Properties

Label 1920.2.m.e.959.1
Level 19201920
Weight 22
Character 1920.959
Analytic conductor 15.33115.331
Analytic rank 00
Dimension 44
CM discriminant -20
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1920,2,Mod(959,1920)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1920.959"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1920, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: N N == 1920=2735 1920 = 2^{7} \cdot 3 \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1920.m (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2,0,0,0,-12,0,0,0,0,0,0,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 15.331277188115.3312771881
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,5)\Q(i, \sqrt{5})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4+3x2+1 x^{4} + 3x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 22 2^{2}
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

Embedding invariants

Embedding label 959.1
Root 1.61803i-1.61803i of defining polynomial
Character χ\chi == 1920.959
Dual form 1920.2.m.e.959.2

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+(1.618030.618034i)q3+2.23607q50.763932q7+(2.23607+2.00000i)q9+(3.618031.38197i)q15+(1.23607+0.472136i)q21+7.70820iq23+5.00000q25+(2.381974.61803i)q27+6.00000q291.70820q35+12.0000iq416.76393iq43+(5.00000+4.47214i)q45+0.291796iq476.41641q498.00000iq61+(1.708201.52786i)q63+14.1803iq67+(4.7639312.4721i)q69+(8.090173.09017i)q75+(1.00000+8.94427i)q81+17.7082q83+(9.708203.70820i)q87+17.8885iq89+O(q100)q+(-1.61803 - 0.618034i) q^{3} +2.23607 q^{5} -0.763932 q^{7} +(2.23607 + 2.00000i) q^{9} +(-3.61803 - 1.38197i) q^{15} +(1.23607 + 0.472136i) q^{21} +7.70820i q^{23} +5.00000 q^{25} +(-2.38197 - 4.61803i) q^{27} +6.00000 q^{29} -1.70820 q^{35} +12.0000i q^{41} -6.76393i q^{43} +(5.00000 + 4.47214i) q^{45} +0.291796i q^{47} -6.41641 q^{49} -8.00000i q^{61} +(-1.70820 - 1.52786i) q^{63} +14.1803i q^{67} +(4.76393 - 12.4721i) q^{69} +(-8.09017 - 3.09017i) q^{75} +(1.00000 + 8.94427i) q^{81} +17.7082 q^{83} +(-9.70820 - 3.70820i) q^{87} +17.8885i q^{89} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q312q710q154q21+20q2514q27+24q29+20q35+20q45+28q49+20q63+28q6910q75+4q81+44q8312q87+O(q100) 4 q - 2 q^{3} - 12 q^{7} - 10 q^{15} - 4 q^{21} + 20 q^{25} - 14 q^{27} + 24 q^{29} + 20 q^{35} + 20 q^{45} + 28 q^{49} + 20 q^{63} + 28 q^{69} - 10 q^{75} + 4 q^{81} + 44 q^{83} - 12 q^{87}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1920Z)×\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times.

