Properties

Label 1920.2.m.r.959.3
Level $1920$
Weight $2$
Character 1920.959
Analytic conductor $15.331$
Analytic rank $0$
Dimension $4$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1920,2,Mod(959,1920)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1920, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1920.959"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.m (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,2,0,0,0,12,0,0,0,0,0,0,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 959.3
Root \(1.61803i\) of defining polynomial
Character \(\chi\) \(=\) 1920.959
Dual form 1920.2.m.r.959.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.61803 - 0.618034i) q^{3} +2.23607 q^{5} +0.763932 q^{7} +(2.23607 - 2.00000i) q^{9} +(3.61803 - 1.38197i) q^{15} +(1.23607 - 0.472136i) q^{21} +7.70820i q^{23} +5.00000 q^{25} +(2.38197 - 4.61803i) q^{27} +6.00000 q^{29} +1.70820 q^{35} -12.0000i q^{41} -6.76393i q^{43} +(5.00000 - 4.47214i) q^{45} +0.291796i q^{47} -6.41641 q^{49} +8.00000i q^{61} +(1.70820 - 1.52786i) q^{63} +14.1803i q^{67} +(4.76393 + 12.4721i) q^{69} +(8.09017 - 3.09017i) q^{75} +(1.00000 - 8.94427i) q^{81} -17.7082 q^{83} +(9.70820 - 3.70820i) q^{87} -17.8885i q^{89} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} + 12 q^{7} + 10 q^{15} - 4 q^{21} + 20 q^{25} + 14 q^{27} + 24 q^{29} - 20 q^{35} + 20 q^{45} + 28 q^{49} - 20 q^{63} + 28 q^{69} + 10 q^{75} + 4 q^{81} - 44 q^{83} + 12 q^{87}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.61803 0.618034i 0.934172 0.356822i
\(4\) 0 0
\(5\) 2.23607 1.00000
\(6\) 0 0
\(7\) 0.763932 0.288739 0.144370 0.989524i \(-0.453885\pi\)
0.144370 + 0.989524i \(0.453885\pi\)
\(8\) 0 0
\(9\) 2.23607 2.00000i 0.745356 0.666667i
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 3.61803 1.38197i 0.934172 0.356822i
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 1.23607 0.472136i 0.269732 0.103029i
\(22\) 0 0
\(23\) 7.70820i 1.60727i 0.595121 + 0.803636i \(0.297104\pi\)
−0.595121 + 0.803636i \(0.702896\pi\)
\(24\) 0 0
\(25\) 5.00000 1.00000
\(26\) 0 0
\(27\) 2.38197 4.61803i 0.458410 0.888741i
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.70820 0.288739
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 12.0000i 1.87409i −0.349215 0.937043i \(-0.613552\pi\)
0.349215 0.937043i \(-0.386448\pi\)
\(42\) 0 0
\(43\) 6.76393i 1.03149i −0.856742 0.515745i \(-0.827515\pi\)
0.856742 0.515745i \(-0.172485\pi\)
\(44\) 0 0
\(45\) 5.00000 4.47214i 0.745356 0.666667i
\(46\) 0 0
\(47\) 0.291796i 0.0425628i 0.999774 + 0.0212814i \(0.00677460\pi\)
−0.999774 + 0.0212814i \(0.993225\pi\)
\(48\) 0 0
\(49\) −6.41641 −0.916630
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 8.00000i 1.02430i 0.858898 + 0.512148i \(0.171150\pi\)
−0.858898 + 0.512148i \(0.828850\pi\)
\(62\) 0 0
\(63\) 1.70820 1.52786i 0.215213 0.192493i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 14.1803i 1.73240i 0.499694 + 0.866202i \(0.333446\pi\)
−0.499694 + 0.866202i \(0.666554\pi\)
\(68\) 0 0
\(69\) 4.76393 + 12.4721i 0.573510 + 1.50147i
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 8.09017 3.09017i 0.934172 0.356822i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 1.00000 8.94427i 0.111111 0.993808i
\(82\) 0 0
\(83\) −17.7082 −1.94373 −0.971864 0.235543i \(-0.924313\pi\)
−0.971864 + 0.235543i \(0.924313\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 9.70820 3.70820i 1.04083 0.397561i
\(88\) 0 0
\(89\) 17.8885i 1.89618i −0.317999 0.948091i \(-0.603011\pi\)
