 0.982759i \(0.559194\pi\)
\(110\) −1.33826 −0.127598
\(111\) −5.19236 −0.492837
\(112\) 3.37441 0.318852
\(113\) −16.7051 −1.57148 −0.785742 0.618554i \(-0.787719\pi\)
−0.785742 + 0.618554i \(0.787719\pi\)
\(114\) −2.52340 −0.236338
\(115\) −0.274772 −0.0256226
\(116\) −4.65983 −0.432654
\(117\) 21.7918 2.01465
\(118\) 7.81604 0.719525
\(119\) 21.0929 1.93359
\(120\) 0.885579 0.0808420
\(121\) 4.65227 0.422934
\(122\) 7.56231 0.684659
\(123\) 18.1172 1.63357
\(124\) 0 0
\(125\) 3.34391 0.299088
\(126\) −13.0053 −1.15861
\(127\) −6.72766 −0.596983 −0.298492 0.954412i \(-0.596483\pi\)
−0.298492 + 0.954412i \(0.596483\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 21.2825 1.87382
\(130\) 1.91259 0.167745
\(131\) −7.25394 −0.633780 −0.316890 0.948462i \(-0.602639\pi\)
−0.316890 + 0.948462i \(0.602639\pi\)
\(132\) −10.3577 −0.901523
\(133\) 3.25243 0.282022
\(134\) −0.576239 −0.0497795
\(135\) −0.756375 −0.0650984
\(136\) −6.25085 −0.536006
\(137\) −1.24074 −0.106003 −0.0530017 0.998594i \(-0.516879\pi\)
−0.0530017 + 0.998594i \(0.516879\pi\)
\(138\) −2.12665 −0.181032
\(139\) 18.6492 1.58180 0.790901 0.611944i \(-0.209612\pi\)
0.790901 + 0.611944i \(0.209612\pi\)
\(140\) −1.14143 −0.0964686
\(141\) −3.92173 −0.330269
\(142\) −7.49159 −0.628680
\(143\) −22.3696 −1.87064
\(144\) 3.85410 0.321175
\(145\) 1.57624 0.130900
\(146\) −11.0342 −0.913200
\(147\) 11.4844 0.947214
\(148\) −1.98331 −0.163027
\(149\) −6.82730 −0.559314 −0.279657 0.960100i \(-0.590221\pi\)
−0.279657 + 0.960100i \(0.590221\pi\)
\(150\) 12.7906 1.04435
\(151\) −0.465555 −0.0378864 −0.0189432 0.999821i \(-0.506030\pi\)
−0.0189432 + 0.999821i \(0.506030\pi\)
\(152\) −0.963852 −0.0781787
\(153\) 24.0914 1.94768
\(154\) 13.3502 1.07579
\(155\) 0 0
\(156\) 14.8028 1.18518
\(157\) −2.93237 −0.234029 −0.117014 0.993130i \(-0.537332\pi\)
−0.117014 + 0.993130i \(0.537332\pi\)
\(158\) −14.5363 −1.15644
\(159\) −23.2791 −1.84615
\(160\) 0.338261 0.0267419
\(161\) 2.74106 0.216026
\(162\) 5.70820 0.448479
\(163\) −3.11600 −0.244064 −0.122032 0.992526i \(-0.538941\pi\)
−0.122032 + 0.992526i \(0.538941\pi\)
\(164\) 6.92015 0.540373
\(165\) 3.50361 0.272756
\(166\) 1.59102 0.123487
\(167\) −6.41523 −0.496425 −0.248213 0.968706i \(-0.579843\pi\)
−0.248213 + 0.968706i \(0.579843\pi\)
\(168\) −8.83432 −0.681582
\(169\) 18.9698 1.45921
\(170\) 2.11442 0.162169
\(171\) 3.71478 0.284077
\(172\) 8.12920 0.619846
\(173\) 14.3426 1.09045 0.545224 0.838290i \(-0.316445\pi\)
0.545224 + 0.838290i \(0.316445\pi\)
\(174\) 12.1996 0.924849
\(175\) −16.4859 −1.24622
\(176\) −3.95630 −0.298217
\(177\) −20.4627 −1.53807
\(178\) −7.44224 −0.557819
\(179\) −19.1215 −1.42921 −0.714605 0.699528i \(-0.753393\pi\)
−0.714605 + 0.699528i \(0.753393\pi\)
\(180\) −1.30369 −0.0971716
\(181\) −6.20557 −0.461256 −0.230628 0.973042i \(-0.574078\pi\)
−0.230628 + 0.973042i \(0.574078\pi\)
\(182\) −19.0795 −1.41427
\(183\) −19.7984 −1.46354
\(184\) −0.812307 −0.0598841
\(185\) 0.670876 0.0493238
\(186\) 0 0
\(187\) −24.7302 −1.80845
\(188\) −1.49797 −0.109250
\(189\) 7.54541 0.548848
\(190\) 0.326034 0.0236530
\(191\) −13.7173 −0.992552 −0.496276 0.868165i \(-0.665300\pi\)
−0.496276 + 0.868165i \(0.665300\pi\)
\(192\) 2.61803 0.188940
\(193\) −15.0823 −1.08565 −0.542823 0.839847i \(-0.682645\pi\)
−0.542823 + 0.839847i \(0.682645\pi\)
\(194\) −0.0742058 −0.00532767
\(195\) −5.00723 −0.358575
\(196\) 4.38664 0.313331
\(197\) 6.69440 0.476956 0.238478 0.971148i \(-0.423352\pi\)
0.238478 + 0.971148i \(0.423352\pi\)
\(198\) 15.2480 1.08363
\(199\) 21.3309 1.51211 0.756054 0.654509i \(-0.227125\pi\)
0.756054 + 0.654509i \(0.227125\pi\)
\(200\) 4.88558 0.345463
\(201\) 1.50861 0.106409
\(202\) −5.15780 −0.362901
\(203\) −15.7242 −1.10362
\(204\) 16.3649 1.14578
\(205\) −2.34082 −0.163490
\(206\) 3.92831 0.273698
\(207\) 3.13072 0.217600
\(208\) 5.65418 0.392047
\(209\) −3.81328 −0.263770
\(210\) 2.98831 0.206213
\(211\) −17.5708 −1.20963 −0.604813 0.796367i \(-0.706752\pi\)
−0.604813 + 0.796367i \(0.706752\pi\)
\(212\) −8.89183 −0.610693
\(213\) 19.6132 1.34388
\(214\) −0.583466 −0.0398849
\(215\) −2.74979 −0.187534
\(216\) −2.23607 −0.152145
\(217\) 0 0
\(218\) 3.86068 0.261478
\(219\) 28.8880 1.95207
\(220\) 1.33826 0.0902256