nn 511511 641641 901901 15371537
χ(n)\chi(n) 1-1 1-1 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 −1.61803 0.618034i −0.934172 0.356822i
44 0 0
55 2.23607 1.00000
66 0 0
77 −0.763932 −0.288739 −0.144370 0.989524i 0.546115π-0.546115\pi
−0.144370 + 0.989524i 0.546115π0.546115\pi
88 0 0
99 2.23607 + 2.00000i 0.745356 + 0.666667i
1010 0 0
1111 0 0 1.00000 00
−1.00000 π\pi
1212 0 0
1313 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1414 0 0
1515 −3.61803 1.38197i −0.934172 0.356822i
1616 0 0
1717 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1818 0 0
1919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2020 0 0
2121 1.23607 + 0.472136i 0.269732 + 0.103029i
2222 0 0
2323 7.70820i 1.60727i 0.595121 + 0.803636i 0.297104π0.297104\pi
−0.595121 + 0.803636i 0.702896π0.702896\pi
2424 0 0
2525 5.00000 1.00000
2626 0 0
2727 −2.38197 4.61803i −0.458410 0.888741i
2828 0 0
2929 6.00000 1.11417 0.557086 0.830455i 0.311919π-0.311919\pi
0.557086 + 0.830455i 0.311919π0.311919\pi
3030 0 0
3131 0 0 1.00000 00
−1.00000 π\pi
3232 0 0
3333 0 0
3434 0 0
3535 −1.70820 −0.288739
3636 0 0
3737 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3838 0 0
3939 0 0
4040 0 0
4141 12.0000i 1.87409i 0.349215 + 0.937043i 0.386448π0.386448\pi
−0.349215 + 0.937043i 0.613552π0.613552\pi
4242 0 0
4343 6.76393i 1.03149i −0.856742 0.515745i 0.827515π-0.827515\pi
0.856742 0.515745i 0.172485π-0.172485\pi
4444 0 0
4545 5.00000 + 4.47214i 0.745356 + 0.666667i
4646 0 0
4747 0.291796i 0.0425628i 0.999774 + 0.0212814i 0.00677460π0.00677460\pi
−0.999774 + 0.0212814i 0.993225π0.993225\pi
4848 0 0
4949 −6.41641 −0.916630
5050 0 0
5151 0 0
5252 0 0
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 1.00000 00
−1.00000 π\pi
6060 0 0
6161 8.00000i 1.02430i −0.858898 0.512148i 0.828850π-0.828850\pi
0.858898 0.512148i 0.171150π-0.171150\pi
6262 0 0
6363 −1.70820 1.52786i −0.215213 0.192493i
6464 0 0
6565 0 0
6666 0 0
6767 14.1803i 1.73240i 0.499694 + 0.866202i 0.333446π0.333446\pi
−0.499694 + 0.866202i 0.666554π0.666554\pi
6868 0 0
6969 4.76393 12.4721i 0.573510 1.50147i
7070 0 0
7171 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7272 0 0
7373 0 0 1.00000 00
−1.00000 π\pi
7474 0 0
7575 −8.09017 3.09017i −0.934172 0.356822i
7676 0 0
7777 0 0
7878 0 0
7979 0 0 1.00000 00
−1.00000 π\pi
8080 0 0
8181 1.00000 + 8.94427i 0.111111 + 0.993808i
8282 0 0
8383 17.7082 1.94373 0.971864 0.235543i 0.0756868π-0.0756868\pi
0.971864 + 0.235543i 0.0756868π0.0756868\pi
8484 0 0
8585 0 0
8686 0 0
8787 −9.70820 3.70820i −1.04083 0.397561i
8888 0 0
8989 17.8885i 1.89618i 0.317999 + 0.948091i 0.396989π0.396989\pi
−0.317999 + 0.948091i 0.603011π0.603011\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0 0 1.00000 00
−1.00000 π\pi
9898 0 0
9999 0 0
100100 0 0
101101 18.0000 1.79107 0.895533 0.444994i 0.146794π-0.146794\pi
0.895533 + 0.444994i 0.146794π0.146794\pi
102102 0 0
103103 20.1803 1.98843 0.994214 0.107418i 0.0342582π-0.0342582\pi
0.994214 + 0.107418i 0.0342582π0.0342582\pi
104104 0 0
105105 2.76393 + 1.05573i 0.269732 + 0.103029i
106106 0 0
107107 −6.29180 −0.608251 −0.304125 0.952632i 0.598364π-0.598364\pi
−0.304125 + 0.952632i 0.598364π0.598364\pi