0.317999 0.948091i \(-0.396989\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 18.0000 1.79107 0.895533 0.444994i \(-0.146794\pi\)
0.895533 + 0.444994i \(0.146794\pi\)
\(102\) 0 0
\(103\) −20.1803 −1.98843 −0.994214 0.107418i \(-0.965742\pi\)
−0.994214 + 0.107418i \(0.965742\pi\)
\(104\) 0 0
\(105\) 2.76393 1.05573i 0.269732 0.103029i
\(106\) 0 0
\(107\) 6.29180 0.608251 0.304125 0.952632i \(-0.401636\pi\)
0.304125 + 0.952632i \(0.401636\pi\)
\(108\) 0 0
\(109\) 16.0000i 1.53252i 0.642529 + 0.766261i \(0.277885\pi\)
−0.642529 + 0.766261i \(0.722115\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 17.2361i 1.60727i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) 0 0
\(123\) −7.41641 19.4164i −0.668715 1.75072i
\(124\) 0 0
\(125\) 11.1803 1.00000
\(126\) 0 0
\(127\) −18.6525 −1.65514 −0.827570 0.561363i \(-0.810277\pi\)
−0.827570 + 0.561363i \(0.810277\pi\)
\(128\) 0 0
\(129\) −4.18034 10.9443i −0.368058 0.963589i
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 5.32624 10.3262i 0.458410 0.888741i
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0.180340 + 0.472136i 0.0151874 + 0.0397610i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 13.4164 1.11417
\(146\) 0 0
\(147\) −10.3820 + 3.96556i −0.856290 + 0.327074i
\(148\) 0 0
\(149\) −4.47214 −0.366372 −0.183186 0.983078i \(-0.558641\pi\)
−0.183186 + 0.983078i \(0.558641\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 5.88854i 0.464082i
\(162\) 0 0
\(163\) 24.6525i 1.93093i 0.260531 + 0.965465i \(0.416102\pi\)
−0.260531 + 0.965465i \(0.583898\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 23.7082i 1.83460i −0.398202 0.917298i \(-0.630366\pi\)
0.398202 0.917298i \(-0.369634\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 3.81966 0.288739
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 26.8328i 1.99447i −0.0743294 0.997234i \(-0.523682\pi\)
0.0743294 0.997234i \(-0.476318\pi\)
\(182\) 0 0
\(183\) 4.94427 + 12.9443i 0.365491 + 0.956868i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 1.81966 3.52786i 0.132361 0.256614i
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 8.76393 + 22.9443i 0.618160 + 1.61836i
\(202\) 0 0
\(203\) 4.58359 0.321705
\(204\) 0 0
\(205\) 26.8328i 1.87409i
\(206\) 0 0
\(207\) 15.4164 + 17.2361i 1.07151 + 1.19799i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 15.1246i 1.03149i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −23.2361 −1.55600 −0.778001 0.628263i \(-0.783766\pi\)
−0.778001 + 0.628263i \(0.783766\pi\)
\(224\) 0 0
\(225\) 11.1803 10.0000i 0.745356 0.666667i
\(226\) 0 0
\(227\) 13.1246 0.871111 0.435556 0.900162i \(-0.356552\pi\)
0.435556 + 0.900162i \(0.356552\pi\)
\(228\) 0 0
\(229\) 26.8328i 1.77316i 0.462573 + 0.886581i \(0.346926\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0.652476i 0.0425628i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 13.4164 0.864227 0.432113 0.901819i \(-0.357768\pi\)
0.432113 + 0.901819i \(0.357768\pi\)
\(242\) 0 0
\(243\) −3.90983 15.0902i −0.250816 0.968035i
\(244\) 0 0
\(245\) −14.3475 −0.916630
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −28.6525 + 10.9443i −1.81578 + 0.693565i
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 13.4164 12.0000i 0.830455 0.742781i
\(262\) 0 0
\(263\) 31.1246i 1.91923i 0.281324 + 0.959613i \(0.409226\pi\)
−0.281324 + 0.959613i \(0.590774\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −11.0557 28.9443i −0.676600 1.77136i
\(268\) 0 0
\(269\) −22.3607 −1.36335 −0.681677 0.731653i \(-0.738749\pi\)
−0.681677 + 0.731653i \(0.738749\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 12.0000i 0.715860i 0.933748 + 0.357930i \(0.116517\pi\)