\(221\) 35.3435 2.37746
\(222\) 5.19236 0.348489
\(223\) 7.27819 0.487384 0.243692 0.969853i \(-0.421641\pi\)
0.243692 + 0.969853i \(0.421641\pi\)
\(224\) −3.37441 −0.225462
\(225\) −18.8295 −1.25530
\(226\) 16.7051 1.11121
\(227\) −0.167305 −0.0111044 −0.00555221 0.999985i \(-0.501767\pi\)
−0.00555221 + 0.999985i \(0.501767\pi\)
\(228\) 2.52340 0.167116
\(229\) 0.754795 0.0498783 0.0249391 0.999689i \(-0.492061\pi\)
0.0249391 + 0.999689i \(0.492061\pi\)
\(230\) 0.274772 0.0181179
\(231\) −34.9512 −2.29962
\(232\) 4.65983 0.305933
\(233\) 6.96352 0.456195 0.228098 0.973638i \(-0.426749\pi\)
0.228098 + 0.973638i \(0.426749\pi\)
\(234\) −21.7918 −1.42457
\(235\) 0.506704 0.0330537
\(236\) −7.81604 −0.508781
\(237\) 38.0565 2.47203
\(238\) −21.0929 −1.36725
\(239\) 18.3076 1.18422 0.592111 0.805856i \(-0.298295\pi\)
0.592111 + 0.805856i \(0.298295\pi\)
\(240\) −0.885579 −0.0571639
\(241\) 9.86133 0.635224 0.317612 0.948221i \(-0.397119\pi\)
0.317612 + 0.948221i \(0.397119\pi\)
\(242\) −4.65227 −0.299059
\(243\) −21.6525 −1.38901
\(244\) −7.56231 −0.484127
\(245\) −1.48383 −0.0947984
\(246\) −18.1172 −1.15511
\(247\) 5.44980 0.346762
\(248\) 0 0
\(249\) −4.16535 −0.263968
\(250\) −3.34391 −0.211487
\(251\) 8.55861 0.540215 0.270107 0.962830i \(-0.412941\pi\)
0.270107 + 0.962830i \(0.412941\pi\)
\(252\) 13.0053 0.819258
\(253\) −3.21373 −0.202045
\(254\) 6.72766 0.422131
\(255\) −5.53563 −0.346654
\(256\) 1.00000 0.0625000
\(257\) −25.9439 −1.61834 −0.809169 0.587576i \(-0.800082\pi\)
−0.809169 + 0.587576i \(0.800082\pi\)
\(258\) −21.2825 −1.32499
\(259\) −6.69249 −0.415851
\(260\) −1.91259 −0.118614
\(261\) −17.9595 −1.11166
\(262\) 7.25394 0.448150
\(263\) −0.742168 −0.0457641 −0.0228820 0.999738i \(-0.507284\pi\)
−0.0228820 + 0.999738i \(0.507284\pi\)
\(264\) 10.3577 0.637473
\(265\) 3.00776 0.184765
\(266\) −3.25243 −0.199419
\(267\) 19.4840 1.19240
\(268\) 0.576239 0.0351994
\(269\) 18.3092 1.11633 0.558166 0.829729i \(-0.311505\pi\)
0.558166 + 0.829729i \(0.311505\pi\)
\(270\) 0.756375 0.0460315
\(271\) 12.0610 0.732656 0.366328 0.930486i \(-0.380615\pi\)
0.366328 + 0.930486i \(0.380615\pi\)
\(272\) 6.25085 0.379014
\(273\) 49.9508 3.02316
\(274\) 1.24074 0.0749557
\(275\) 19.3288 1.16557
\(276\) 2.12665 0.128009
\(277\) −19.7054 −1.18398 −0.591991 0.805945i \(-0.701658\pi\)
−0.591991 + 0.805945i \(0.701658\pi\)
\(278\) −18.6492 −1.11850
\(279\) 0 0
\(280\) 1.14143 0.0682136
\(281\) 26.5451 1.58355 0.791773 0.610815i \(-0.209158\pi\)
0.791773 + 0.610815i \(0.209158\pi\)
\(282\) 3.92173 0.233535
\(283\) −28.0603 −1.66801 −0.834005 0.551757i \(-0.813958\pi\)
−0.834005 + 0.551757i \(0.813958\pi\)
\(284\) 7.49159 0.444544
\(285\) −0.853568 −0.0505610
\(286\) 22.3696 1.32274
\(287\) 23.3514 1.37839
\(288\) −3.85410 −0.227105
\(289\) 22.0731 1.29842
\(290\) −1.57624 −0.0925600
\(291\) 0.194273 0.0113885
\(292\) 11.0342 0.645730
\(293\) −19.2933 −1.12713 −0.563563 0.826073i \(-0.690570\pi\)
−0.563563 + 0.826073i \(0.690570\pi\)
\(294\) −11.4844 −0.669782
\(295\) 2.64386 0.153932
\(296\) 1.98331 0.115277
\(297\) −8.84655 −0.513329
\(298\) 6.82730 0.395495
\(299\) 4.59293 0.265616
\(300\) −12.7906 −0.738466
\(301\) 27.4313 1.58111
\(302\) 0.465555 0.0267897
\(303\) 13.5033 0.775743
\(304\) 0.963852 0.0552807
\(305\) 2.55803 0.146473
\(306\) −24.0914 −1.37721
\(307\) 13.2244 0.754757 0.377379 0.926059i \(-0.376826\pi\)
0.377379 + 0.926059i \(0.376826\pi\)
\(308\) −13.3502 −0.760696
\(309\) −10.2844 −0.585062
\(310\) 0 0
\(311\) −33.7062 −1.91130 −0.955651 0.294502i \(-0.904846\pi\)
−0.955651 + 0.294502i \(0.904846\pi\)
\(312\) −14.8028 −0.838046
\(313\) 21.9907 1.24299 0.621495 0.783418i \(-0.286526\pi\)
0.621495 + 0.783418i \(0.286526\pi\)
\(314\) 2.93237 0.165483
\(315\) −4.39919 −0.247867
\(316\) 14.5363 0.817729
\(317\) 25.0361 1.40617 0.703083 0.711108i \(-0.251806\pi\)
0.703083 + 0.711108i \(0.251806\pi\)
\(318\) 23.2791 1.30543
\(319\) 18.4357 1.03220
\(320\) −0.338261 −0.0189094
\(321\) 1.52753 0.0852586
\(322\) −2.74106 −0.152753
\(323\) 6.02490 0.335234
\(324\) −5.70820 −0.317122
\(325\) −27.6240 −1.53230
\(326\) 3.11600 0.172579
\(327\) −10.1074 −0.558940
\(328\) −6.92015 −0.382101
\(329\) −5.05475 −0.278677
\(330\) −3.50361 −0.192868