108108 0 0
109109 16.0000i 1.53252i −0.642529 0.766261i 0.722115π-0.722115\pi
0.642529 0.766261i 0.277885π-0.277885\pi
110110 0 0
111111 0 0
112112 0 0
113113 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
114114 0 0
115115 17.2361i 1.60727i
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 11.0000 1.00000
122122 0 0
123123 7.41641 19.4164i 0.668715 1.75072i
124124 0 0
125125 11.1803 1.00000
126126 0 0
127127 18.6525 1.65514 0.827570 0.561363i 0.189723π-0.189723\pi
0.827570 + 0.561363i 0.189723π0.189723\pi
128128 0 0
129129 −4.18034 + 10.9443i −0.368058 + 0.963589i
130130 0 0
131131 0 0 1.00000 00
−1.00000 π\pi
132132 0 0
133133 0 0
134134 0 0
135135 −5.32624 10.3262i −0.458410 0.888741i
136136 0 0
137137 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
138138 0 0
139139 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
140140 0 0
141141 0.180340 0.472136i 0.0151874 0.0397610i
142142 0 0
143143 0 0
144144 0 0
145145 13.4164 1.11417
146146 0 0
147147 10.3820 + 3.96556i 0.856290 + 0.327074i
148148 0 0
149149 −4.47214 −0.366372 −0.183186 0.983078i 0.558641π-0.558641\pi
−0.183186 + 0.983078i 0.558641π0.558641\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
158158 0 0
159159 0 0
160160 0 0
161161 5.88854i 0.464082i
162162 0 0
163163 24.6525i 1.93093i 0.260531 + 0.965465i 0.416102π0.416102\pi
−0.260531 + 0.965465i 0.583898π0.583898\pi
164164 0 0
165165 0 0
166166 0 0
167167 23.7082i 1.83460i −0.398202 0.917298i 0.630366π-0.630366\pi
0.398202 0.917298i 0.369634π-0.369634\pi
168168 0 0
169169 −13.0000 −1.00000
170170 0 0
171171 0 0
172172 0 0
173173 0 0 1.00000 00
−1.00000 π\pi
174174 0 0
175175 −3.81966 −0.288739
176176 0 0
177177 0 0
178178 0 0
179179 0 0 1.00000 00
−1.00000 π\pi
180180 0 0
181181 26.8328i 1.99447i 0.0743294 + 0.997234i 0.476318π0.476318\pi
−0.0743294 + 0.997234i 0.523682π0.523682\pi
182182 0 0
183183 −4.94427 + 12.9443i −0.365491 + 0.956868i
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 1.81966 + 3.52786i 0.132361 + 0.256614i
190190 0 0
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 0 0
193193 0 0 1.00000 00
−1.00000 π\pi
194194 0 0
195195 0 0
196196 0 0
197197 0 0 1.00000 00
−1.00000 π\pi
198198 0 0
199199 0 0 1.00000 00
−1.00000 π\pi
200200 0 0
201201 8.76393 22.9443i 0.618160 1.61836i
202202 0 0
203203 −4.58359 −0.321705
204204 0 0
205205 26.8328i 1.87409i
206206 0 0
207207 −15.4164 + 17.2361i −1.07151 + 1.19799i
208208 0 0
209209 0 0
210210 0 0
211211 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
212212 0 0
213213 0 0
214214 0 0
215215 15.1246i 1.03149i
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 23.2361 1.55600 0.778001 0.628263i 0.216234π-0.216234\pi
0.778001 + 0.628263i 0.216234π0.216234\pi
224224 0 0
225225 11.1803 + 10.0000i 0.745356 + 0.666667i
226226 0 0
227227 −13.1246 −0.871111 −0.435556 0.900162i 0.643448π-0.643448\pi
−0.435556 + 0.900162i 0.643448π0.643448\pi
228228 0 0
229229 26.8328i 1.77316i −0.462573 0.886581i 0.653074π-0.653074\pi
0.462573 0.886581i 0.346926π-0.346926\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
234234 0 0
235235 0.652476i 0.0425628i
236236 0 0
237237 0 0
238238 0 0
239239 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