−0.933748 + 0.357930i \(0.883483\pi\)
\(282\) 0 0
\(283\) 9.81966i 0.583718i −0.956461 0.291859i \(-0.905726\pi\)
0.956461 0.291859i \(-0.0942738\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 9.16718i 0.541122i
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 5.16718i 0.297832i
\(302\) 0 0
\(303\) 29.1246 11.1246i 1.67317 0.639092i
\(304\) 0 0
\(305\) 17.8885i 1.02430i
\(306\) 0 0
\(307\) 21.5967i 1.23259i 0.787515 + 0.616296i \(0.211367\pi\)
−0.787515 + 0.616296i \(0.788633\pi\)
\(308\) 0 0
\(309\) −32.6525 + 12.4721i −1.85753 + 0.709515i
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 3.81966 3.41641i 0.215213 0.192493i
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 10.1803 3.88854i 0.568211 0.217037i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 9.88854 + 25.8885i 0.546838 + 1.43164i
\(328\) 0 0
\(329\) 0.222912i 0.0122896i
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 31.7082i 1.73240i
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −10.2492 −0.553406
\(344\) 0 0
\(345\) 10.6525 + 27.8885i 0.573510 + 1.50147i
\(346\) 0 0
\(347\) 37.1246 1.99295 0.996477 0.0838690i \(-0.0267277\pi\)
0.996477 + 0.0838690i \(0.0267277\pi\)
\(348\) 0 0
\(349\) 26.8328i 1.43633i 0.695874 + 0.718164i \(0.255017\pi\)
−0.695874 + 0.718164i \(0.744983\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 17.7984 6.79837i 0.934172 0.356822i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 24.7639 1.29267 0.646333 0.763055i \(-0.276302\pi\)
0.646333 + 0.763055i \(0.276302\pi\)
\(368\) 0 0
\(369\) −24.0000 26.8328i −1.24939 1.39686i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 18.0902 6.90983i 0.934172 0.356822i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) −30.1803 + 11.5279i −1.54619 + 0.590590i
\(382\) 0 0
\(383\) 39.1246i 1.99917i −0.0287325 0.999587i \(-0.509147\pi\)
0.0287325 0.999587i \(-0.490853\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −13.5279 15.1246i −0.687660 0.768827i
\(388\) 0 0
\(389\) −31.3050 −1.58722 −0.793612 0.608424i \(-0.791802\pi\)
−0.793612 + 0.608424i \(0.791802\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 35.7771i 1.78662i 0.449439 + 0.893311i \(0.351624\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 2.23607 20.0000i 0.111111 0.993808i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −40.2492 −1.99020 −0.995098 0.0988936i \(-0.968470\pi\)
−0.995098 + 0.0988936i \(0.968470\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −39.5967 −1.94373
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 8.00000i 0.389896i −0.980814 0.194948i \(-0.937546\pi\)
0.980814 0.194948i \(-0.0624538\pi\)
\(422\) 0 0
\(423\) 0.583592 + 0.652476i 0.0283752 + 0.0317245i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 6.11146i 0.295754i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 21.7082 8.29180i 1.04083 0.397561i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) −14.3475 + 12.8328i −0.683215 + 0.611086i
\(442\) 0 0
\(443\) −22.2918 −1.05912 −0.529558 0.848274i \(-0.677642\pi\)
−0.529558 + 0.848274i \(0.677642\pi\)
\(444\) 0 0
\(445\) 40.0000i 1.89618i
\(446\) 0 0
\(447\) −7.23607 + 2.76393i −0.342254 + 0.130729i
\(448\) 0 0
\(449\) 36.0000i 1.69895i 0.527633 + 0.849473i \(0.323080\pi\)
−0.527633 + 0.849473i \(0.676920\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −42.0000 −1.95614 −0.978068 0.208288i \(-0.933211\pi\)
−0.978068 + 0.208288i \(0.933211\pi\)
\(462\) 0 0
\(463\) 38.0689 1.76921 0.884606 0.466340i \(-0.154428\pi\)