\(331\) −6.88992 −0.378704 −0.189352 0.981909i \(-0.560639\pi\)
−0.189352 + 0.981909i \(0.560639\pi\)
\(332\) −1.59102 −0.0873187
\(333\) −7.64386 −0.418881
\(334\) 6.41523 0.351026
\(335\) −0.194919 −0.0106496
\(336\) 8.83432 0.481952
\(337\) −29.2082 −1.59107 −0.795536 0.605906i \(-0.792811\pi\)
−0.795536 + 0.605906i \(0.792811\pi\)
\(338\) −18.9698 −1.03182
\(339\) −43.7346 −2.37533
\(340\) −2.11442 −0.114671
\(341\) 0 0
\(342\) −3.71478 −0.200873
\(343\) −8.81856 −0.476157
\(344\) −8.12920 −0.438297
\(345\) −0.719363 −0.0387292
\(346\) −14.3426 −0.771063
\(347\) 13.7867 0.740112 0.370056 0.929010i \(-0.379339\pi\)
0.370056 + 0.929010i \(0.379339\pi\)
\(348\) −12.1996 −0.653967
\(349\) −33.9615 −1.81792 −0.908958 0.416887i \(-0.863121\pi\)
−0.908958 + 0.416887i \(0.863121\pi\)
\(350\) 16.4859 0.881211
\(351\) 12.6431 0.674841
\(352\) 3.95630 0.210871
\(353\) −1.41784 −0.0754640 −0.0377320 0.999288i \(-0.512013\pi\)
−0.0377320 + 0.999288i \(0.512013\pi\)
\(354\) 20.4627 1.08758
\(355\) −2.53411 −0.134497
\(356\) 7.44224 0.394438
\(357\) 55.2220 2.92266
\(358\) 19.1215 1.01060
\(359\) 2.54534 0.134338 0.0671689 0.997742i \(-0.478603\pi\)
0.0671689 + 0.997742i \(0.478603\pi\)
\(360\) 1.30369 0.0687107
\(361\) −18.0710 −0.951105
\(362\) 6.20557 0.326157
\(363\) 12.1798 0.639274
\(364\) 19.0795 1.00004
\(365\) −3.73245 −0.195366
\(366\) 19.7984 1.03488
\(367\) 9.53372 0.497656 0.248828 0.968548i \(-0.419955\pi\)
0.248828 + 0.968548i \(0.419955\pi\)
\(368\) 0.812307 0.0423444
\(369\) 26.6710 1.38843
\(370\) −0.670876 −0.0348772
\(371\) −30.0047 −1.55776
\(372\) 0 0
\(373\) −22.2606 −1.15261 −0.576306 0.817234i \(-0.695506\pi\)
−0.576306 + 0.817234i \(0.695506\pi\)
\(374\) 24.7302 1.27877
\(375\) 8.75446 0.452079
\(376\) 1.49797 0.0772517
\(377\) −26.3475 −1.35697
\(378\) −7.54541 −0.388094
\(379\) 3.78318 0.194329 0.0971645 0.995268i \(-0.469023\pi\)
0.0971645 + 0.995268i \(0.469023\pi\)
\(380\) −0.326034 −0.0167252
\(381\) −17.6132 −0.902353
\(382\) 13.7173 0.701840
\(383\) −17.1405 −0.875839 −0.437919 0.899014i \(-0.644284\pi\)
−0.437919 + 0.899014i \(0.644284\pi\)
\(384\) −2.61803 −0.133601
\(385\) 4.51584 0.230149
\(386\) 15.0823 0.767668
\(387\) 31.3308 1.59263
\(388\) 0.0742058 0.00376723
\(389\) −7.20536 −0.365326 −0.182663 0.983176i \(-0.558472\pi\)
−0.182663 + 0.983176i \(0.558472\pi\)
\(390\) 5.00723 0.253551
\(391\) 5.07761 0.256786
\(392\) −4.38664 −0.221559
\(393\) −18.9911 −0.957973
\(394\) −6.69440 −0.337259
\(395\) −4.91706 −0.247404
\(396\) −15.2480 −0.766239
\(397\) 14.6418 0.734852 0.367426 0.930053i \(-0.380239\pi\)
0.367426 + 0.930053i \(0.380239\pi\)
\(398\) −21.3309 −1.06922
\(399\) 8.51498 0.426282
\(400\) −4.88558 −0.244279
\(401\) 24.9065 1.24377 0.621886 0.783107i \(-0.286367\pi\)
0.621886 + 0.783107i \(0.286367\pi\)
\(402\) −1.50861 −0.0752428
\(403\) 0 0
\(404\) 5.15780 0.256610
\(405\) 1.93086 0.0959454
\(406\) 15.7242 0.780377
\(407\) 7.84655 0.388939
\(408\) −16.3649 −0.810185
\(409\) −34.2296 −1.69254 −0.846271 0.532752i \(-0.821158\pi\)
−0.846271 + 0.532752i \(0.821158\pi\)
\(410\) 2.34082 0.115605
\(411\) −3.24830 −0.160227
\(412\) −3.92831 −0.193534
\(413\) −26.3745 −1.29781
\(414\) −3.13072 −0.153866
\(415\) 0.538181 0.0264183
\(416\) −5.65418 −0.277219
\(417\) 48.8242 2.39093
\(418\) 3.81328 0.186514
\(419\) −19.2606 −0.940944 −0.470472 0.882415i \(-0.655916\pi\)
−0.470472 + 0.882415i \(0.655916\pi\)
\(420\) −2.98831 −0.145814
\(421\) −25.1864 −1.22751 −0.613756 0.789496i \(-0.710342\pi\)
−0.613756 + 0.789496i \(0.710342\pi\)
\(422\) 17.5708 0.855335
\(423\) −5.77332 −0.280708
\(424\) 8.89183 0.431825
\(425\) −30.5390 −1.48136
\(426\) −19.6132 −0.950264
\(427\) −25.5183 −1.23492
\(428\) 0.583466 0.0282029
\(429\) −58.5644 −2.82752
\(430\) 2.74979 0.132607
\(431\) 26.0521 1.25489 0.627443 0.778662i \(-0.284102\pi\)
0.627443 + 0.778662i \(0.284102\pi\)
\(432\) 2.23607 0.107583
\(433\) 7.86224 0.377835 0.188917 0.981993i \(-0.439502\pi\)
0.188917 + 0.981993i \(0.439502\pi\)
\(434\) 0 0
\(435\) 4.12665 0.197858
\(436\) −3.86068 −0.184893
\(437\) 0.782944 0.0374533
\(438\) −28.8880 −1.38032
\(439\) 29.0718 1.38752 0.693762 0.720205i \(-0.255952\pi\)
0.693762 + 0.720205i \(0.255952\pi\)
\(440\) −1.33826 −0.0637991