240240 0 0
241241 13.4164 0.864227 0.432113 0.901819i 0.357768π-0.357768\pi
0.432113 + 0.901819i 0.357768π0.357768\pi
242242 0 0
243243 3.90983 15.0902i 0.250816 0.968035i
244244 0 0
245245 −14.3475 −0.916630
246246 0 0
247247 0 0
248248 0 0
249249 −28.6525 10.9443i −1.81578 0.693565i
250250 0 0
251251 0 0 1.00000 00
−1.00000 π\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0 0
257257 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
258258 0 0
259259 0 0
260260 0 0
261261 13.4164 + 12.0000i 0.830455 + 0.742781i
262262 0 0
263263 31.1246i 1.91923i 0.281324 + 0.959613i 0.409226π0.409226\pi
−0.281324 + 0.959613i 0.590774π0.590774\pi
264264 0 0
265265 0 0
266266 0 0
267267 11.0557 28.9443i 0.676600 1.77136i
268268 0 0
269269 −22.3607 −1.36335 −0.681677 0.731653i 0.738749π-0.738749\pi
−0.681677 + 0.731653i 0.738749π0.738749\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
278278 0 0
279279 0 0
280280 0 0
281281 12.0000i 0.715860i −0.933748 0.357930i 0.883483π-0.883483\pi
0.933748 0.357930i 0.116517π-0.116517\pi
282282 0 0
283283 9.81966i 0.583718i −0.956461 0.291859i 0.905726π-0.905726\pi
0.956461 0.291859i 0.0942738π-0.0942738\pi
284284 0 0
285285 0 0
286286 0 0
287287 9.16718i 0.541122i
288288 0 0
289289 −17.0000 −1.00000
290290 0 0
291291 0 0
292292 0 0
293293 0 0 1.00000 00
−1.00000 π\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 5.16718i 0.297832i
302302 0 0
303303 −29.1246 11.1246i −1.67317 0.639092i
304304 0 0
305305 17.8885i 1.02430i
306306 0 0
307307 21.5967i 1.23259i 0.787515 + 0.616296i 0.211367π0.211367\pi
−0.787515 + 0.616296i 0.788633π0.788633\pi
308308 0 0
309309 −32.6525 12.4721i −1.85753 0.709515i
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 0 0 1.00000 00
−1.00000 π\pi
314314 0 0
315315 −3.81966 3.41641i −0.215213 0.192493i
316316 0 0
317317 0 0 1.00000 00
−1.00000 π\pi
318318 0 0
319319 0 0
320320 0 0
321321 10.1803 + 3.88854i 0.568211 + 0.217037i
322322 0 0
323323 0 0
324324 0 0
325325 0 0
326326 0 0
327327 −9.88854 + 25.8885i −0.546838 + 1.43164i
328328 0 0
329329 0.222912i 0.0122896i
330330 0 0
331331 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
332332 0 0
333333 0 0
334334 0 0
335335 31.7082i 1.73240i
336336 0 0
337337 0 0 1.00000 00
−1.00000 π\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 10.2492 0.553406
344344 0 0
345345 10.6525 27.8885i 0.573510 1.50147i
346346 0 0
347347 −37.1246 −1.99295 −0.996477 0.0838690i 0.973272π-0.973272\pi
−0.996477 + 0.0838690i 0.973272π0.973272\pi
348348 0 0
349349 26.8328i 1.43633i −0.695874 0.718164i 0.744983π-0.744983\pi
0.695874 0.718164i 0.255017π-0.255017\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
360360 0 0
361361 −19.0000 −1.00000
362362 0 0
363363 −17.7984 6.79837i −0.934172 0.356822i
364364 0 0
365365 0 0
366366 0 0
367367 −24.7639 −1.29267 −0.646333 0.763055i 0.723698π-0.723698\pi
−0.646333 + 0.763055i 0.723698π0.723698\pi
368368 0 0
369369 −24.0000 + 26.8328i −1.24939 + 1.39686i
370370 0 0
371371 0 0
372372 0 0
373373 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
374374 0 0
375375 −18.0902 6.90983i −0.934172 0.356822i
376376 0 0
377377 0 0
378378 0 0