0.884606 + 0.466340i \(0.154428\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 2.87539 0.133057 0.0665285 0.997785i \(-0.478808\pi\)
0.0665285 + 0.997785i \(0.478808\pi\)
\(468\) 0 0
\(469\) 10.8328i 0.500213i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 3.63932 + 9.52786i 0.165595 + 0.433533i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −42.6525 −1.93277 −0.966384 0.257103i \(-0.917232\pi\)
−0.966384 + 0.257103i \(0.917232\pi\)
\(488\) 0 0
\(489\) 15.2361 + 39.8885i 0.688999 + 1.80382i
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) −14.6525 38.3607i −0.654624 1.71383i
\(502\) 0 0
\(503\) 24.2918i 1.08312i 0.840663 + 0.541559i \(0.182166\pi\)
−0.840663 + 0.541559i \(0.817834\pi\)
\(504\) 0 0
\(505\) 40.2492 1.79107
\(506\) 0 0
\(507\) −21.0344 + 8.03444i −0.934172 + 0.356822i
\(508\) 0 0
\(509\) −6.00000 −0.265945 −0.132973 0.991120i \(-0.542452\pi\)
−0.132973 + 0.991120i \(0.542452\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −45.1246 −1.98843
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 17.8885i 0.783711i −0.920027 0.391856i \(-0.871833\pi\)
0.920027 0.391856i \(-0.128167\pi\)
\(522\) 0 0
\(523\) 45.5967i 1.99381i 0.0786374 + 0.996903i \(0.474943\pi\)
−0.0786374 + 0.996903i \(0.525057\pi\)
\(524\) 0 0
\(525\) 6.18034 2.36068i 0.269732 0.103029i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −36.4164 −1.58332
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 14.0689 0.608251
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 26.8328i 1.15363i −0.816874 0.576816i \(-0.804295\pi\)
0.816874 0.576816i \(-0.195705\pi\)
\(542\) 0 0
\(543\) −16.5836 43.4164i −0.711670 1.86318i
\(544\) 0 0
\(545\) 35.7771i 1.53252i
\(546\) 0 0
\(547\) 30.7639i 1.31537i −0.753293 0.657685i \(-0.771536\pi\)
0.753293 0.657685i \(-0.228464\pi\)
\(548\) 0 0
\(549\) 16.0000 + 17.8885i 0.682863 + 0.763464i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 32.5410 1.37144 0.685720 0.727865i \(-0.259487\pi\)
0.685720 + 0.727865i \(0.259487\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0.763932 6.83282i 0.0320821 0.286951i
\(568\) 0 0
\(569\) 36.0000i 1.50920i −0.656186 0.754599i \(-0.727831\pi\)
0.656186 0.754599i \(-0.272169\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 38.5410i 1.60727i
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −13.5279 −0.561230
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −40.5410 −1.67331 −0.836653 0.547733i \(-0.815491\pi\)
−0.836653 + 0.547733i \(0.815491\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 40.2492 1.64180 0.820900 0.571072i \(-0.193472\pi\)
0.820900 + 0.571072i \(0.193472\pi\)
\(602\) 0 0
\(603\) 28.3607 + 31.7082i 1.15494 + 1.29126i
\(604\) 0 0
\(605\) 24.5967 1.00000
\(606\) 0 0
\(607\) −44.1803 −1.79322 −0.896612 0.442816i \(-0.853979\pi\)
−0.896612 + 0.442816i \(0.853979\pi\)
\(608\) 0 0
\(609\) 7.41641 2.83282i 0.300528 0.114791i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) −16.5836 43.4164i −0.668715 1.75072i
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 35.5967 + 18.3607i 1.42845 + 0.736789i
\(622\) 0 0
\(623\) 13.6656i 0.547502i
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −41.7082 −1.65514
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 12.0000i 0.473972i 0.971513 + 0.236986i \(0.0761595\pi\)
−0.971513 + 0.236986i \(0.923841\pi\)
\(642\) 0 0
\(643\) 8.06888i 0.318206i −0.987262 0.159103i \(-0.949140\pi\)
0.987262 0.159103i \(-0.0508601\pi\)
\(644\) 0 0
\(645\) −9.34752 24.4721i −0.368058 0.963589i
\(646\) 0 0
\(647\) 46.5410i 1.82972i −0.403775 0.914858i \(-0.632302\pi\)