\(441\) 16.9065 0.805074
\(442\) −35.3435 −1.68112
\(443\) 25.0906 1.19209 0.596045 0.802951i \(-0.296738\pi\)
0.596045 + 0.802951i \(0.296738\pi\)
\(444\) −5.19236 −0.246419
\(445\) −2.51742 −0.119337
\(446\) −7.27819 −0.344632
\(447\) −17.8741 −0.845415
\(448\) 3.37441 0.159426
\(449\) −26.5947 −1.25508 −0.627541 0.778583i \(-0.715939\pi\)
−0.627541 + 0.778583i \(0.715939\pi\)
\(450\) 18.8295 0.887632
\(451\) −27.3781 −1.28919
\(452\) −16.7051 −0.785742
\(453\) −1.21884 −0.0572661
\(454\) 0.167305 0.00785201
\(455\) −6.45386 −0.302562
\(456\) −2.52340 −0.118169
\(457\) −7.07421 −0.330917 −0.165459 0.986217i \(-0.552910\pi\)
−0.165459 + 0.986217i \(0.552910\pi\)
\(458\) −0.754795 −0.0352693
\(459\) 13.9773 0.652406
\(460\) −0.274772 −0.0128113
\(461\) −19.6259 −0.914068 −0.457034 0.889449i \(-0.651088\pi\)
−0.457034 + 0.889449i \(0.651088\pi\)
\(462\) 34.9512 1.62608
\(463\) −3.78773 −0.176031 −0.0880153 0.996119i \(-0.528052\pi\)
−0.0880153 + 0.996119i \(0.528052\pi\)
\(464\) −4.65983 −0.216327
\(465\) 0 0
\(466\) −6.96352 −0.322579
\(467\) 3.44631 0.159476 0.0797380 0.996816i \(-0.474592\pi\)
0.0797380 + 0.996816i \(0.474592\pi\)
\(468\) 21.7918 1.00733
\(469\) 1.94447 0.0897871
\(470\) −0.506704 −0.0233725
\(471\) −7.67706 −0.353740
\(472\) 7.81604 0.359763
\(473\) −32.1615 −1.47879
\(474\) −38.0565 −1.74799
\(475\) −4.70898 −0.216063
\(476\) 21.0929 0.966793
\(477\) −34.2700 −1.56912
\(478\) −18.3076 −0.837372
\(479\) −0.287330 −0.0131284 −0.00656422 0.999978i \(-0.502089\pi\)
−0.00656422 + 0.999978i \(0.502089\pi\)
\(480\) 0.885579 0.0404210
\(481\) −11.2140 −0.511313
\(482\) −9.86133 −0.449171
\(483\) 7.17618 0.326528
\(484\) 4.65227 0.211467
\(485\) −0.0251009 −0.00113978
\(486\) 21.6525 0.982176
\(487\) 13.1774 0.597124 0.298562 0.954390i \(-0.403493\pi\)
0.298562 + 0.954390i \(0.403493\pi\)
\(488\) 7.56231 0.342330
\(489\) −8.15780 −0.368908
\(490\) 1.48383 0.0670326
\(491\) −24.2416 −1.09401 −0.547004 0.837130i \(-0.684232\pi\)
−0.547004 + 0.837130i \(0.684232\pi\)
\(492\) 18.1172 0.816786
\(493\) −29.1279 −1.31185
\(494\) −5.44980 −0.245198
\(495\) 5.15780 0.231826
\(496\) 0 0
\(497\) 25.2797 1.13395
\(498\) 4.16535 0.186654
\(499\) 15.0653 0.674414 0.337207 0.941431i \(-0.390518\pi\)
0.337207 + 0.941431i \(0.390518\pi\)
\(500\) 3.34391 0.149544
\(501\) −16.7953 −0.750358
\(502\) −8.55861 −0.381990
\(503\) −17.1496 −0.764664 −0.382332 0.924025i \(-0.624879\pi\)
−0.382332 + 0.924025i \(0.624879\pi\)
\(504\) −13.0053 −0.579303
\(505\) −1.74468 −0.0776373
\(506\) 3.21373 0.142868
\(507\) 49.6635 2.20563
\(508\) −6.72766 −0.298492
\(509\) −0.591422 −0.0262143 −0.0131072 0.999914i \(-0.504172\pi\)
−0.0131072 + 0.999914i \(0.504172\pi\)
\(510\) 5.53563 0.245122
\(511\) 37.2340 1.64714
\(512\) −1.00000 −0.0441942
\(513\) 2.15524 0.0951561
\(514\) 25.9439 1.14434
\(515\) 1.32879 0.0585537
\(516\) 21.2825 0.936911
\(517\) 5.92640 0.260643
\(518\) 6.69249 0.294051
\(519\) 37.5494 1.64824
\(520\) 1.91259 0.0838726
\(521\) −31.1139 −1.36313 −0.681563 0.731760i \(-0.738699\pi\)
−0.681563 + 0.731760i \(0.738699\pi\)
\(522\) 17.9595 0.786064
\(523\) −42.2837 −1.84894 −0.924468 0.381261i \(-0.875490\pi\)
−0.924468 + 0.381261i \(0.875490\pi\)
\(524\) −7.25394 −0.316890
\(525\) −43.1608 −1.88369
\(526\) 0.742168 0.0323601
\(527\) 0 0
\(528\) −10.3577 −0.450762
\(529\) −22.3402 −0.971311
\(530\) −3.00776 −0.130649
\(531\) −30.1238 −1.30726
\(532\) 3.25243 0.141011
\(533\) 39.1278 1.69481
\(534\) −19.4840 −0.843157
\(535\) −0.197364 −0.00853279
\(536\) −0.576239 −0.0248897
\(537\) −50.0608 −2.16028
\(538\) −18.3092 −0.789366
\(539\) −17.3548 −0.747525
\(540\) −0.756375 −0.0325492
\(541\) 23.7211 1.01985 0.509924 0.860219i \(-0.329673\pi\)
0.509924 + 0.860219i \(0.329673\pi\)
\(542\) −12.0610 −0.518066
\(543\) −16.2464 −0.697199
\(544\) −6.25085 −0.268003
\(545\) 1.30592 0.0559394
\(546\) −49.9508 −2.13770
\(547\) −31.7143 −1.35601 −0.678003 0.735059i \(-0.737155\pi\)
−0.678003 + 0.735059i \(0.737155\pi\)
\(548\) −1.24074 −0.0530017
\(549\) −29.1459 −1.24392
\(550\) −19.3288 −0.824183
\(551\) −4.49139 −0.191339
\(552\) −2.12665 −0.0905162
\(553\) 49.0513 2.08587
\(554\) 19.7054 0.837202
\(555\) 1.75638 0.0745540
\(556\) 18.6492 0.790901