379379 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
380380 0 0
381381 −30.1803 11.5279i −1.54619 0.590590i
382382 0 0
383383 39.1246i 1.99917i −0.0287325 0.999587i 0.509147π-0.509147\pi
0.0287325 0.999587i 0.490853π-0.490853\pi
384384 0 0
385385 0 0
386386 0 0
387387 13.5279 15.1246i 0.687660 0.768827i
388388 0 0
389389 −31.3050 −1.58722 −0.793612 0.608424i 0.791802π-0.791802\pi
−0.793612 + 0.608424i 0.791802π0.791802\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
398398 0 0
399399 0 0
400400 0 0
401401 35.7771i 1.78662i −0.449439 0.893311i 0.648376π-0.648376\pi
0.449439 0.893311i 0.351624π-0.351624\pi
402402 0 0
403403 0 0
404404 0 0
405405 2.23607 + 20.0000i 0.111111 + 0.993808i
406406 0 0
407407 0 0
408408 0 0
409409 −40.2492 −1.99020 −0.995098 0.0988936i 0.968470π-0.968470\pi
−0.995098 + 0.0988936i 0.968470π0.968470\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 39.5967 1.94373
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 8.00000i 0.389896i 0.980814 + 0.194948i 0.0624538π0.0624538\pi
−0.980814 + 0.194948i 0.937546π0.937546\pi
422422 0 0
423423 −0.583592 + 0.652476i −0.0283752 + 0.0317245i
424424 0 0
425425 0 0
426426 0 0
427427 6.11146i 0.295754i
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 −21.7082 8.29180i −1.04083 0.397561i
436436 0 0
437437 0 0
438438 0 0
439439 0 0 1.00000 00
−1.00000 π\pi
440440 0 0
441441 −14.3475 12.8328i −0.683215 0.611086i
442442 0 0
443443 22.2918 1.05912 0.529558 0.848274i 0.322358π-0.322358\pi
0.529558 + 0.848274i 0.322358π0.322358\pi
444444 0 0
445445 40.0000i 1.89618i
446446 0 0
447447 7.23607 + 2.76393i 0.342254 + 0.130729i
448448 0 0
449449 36.0000i 1.69895i −0.527633 0.849473i 0.676920π-0.676920\pi
0.527633 0.849473i 0.323080π-0.323080\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 0 0 1.00000 00
−1.00000 π\pi
458458 0 0
459459 0 0
460460 0 0
461461 −42.0000 −1.95614 −0.978068 0.208288i 0.933211π-0.933211\pi
−0.978068 + 0.208288i 0.933211π0.933211\pi
462462 0 0
463463 −38.0689 −1.76921 −0.884606 0.466340i 0.845572π-0.845572\pi
−0.884606 + 0.466340i 0.845572π0.845572\pi
464464 0 0
465465 0 0
466466 0 0
467467 −2.87539 −0.133057 −0.0665285 0.997785i 0.521192π-0.521192\pi
−0.0665285 + 0.997785i 0.521192π0.521192\pi
468468 0 0
469469 10.8328i 0.500213i
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
480480 0 0
481481 0 0
482482 0 0
483483 −3.63932 + 9.52786i −0.165595 + 0.433533i
484484 0 0
485485 0 0
486486 0 0
487487 42.6525 1.93277 0.966384 0.257103i 0.0827679π-0.0827679\pi
0.966384 + 0.257103i 0.0827679π0.0827679\pi
488488 0 0
489489 15.2361 39.8885i 0.688999 1.80382i
490490 0 0
491491 0 0 1.00000 00
−1.00000 π\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
500500 0 0
501501 −14.6525 + 38.3607i −0.654624 + 1.71383i
502502 0 0
503503 24.2918i 1.08312i 0.840663 + 0.541559i 0.182166π0.182166\pi
−0.840663 + 0.541559i 0.817834π0.817834\pi
504504 0 0
505505 40.2492 1.79107
506506 0 0
507507 21.0344 + 8.03444i 0.934172 + 0.356822i
508508 0 0
509509 −6.00000 −0.265945 −0.132973 0.991120i 0.542452π-0.542452\pi
−0.132973 + 0.991120i 0.542452π0.542452\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 45.1246 1.98843