0.403775 0.914858i \(-0.367698\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 32.0000i 1.24466i 0.782757 + 0.622328i \(0.213813\pi\)
−0.782757 + 0.622328i \(0.786187\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 46.2492i 1.79078i
\(668\) 0 0
\(669\) −37.5967 + 14.3607i −1.45357 + 0.555216i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 11.9098 23.0902i 0.458410 0.888741i
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 21.2361 8.11146i 0.813768 0.310832i
\(682\) 0 0
\(683\) −10.8754 −0.416135 −0.208068 0.978114i \(-0.566717\pi\)
−0.208068 + 0.978114i \(0.566717\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 16.5836 + 43.4164i 0.632704 + 1.65644i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 22.3607 0.844551 0.422276 0.906467i \(-0.361231\pi\)
0.422276 + 0.906467i \(0.361231\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0.403252 + 1.05573i 0.0151874 + 0.0397610i
\(706\) 0 0
\(707\) 13.7508 0.517151
\(708\) 0 0
\(709\) 26.8328i 1.00773i −0.863783 0.503864i \(-0.831911\pi\)
0.863783 0.503864i \(-0.168089\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −15.4164 −0.574137
\(722\) 0 0
\(723\) 21.7082 8.29180i 0.807337 0.308375i
\(724\) 0 0
\(725\) 30.0000 1.11417
\(726\) 0 0
\(727\) 35.0132 1.29857 0.649283 0.760547i \(-0.275069\pi\)
0.649283 + 0.760547i \(0.275069\pi\)
\(728\) 0 0
\(729\) −15.6525 22.0000i −0.579721 0.814815i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) −23.2148 + 8.86726i −0.856290 + 0.327074i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 14.5410i 0.533458i 0.963772 + 0.266729i \(0.0859429\pi\)
−0.963772 + 0.266729i \(0.914057\pi\)
\(744\) 0 0
\(745\) −10.0000 −0.366372
\(746\) 0 0
\(747\) −39.5967 + 35.4164i −1.44877 + 1.29582i
\(748\) 0 0
\(749\) 4.80650 0.175626
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 35.7771i 1.29692i −0.761249 0.648459i \(-0.775414\pi\)
0.761249 0.648459i \(-0.224586\pi\)
\(762\) 0 0
\(763\) 12.2229i 0.442499i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −14.0000 −0.504853 −0.252426 0.967616i \(-0.581229\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 14.2918 27.7082i 0.510747 0.990210i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 56.0689i 1.99864i −0.0368739 0.999320i \(-0.511740\pi\)
0.0368739 0.999320i \(-0.488260\pi\)
\(788\) 0 0
\(789\) 19.2361 + 50.3607i 0.684822 + 1.79289i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −35.7771 40.0000i −1.26412 1.41333i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 13.1672i 0.464082i
\(806\) 0 0
\(807\) −36.1803 + 13.8197i −1.27361 + 0.486475i
\(808\) 0 0
\(809\) 17.8885i 0.628928i −0.949269 0.314464i \(-0.898175\pi\)
0.949269 0.314464i \(-0.101825\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 55.1246i 1.93093i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 31.3050 1.09255 0.546275 0.837606i \(-0.316045\pi\)
0.546275 + 0.837606i \(0.316045\pi\)
\(822\) 0 0
\(823\) 27.8197 0.969732 0.484866 0.874588i \(-0.338868\pi\)
0.484866 + 0.874588i \(0.338868\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 56.5410 1.96612 0.983062 0.183274i \(-0.0586694\pi\)
0.983062 + 0.183274i \(0.0586694\pi\)
\(828\) 0 0
\(829\) 56.0000i 1.94496i 0.232986 + 0.972480i \(0.425151\pi\)
−0.232986 + 0.972480i \(0.574849\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 53.0132i 1.83460i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 7.41641 + 19.4164i 0.255435 + 0.668737i
\(844\) 0 0
\(845\) −29.0689 −1.00000
\(846\) 0 0
\(847\) 8.40325 0.288739
\(848\) 0 0
\(849\) −6.06888 15.8885i −0.208284 0.545293i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) −5.66563 14.8328i −0.193084 0.505501i