\(557\) −22.9754 −0.973500 −0.486750 0.873541i \(-0.661818\pi\)
−0.486750 + 0.873541i \(0.661818\pi\)
\(558\) 0 0
\(559\) 45.9640 1.94407
\(560\) −1.14143 −0.0482343
\(561\) −64.7445 −2.73352
\(562\) −26.5451 −1.11974
\(563\) −33.3755 −1.40661 −0.703304 0.710889i \(-0.748293\pi\)
−0.703304 + 0.710889i \(0.748293\pi\)
\(564\) −3.92173 −0.165135
\(565\) 5.65069 0.237726
\(566\) 28.0603 1.17946
\(567\) −19.2618 −0.808920
\(568\) −7.49159 −0.314340
\(569\) 25.3450 1.06252 0.531259 0.847209i \(-0.321719\pi\)
0.531259 + 0.847209i \(0.321719\pi\)
\(570\) 0.853568 0.0357520
\(571\) 15.4290 0.645685 0.322843 0.946453i \(-0.395362\pi\)
0.322843 + 0.946453i \(0.395362\pi\)
\(572\) −22.3696 −0.935320
\(573\) −35.9125 −1.50026
\(574\) −23.3514 −0.974669
\(575\) −3.96859 −0.165502
\(576\) 3.85410 0.160588
\(577\) −26.9408 −1.12156 −0.560780 0.827965i \(-0.689499\pi\)
−0.560780 + 0.827965i \(0.689499\pi\)
\(578\) −22.0731 −0.918122
\(579\) −39.4859 −1.64098
\(580\) 1.57624 0.0654498
\(581\) −5.36876 −0.222734
\(582\) −0.194273 −0.00805289
\(583\) 35.1787 1.45695
\(584\) −11.0342 −0.456600
\(585\) −7.37132 −0.304767
\(586\) 19.2933 0.796999
\(587\) −18.5271 −0.764695 −0.382347 0.924019i \(-0.624884\pi\)
−0.382347 + 0.924019i \(0.624884\pi\)
\(588\) 11.4844 0.473607
\(589\) 0 0
\(590\) −2.64386 −0.108846
\(591\) 17.5262 0.720930
\(592\) −1.98331 −0.0815134
\(593\) −25.2480 −1.03681 −0.518405 0.855135i \(-0.673474\pi\)
−0.518405 + 0.855135i \(0.673474\pi\)
\(594\) 8.84655 0.362978
\(595\) −7.13492 −0.292503
\(596\) −6.82730 −0.279657
\(597\) 55.8450 2.28559
\(598\) −4.59293 −0.187819
\(599\) −8.20183 −0.335118 −0.167559 0.985862i \(-0.553588\pi\)
−0.167559 + 0.985862i \(0.553588\pi\)
\(600\) 12.7906 0.522175
\(601\) −45.1625 −1.84221 −0.921107 0.389309i \(-0.872714\pi\)
−0.921107 + 0.389309i \(0.872714\pi\)
\(602\) −27.4313 −1.11801
\(603\) 2.22089 0.0904414
\(604\) −0.465555 −0.0189432
\(605\) −1.57368 −0.0639793
\(606\) −13.5033 −0.548533
\(607\) −8.01815 −0.325447 −0.162723 0.986672i \(-0.552028\pi\)
−0.162723 + 0.986672i \(0.552028\pi\)
\(608\) −0.963852 −0.0390894
\(609\) −41.1664 −1.66815
\(610\) −2.55803 −0.103572
\(611\) −8.46977 −0.342650
\(612\) 24.0914 0.973838
\(613\) −4.29415 −0.173439 −0.0867195 0.996233i \(-0.527638\pi\)
−0.0867195 + 0.996233i \(0.527638\pi\)
\(614\) −13.2244 −0.533694
\(615\) −6.12834 −0.247119
\(616\) 13.3502 0.537893
\(617\) 3.84154 0.154655 0.0773274 0.997006i \(-0.475361\pi\)
0.0773274 + 0.997006i \(0.475361\pi\)
\(618\) 10.2844 0.413701
\(619\) −20.6266 −0.829055 −0.414527 0.910037i \(-0.636053\pi\)
−0.414527 + 0.910037i \(0.636053\pi\)
\(620\) 0 0
\(621\) 1.81637 0.0728886
\(622\) 33.7062 1.35149
\(623\) 25.1132 1.00614
\(624\) 14.8028 0.592588
\(625\) 23.2968 0.931871
\(626\) −21.9907 −0.878927
\(627\) −9.98331 −0.398695
\(628\) −2.93237 −0.117014
\(629\) −12.3974 −0.494315
\(630\) 4.39919 0.175268
\(631\) 13.7117 0.545856 0.272928 0.962035i \(-0.412008\pi\)
0.272928 + 0.962035i \(0.412008\pi\)
\(632\) −14.5363 −0.578222
\(633\) −46.0011 −1.82838
\(634\) −25.0361 −0.994309
\(635\) 2.27571 0.0903086
\(636\) −23.2791 −0.923077
\(637\) 24.8028 0.982724
\(638\) −18.4357 −0.729875
\(639\) 28.8734 1.14221
\(640\) 0.338261 0.0133709
\(641\) −23.2940 −0.920059 −0.460029 0.887904i \(-0.652161\pi\)
−0.460029 + 0.887904i \(0.652161\pi\)
\(642\) −1.52753 −0.0602869
\(643\) −15.2632 −0.601920 −0.300960 0.953637i \(-0.597307\pi\)
−0.300960 + 0.953637i \(0.597307\pi\)
\(644\) 2.74106 0.108013
\(645\) −7.19906 −0.283463
\(646\) −6.02490 −0.237046
\(647\) 27.8967 1.09673 0.548366 0.836239i \(-0.315250\pi\)
0.548366 + 0.836239i \(0.315250\pi\)
\(648\) 5.70820 0.224239
\(649\) 30.9226 1.21382
\(650\) 27.6240 1.08350
\(651\) 0 0
\(652\) −3.11600 −0.122032
\(653\) −7.44224 −0.291237 −0.145619 0.989341i \(-0.546517\pi\)
−0.145619 + 0.989341i \(0.546517\pi\)
\(654\) 10.1074 0.395231
\(655\) 2.45373 0.0958751
\(656\) 6.92015 0.270186
\(657\) 42.5271 1.65914
\(658\) 5.05475 0.197055
\(659\) 18.3455 0.714639 0.357319 0.933982i \(-0.383691\pi\)
0.357319 + 0.933982i \(0.383691\pi\)
\(660\) 3.50361 0.136378
\(661\) 1.91857 0.0746236 0.0373118 0.999304i \(-0.488121\pi\)
0.0373118 + 0.999304i \(0.488121\pi\)
\(662\) 6.88992 0.267784
\(663\) 92.5304 3.59358
\(664\) 1.59102 0.0617437
\(665\) −1.10017 −0.0426628
\(666\) 7.64386 0.296194
\(667\) −3.78521 −0.146564
\(668\) −6.41523 −0.248213
\(669\) 19.0546 0.736692
\(670\) 0.194919 0.00753039
\(671\) 29.9187 1.15500
\(672\) −8.83432 −0.340791
\(673\) 17.3855 0.670160 0.335080 0.942190i \(-0.391237\pi\)
0.335080 + 0.942190i \(0.391237\pi\)
\(674\) 29.2082 1.12506
\(675\) −10.9245 −0.420484
\(676\) 18.9698 0.729607
\(677\) 48.1653 1.85114 0.925572 0.378571i \(-0.123585\pi\)
0.925572 + 0.378571i \(0.123585\pi\)
\(678\) 43.7346 1.67962
\(679\) 0.250401 0.00960950
\(680\) 2.11442 0.0810843
\(681\) −0.438010 −0.0167846
\(682\) 0 0
\(683\) 30.1537 1.15380 0.576900 0.816815i \(-0.304262\pi\)
0.576900 + 0.816815i \(0.304262\pi\)
\(684\) 3.71478 0.142038
\(685\) 0.419694 0.0160357
\(686\) 8.81856 0.336694
\(687\) 1.97608 0.0753921
\(688\) 8.12920 0.309923
\(689\) −50.2760 −1.91536
\(690\) 0.719363 0.0273857
\(691\) −19.3143 −0.734752 −0.367376 0.930073i \(-0.619744\pi\)
−0.367376 + 0.930073i \(0.619744\pi\)
\(692\) 14.3426 0.545224
\(693\) −51.4529 −1.95453
\(694\) −13.7867 −0.523338
\(695\) −6.30829 −0.239287
\(696\) 12.1996 0.462424
\(697\) 43.2568 1.63847
\(698\) 33.9615 1.28546
\(699\) 18.2307 0.689550
\(700\) −16.4859 −0.623110
\(701\) 30.0446 1.13477 0.567385 0.823453i \(-0.307955\pi\)
0.567385 + 0.823453i \(0.307955\pi\)
\(702\) −12.6431 −0.477184
\(703\) −1.91161 −0.0720979
\(704\) −3.95630 −0.149108
\(705\) 1.32657 0.0499614
\(706\) 1.41784 0.0533611
\(707\) 17.4045 0.654564
\(708\) −20.4627 −0.769034
\(709\) −12.5737 −0.472216 −0.236108 0.971727i \(-0.575872\pi\)
−0.236108 + 0.971727i \(0.575872\pi\)
\(710\) 2.53411 0.0951036
\(711\) 56.0243 2.10107
\(712\) −7.44224 −0.278910
\(713\) 0 0
\(714\) −55.2220 −2.06663
\(715\) 7.56677 0.282981
\(716\) −19.1215 −0.714605
\(717\) 47.9300 1.78998
\(718\) −2.54534 −0.0949912
\(719\) −19.1018 −0.712378 −0.356189 0.934414i \(-0.615924\pi\)
−0.356189 + 0.934414i \(0.615924\pi\)
\(720\) −1.30369 −0.0485858
\(721\) −13.2557 −0.493669
\(722\) 18.0710 0.672533
\(723\) 25.8173 0.960155
\(724\) −6.20557 −0.230628
\(725\) 22.7660 0.845507
\(726\) −12.1798 −0.452035
\(727\) 2.32129 0.0860920 0.0430460 0.999073i \(-0.486294\pi\)
0.0430460 + 0.999073i \(0.486294\pi\)
\(728\) −19.0795 −0.707134
\(729\) −39.5623 −1.46527
\(730\) 3.73245 0.138144
\(731\) 50.8144 1.87944
\(732\) −19.7984 −0.731769
\(733\) 25.3211 0.935257 0.467628 0.883925i \(-0.345109\pi\)
0.467628 + 0.883925i \(0.345109\pi\)
\(734\) −9.53372 −0.351896
\(735\) −3.88471 −0.143290
\(736\) −0.812307 −0.0299420
\(737\) −2.27977 −0.0839765
\(738\) −26.6710 −0.981771
\(739\) 14.9935 0.551545 0.275772 0.961223i \(-0.411066\pi\)
0.275772 + 0.961223i \(0.411066\pi\)
\(740\) 0.670876 0.0246619
\(741\) 14.2677 0.524139
\(742\) 30.0047 1.10151
\(743\) 45.0197 1.65161 0.825807 0.563953i \(-0.190720\pi\)
0.825807 + 0.563953i \(0.190720\pi\)
\(744\) 0 0
\(745\) 2.30941 0.0846102
\(746\) 22.2606 0.815020
\(747\) −6.13196 −0.224357
\(748\) −24.7302 −0.904226
\(749\) 1.96885 0.0719403
\(750\) −8.75446 −0.319668
\(751\) 29.4708 1.07540 0.537702 0.843135i \(-0.319292\pi\)
0.537702 + 0.843135i \(0.319292\pi\)
\(752\) −1.49797 −0.0546252
\(753\) 22.4067 0.816547
\(754\) 26.3475 0.959520
\(755\) 0.157479 0.00573126
\(756\) 7.54541 0.274424
\(757\) 36.7324 1.33506 0.667531 0.744582i \(-0.267351\pi\)
0.667531 + 0.744582i \(0.267351\pi\)
\(758\) −3.78318 −0.137411
\(759\) −8.41365 −0.305396
\(760\) 0.326034 0.0118265
\(761\) −16.9870 −0.615780 −0.307890 0.951422i \(-0.599623\pi\)
−0.307890 + 0.951422i \(0.599623\pi\)
\(762\) 17.6132 0.638060
\(763\) −13.0275 −0.471628
\(764\) −13.7173 −0.496276
\(765\) −8.14919 −0.294635
\(766\) 17.1405 0.619311
\(767\) −44.1933 −1.59573
\(768\) 2.61803 0.0944702
\(769\) −0.979639 −0.0353267 −0.0176633 0.999844i \(-0.505623\pi\)
−0.0176633 + 0.999844i \(0.505623\pi\)
\(770\) −4.51584 −0.162740
\(771\) −67.9221 −2.44616
\(772\) −15.0823 −0.542823
\(773\) −35.6725 −1.28305 −0.641525 0.767102i \(-0.721698\pi\)
−0.641525 + 0.767102i \(0.721698\pi\)
\(774\) −31.3308 −1.12616
\(775\) 0 0
\(776\) −0.0742058 −0.00266383
\(777\) −17.5212 −0.628568
\(778\) 7.20536 0.258325
\(779\) 6.67000 0.238978
\(780\) −5.00723 −0.179287
\(781\) −29.6389 −1.06056
\(782\) −5.07761 −0.181575