\(862\) 0 0
\(863\) 47.7082i 1.62401i −0.583653 0.812003i \(-0.698377\pi\)
0.583653 0.812003i \(-0.301623\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −27.5066 + 10.5066i −0.934172 + 0.356822i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 8.54102 0.288739
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 12.0000i 0.404290i 0.979356 + 0.202145i \(0.0647913\pi\)
−0.979356 + 0.202145i \(0.935209\pi\)
\(882\) 0 0
\(883\) 23.3475i 0.785707i −0.919601 0.392853i \(-0.871488\pi\)
0.919601 0.392853i \(-0.128512\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 16.8754i 0.566620i −0.959028 0.283310i \(-0.908567\pi\)
0.959028 0.283310i \(-0.0914325\pi\)
\(888\) 0 0
\(889\) −14.2492 −0.477904
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −3.19350 8.36068i −0.106273 0.278226i
\(904\) 0 0
\(905\) 60.0000i 1.99447i
\(906\) 0 0
\(907\) 39.4853i 1.31109i −0.755157 0.655544i \(-0.772439\pi\)
0.755157 0.655544i \(-0.227561\pi\)
\(908\) 0 0
\(909\) 40.2492 36.0000i 1.33498 1.19404i
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 11.0557 + 28.9443i 0.365491 + 0.956868i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 13.3475 + 34.9443i 0.439816 + 1.15145i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −45.1246 + 40.3607i −1.48209 + 1.32562i
\(928\) 0 0
\(929\) 36.0000i 1.18112i −0.806993 0.590561i \(-0.798907\pi\)
0.806993 0.590561i \(-0.201093\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 42.0000 1.36916 0.684580 0.728937i \(-0.259985\pi\)
0.684580 + 0.728937i \(0.259985\pi\)
\(942\) 0 0
\(943\) 92.4984 3.01216
\(944\) 0 0
\(945\) 4.06888 7.88854i 0.132361 0.256614i
\(946\) 0 0
\(947\) 49.7082 1.61530 0.807650 0.589662i \(-0.200739\pi\)
0.807650 + 0.589662i \(0.200739\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) 14.0689 12.5836i 0.453363 0.405501i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 62.0689 1.99600 0.998000 0.0632081i \(-0.0201332\pi\)
0.998000 + 0.0632081i \(0.0201332\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 32.0000 + 35.7771i 1.02168 + 1.14227i
\(982\) 0 0
\(983\) 62.5410i 1.99475i 0.0724180 + 0.997374i \(0.476928\pi\)
−0.0724180 + 0.997374i \(0.523072\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0.137767 + 0.360680i 0.00438519 + 0.0114806i
\(988\) 0 0
\(989\) 52.1378 1.65788
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.m.r.959.3 yes 4
3.2 odd 2 1920.2.m.f.959.1 yes 4
4.3 odd 2 1920.2.m.e.959.2 yes 4
5.4 even 2 1920.2.m.e.959.2 yes 4
8.3 odd 2 1920.2.m.q.959.3 yes 4
8.5 even 2 1920.2.m.f.959.2 yes 4
12.11 even 2 1920.2.m.q.959.4 yes 4
15.14 odd 2 1920.2.m.q.959.4 yes 4
20.19 odd 2 CM 1920.2.m.r.959.3 yes 4
24.5 odd 2 inner 1920.2.m.r.959.4 yes 4
24.11 even 2 1920.2.m.e.959.1 4
40.19 odd 2 1920.2.m.f.959.2 yes 4
40.29 even 2 1920.2.m.q.959.3 yes 4
60.59 even 2 1920.2.m.f.959.1 yes 4
120.29 odd 2 1920.2.m.e.959.1 4
120.59 even 2 inner 1920.2.m.r.959.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.m.e.959.1 4 24.11 even 2
1920.2.m.e.959.1 4 120.29 odd 2
1920.2.m.e.959.2 yes 4 4.3 odd 2
1920.2.m.e.959.2 yes 4 5.4 even 2
1920.2.m.f.959.1 yes 4 3.2 odd 2
1920.2.m.f.959.1 yes 4 60.59 even 2
1920.2.m.f.959.2 yes 4 8.5 even 2
1920.2.m.f.959.2 yes 4 40.19 odd 2
1920.2.m.q.959.3 yes 4 8.3 odd 2
1920.2.m.q.959.3 yes 4 40.29 even 2
1920.2.m.q.959.4 yes 4 12.11 even 2
1920.2.m.q.959.4 yes 4 15.14 odd 2
1920.2.m.r.959.3 yes 4 1.1 even 1 trivial
1920.2.m.r.959.3 yes 4 20.19 odd 2 CM
1920.2.m.r.959.4 yes 4 24.5 odd 2 inner
1920.2.m.r.959.4 yes 4 120.59 even 2 inner