\(783\) −10.4197 −0.372369
\(784\) 4.38664 0.156666
\(785\) 0.991909 0.0354027
\(786\) 18.9911 0.677389
\(787\) 21.2980 0.759190 0.379595 0.925153i \(-0.376063\pi\)
0.379595 + 0.925153i \(0.376063\pi\)
\(788\) 6.69440 0.238478
\(789\) −1.94302 −0.0691734
\(790\) 4.91706 0.174941
\(791\) −56.3699 −2.00428
\(792\) 15.2480 0.541813
\(793\) −42.7587 −1.51840
\(794\) −14.6418 −0.519619
\(795\) 7.87442 0.279277
\(796\) 21.3309 0.756054
\(797\) −4.80923 −0.170352 −0.0851758 0.996366i \(-0.527145\pi\)
−0.0851758 + 0.996366i \(0.527145\pi\)
\(798\) −8.51498 −0.301427
\(799\) −9.36357 −0.331259
\(800\) 4.88558 0.172731
\(801\) 28.6831 1.01347
\(802\) −24.9065 −0.879480
\(803\) −43.6547 −1.54054
\(804\) 1.50861 0.0532047
\(805\) −0.927193 −0.0326793
\(806\) 0 0
\(807\) 47.9341 1.68736
\(808\) −5.15780 −0.181451
\(809\) −4.13827 −0.145494 −0.0727469 0.997350i \(-0.523177\pi\)
−0.0727469 + 0.997350i \(0.523177\pi\)
\(810\) −1.93086 −0.0678436
\(811\) 34.9018 1.22557 0.612784 0.790250i \(-0.290049\pi\)
0.612784 + 0.790250i \(0.290049\pi\)
\(812\) −15.7242 −0.551810
\(813\) 31.5762 1.10743
\(814\) −7.84655 −0.275021
\(815\) 1.05402 0.0369208
\(816\) 16.3649 0.572888
\(817\) 7.83535 0.274124
\(818\) 34.2296 1.19681
\(819\) 73.5344 2.56950
\(820\) −2.34082 −0.0817449
\(821\) 5.31434 0.185472 0.0927359 0.995691i \(-0.470439\pi\)
0.0927359 + 0.995691i \(0.470439\pi\)
\(822\) 3.24830 0.113297
\(823\) 15.4139 0.537294 0.268647 0.963239i \(-0.413423\pi\)
0.268647 + 0.963239i \(0.413423\pi\)
\(824\) 3.92831 0.136849
\(825\) 50.6034 1.76179
\(826\) 26.3745 0.917687
\(827\) 40.0029 1.39104 0.695518 0.718509i \(-0.255175\pi\)
0.695518 + 0.718509i \(0.255175\pi\)
\(828\) 3.13072 0.108800
\(829\) −21.8402 −0.758540 −0.379270 0.925286i \(-0.623825\pi\)
−0.379270 + 0.925286i \(0.623825\pi\)
\(830\) −0.538181 −0.0186805
\(831\) −51.5894 −1.78962
\(832\) 5.65418 0.196023
\(833\) 27.4202 0.950054
\(834\) −48.8242 −1.69064
\(835\) 2.17002 0.0750967
\(836\) −3.81328 −0.131885
\(837\) 0 0
\(838\) 19.2606 0.665348
\(839\) −54.6421 −1.88646 −0.943228 0.332147i \(-0.892227\pi\)
−0.943228 + 0.332147i \(0.892227\pi\)
\(840\) 2.98831 0.103106
\(841\) −7.28600 −0.251241
\(842\) 25.1864 0.867982
\(843\) 69.4959 2.39357
\(844\) −17.5708 −0.604813
\(845\) −6.41674 −0.220743
\(846\) 5.77332 0.198491
\(847\) 15.6987 0.539413
\(848\) −8.89183 −0.305347
\(849\) −73.4627 −2.52123
\(850\) 30.5390 1.04748
\(851\) −1.61105 −0.0552262
\(852\) 19.6132 0.671938
\(853\) 47.6586 1.63180 0.815899 0.578194i \(-0.196242\pi\)
0.815899 + 0.578194i \(0.196242\pi\)
\(854\) 25.5183 0.873219
\(855\) −1.25657 −0.0429737
\(856\) −0.583466 −0.0199425
\(857\) 38.7020 1.32203 0.661017 0.750371i \(-0.270125\pi\)
0.661017 + 0.750371i \(0.270125\pi\)
\(858\) 58.5644 1.99936
\(859\) 4.97675 0.169805 0.0849023 0.996389i \(-0.472942\pi\)
0.0849023 + 0.996389i \(0.472942\pi\)
\(860\) −2.74979 −0.0937672
\(861\) 61.1348 2.08347
\(862\) −26.0521 −0.887338
\(863\) −51.4200 −1.75036 −0.875179 0.483799i \(-0.839257\pi\)
−0.875179 + 0.483799i \(0.839257\pi\)
\(864\) −2.23607 −0.0760726
\(865\) −4.85155 −0.164958
\(866\) −7.86224 −0.267170
\(867\) 57.7882 1.96259
\(868\) 0 0
\(869\) −57.5098 −1.95089
\(870\) −4.12665 −0.139906
\(871\) 3.25816 0.110399
\(872\) 3.86068 0.130739
\(873\) 0.285997 0.00967952
\(874\) −0.782944 −0.0264835
\(875\) 11.2837 0.381459
\(876\) 28.8880 0.976035
\(877\) 54.2465 1.83178 0.915888 0.401435i \(-0.131488\pi\)
0.915888 + 0.401435i \(0.131488\pi\)
\(878\) −29.0718 −0.981127
\(879\) −50.5105 −1.70368
\(880\) 1.33826 0.0451128
\(881\) −10.5683 −0.356054 −0.178027 0.984026i \(-0.556971\pi\)
−0.178027 + 0.984026i \(0.556971\pi\)
\(882\) −16.9065 −0.569273
\(883\) −14.4225 −0.485356 −0.242678 0.970107i \(-0.578026\pi\)
−0.242678 + 0.970107i \(0.578026\pi\)
\(884\) 35.3435 1.18873
\(885\) 6.92173 0.232671
\(886\) −25.0906 −0.842936
\(887\) −19.8400 −0.666163 −0.333082 0.942898i \(-0.608089\pi\)
−0.333082 + 0.942898i \(0.608089\pi\)
\(888\) 5.19236 0.174244
\(889\) −22.7019 −0.761396
\(890\) 2.51742 0.0843841
\(891\) 22.5833 0.756570
\(892\) 7.27819 0.243692
\(893\) −1.44382 −0.0483155
\(894\) 17.8741 0.597799
\(895\) 6.46807 0.216204
\(896\) −3.37441 −0.112731
\(897\) 12.0245 0.401485
\(898\) 26.5947 0.887477
\(899\) 0 0
\(900\) −18.8295 −0.627651
\(901\) −55.5815 −1.85169
\(902\) 27.3781 0.911593
\(903\) 71.8160 2.38989
\(904\) 16.7051 0.555604
\(905\) 2.09910 0.0697765
\(906\) 1.21884 0.0404932
\(907\) −27.7160 −0.920296 −0.460148 0.887842i \(-0.652204\pi\)
−0.460148 + 0.887842i \(0.652204\pi\)
\(908\) −0.167305 −0.00555221
\(909\) 19.8787 0.659334
\(910\) 6.45386 0.213943
\(911\) 35.5990 1.17945 0.589724 0.807605i \(-0.299236\pi\)
0.589724 + 0.807605i \(0.299236\pi\)
\(912\) 2.52340 0.0835580
\(913\) 6.29456 0.208319
\(914\) 7.07421 0.233994
\(915\) 6.69702 0.221397
\(916\) 0.754795 0.0249391
\(917\) −24.4778 −0.808327
\(918\) −13.9773 −0.461321
\(919\) 32.6081 1.07564 0.537821 0.843059i \(-0.319248\pi\)
0.537821 + 0.843059i \(0.319248\pi\)
\(920\) 0.274772 0.00905897
\(921\) 34.6220 1.14083
\(922\) 19.6259 0.646343
\(923\) 42.3588 1.39426
\(924\) −34.9512 −1.14981
\(925\) 9.68960 0.318592
\(926\) 3.78773 0.124472
\(927\) −15.1401 −0.497266
\(928\) 4.65983 0.152966
\(929\) −1.46885 −0.0481914 −0.0240957 0.999710i \(-0.507671\pi\)
−0.0240957 + 0.999710i \(0.507671\pi\)
\(930\) 0 0
\(931\) 4.22807 0.138569
\(932\) 6.96352 0.228098
\(933\) −88.2439 −2.88898
\(934\) −3.44631 −0.112767
\(935\) 8.36527 0.273574
\(936\) −21.7918 −0.712287
\(937\) 5.24232 0.171259 0.0856295 0.996327i \(-0.472710\pi\)
0.0856295 + 0.996327i \(0.472710\pi\)
\(938\) −1.94447 −0.0634891
\(939\) 57.5725 1.87881
\(940\) 0.506704 0.0165269
\(941\) −53.7672 −1.75276 −0.876380 0.481621i \(-0.840048\pi\)
−0.876380 + 0.481621i \(0.840048\pi\)
\(942\) 7.67706 0.250132
\(943\) 5.62129 0.183054
\(944\) −7.81604 −0.254391
\(945\) −2.55232 −0.0830269
\(946\) 32.1615 1.04566
\(947\) −37.9099 −1.23191 −0.615953 0.787783i \(-0.711229\pi\)
−0.615953 + 0.787783i \(0.711229\pi\)
\(948\) 38.0565 1.23602
\(949\) 62.3896 2.02525
\(950\) 4.70898 0.152779
\(951\) 65.5453 2.12545
\(952\) −21.0929 −0.683626
\(953\) −31.3287 −1.01484 −0.507419 0.861700i \(-0.669400\pi\)
−0.507419 + 0.861700i \(0.669400\pi\)
\(954\) 34.2700 1.10953
\(955\) 4.64004 0.150148
\(956\) 18.3076 0.592111
\(957\) 48.2652 1.56019
\(958\) 0.287330 0.00928320
\(959\) −4.18676 −0.135197
\(960\) −0.885579 −0.0285820
\(961\) 0 0
\(962\) 11.2140 0.361553
\(963\) 2.24874 0.0724645
\(964\) 9.86133 0.317612
\(965\) 5.10175 0.164231
\(966\) −7.17618 −0.230890
\(967\) −7.19508 −0.231378 −0.115689 0.993285i \(-0.536908\pi\)
−0.115689 + 0.993285i \(0.536908\pi\)
\(968\) −4.65227 −0.149530
\(969\) 15.7734 0.506714
\(970\) 0.0251009 0.000805943 0
\(971\) −15.6695 −0.502858 −0.251429 0.967876i \(-0.580901\pi\)
−0.251429 + 0.967876i \(0.580901\pi\)
\(972\) −21.6525 −0.694503
\(973\) 62.9300 2.01744
\(974\) −13.1774 −0.422230
\(975\) −72.3205 −2.31611
\(976\) −7.56231 −0.242064
\(977\) 11.0877 0.354726 0.177363 0.984146i \(-0.443243\pi\)
0.177363 + 0.984146i \(0.443243\pi\)
\(978\) 8.15780 0.260858
\(979\) −29.4437 −0.941024
\(980\) −1.48383 −0.0473992
\(981\) −14.8795 −0.475065
\(982\) 24.2416 0.773580
\(983\) 11.9959 0.382610 0.191305 0.981531i \(-0.438728\pi\)
0.191305 + 0.981531i \(0.438728\pi\)
\(984\) −18.1172 −0.577555
\(985\) −2.26445 −0.0721515
\(986\) 29.1279 0.927621
\(987\) −13.2335 −0.421227
\(988\) 5.44980 0.173381
\(989\) 6.60341 0.209976
\(990\) −5.15780 −0.163925
\(991\) 35.5304 1.12866 0.564330 0.825550i \(-0.309135\pi\)
0.564330 + 0.825550i \(0.309135\pi\)
\(992\) 0 0
\(993\) −18.0380 −0.572420
\(994\) −25.2797 −0.801823
\(995\) −7.21542 −0.228744
\(996\) −4.16535 −0.131984
\(997\) −23.0958 −0.731450 −0.365725 0.930723i \(-0.619179\pi\)
−0.365725 + 0.930723i \(0.619179\pi\)
\(998\) −15.0653 −0.476882
\(999\) −4.43481 −0.140311
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1922.2.a.m.1.3 4
31.12 odd 30 62.2.g.b.51.1 yes 8
31.13 odd 30 62.2.g.b.45.1 8
31.30 odd 2 1922.2.a.h.1.1 4
93.44 even 30 558.2.ba.c.541.1 8
93.74 even 30 558.2.ba.c.361.1 8
124.43 even 30 496.2.bg.b.113.1 8
124.75 even 30 496.2.bg.b.417.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
62.2.g.b.45.1 8 31.13 odd 30
62.2.g.b.51.1 yes 8 31.12 odd 30
496.2.bg.b.113.1 8 124.43 even 30
496.2.bg.b.417.1 8 124.75 even 30
558.2.ba.c.361.1 8 93.74 even 30
558.2.ba.c.541.1 8 93.44 even 30
1922.2.a.h.1.1 4 31.30 odd 2
1922.2.a.m.1.3 4 1.1 even 1 trivial