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 17.8885i 0.783711i 0.920027 + 0.391856i 0.128167π0.128167\pi
−0.920027 + 0.391856i 0.871833π0.871833\pi
522522 0 0
523523 45.5967i 1.99381i 0.0786374 + 0.996903i 0.474943π0.474943\pi
−0.0786374 + 0.996903i 0.525057π0.525057\pi
524524 0 0
525525 6.18034 + 2.36068i 0.269732 + 0.103029i
526526 0 0
527527 0 0
528528 0 0
529529 −36.4164 −1.58332
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 −14.0689 −0.608251
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 26.8328i 1.15363i 0.816874 + 0.576816i 0.195705π0.195705\pi
−0.816874 + 0.576816i 0.804295π0.804295\pi
542542 0 0
543543 16.5836 43.4164i 0.711670 1.86318i
544544 0 0
545545 35.7771i 1.53252i
546546 0 0
547547 30.7639i 1.31537i −0.753293 0.657685i 0.771536π-0.771536\pi
0.753293 0.657685i 0.228464π-0.228464\pi
548548 0 0
549549 16.0000 17.8885i 0.682863 0.763464i
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 0 0 1.00000 00
−1.00000 π\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 −32.5410 −1.37144 −0.685720 0.727865i 0.740513π-0.740513\pi
−0.685720 + 0.727865i 0.740513π0.740513\pi
564564 0 0
565565 0 0
566566 0 0
567567 −0.763932 6.83282i −0.0320821 0.286951i
568568 0 0
569569 36.0000i 1.50920i 0.656186 + 0.754599i 0.272169π0.272169\pi
−0.656186 + 0.754599i 0.727831π0.727831\pi
570570 0 0
571571 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
572572 0 0
573573 0 0
574574 0 0
575575 38.5410i 1.60727i
576576 0 0
577577 0 0 1.00000 00
−1.00000 π\pi
578578 0 0
579579 0 0
580580 0 0
581581 −13.5279 −0.561230
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 40.5410 1.67331 0.836653 0.547733i 0.184509π-0.184509\pi
0.836653 + 0.547733i 0.184509π0.184509\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
600600 0 0
601601 40.2492 1.64180 0.820900 0.571072i 0.193472π-0.193472\pi
0.820900 + 0.571072i 0.193472π0.193472\pi
602602 0 0
603603 −28.3607 + 31.7082i −1.15494 + 1.29126i
604604 0 0
605605 24.5967 1.00000
606606 0 0
607607 44.1803 1.79322 0.896612 0.442816i 0.146021π-0.146021\pi
0.896612 + 0.442816i 0.146021π0.146021\pi
608608 0 0
609609 7.41641 + 2.83282i 0.300528 + 0.114791i
610610 0 0
611611 0 0
612612 0 0
613613 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
614614 0 0
615615 16.5836 43.4164i 0.668715 1.75072i
616616 0 0
617617 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
618618 0 0
619619 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
620620 0 0
621621 35.5967 18.3607i 1.42845 0.736789i
622622 0 0
623623 13.6656i 0.547502i
624624 0 0
625625 25.0000 1.00000
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 0 0 1.00000 00
−1.00000 π\pi
632632 0 0
633633 0 0
634634 0 0
635635 41.7082 1.65514
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 12.0000i 0.473972i −0.971513 0.236986i 0.923841π-0.923841\pi
0.971513 0.236986i 0.0761595π-0.0761595\pi
642642 0 0
643643 8.06888i 0.318206i −0.987262 0.159103i 0.949140π-0.949140\pi
0.987262 0.159103i 0.0508601π-0.0508601\pi
644644 0 0
645645 −9.34752 + 24.4721i −0.368058 + 0.963589i
646646 0 0
647647 46.5410i 1.82972i −0.403775 0.914858i 0.632302π-0.632302\pi
0.403775 0.914858i 0.367698π-0.367698\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 0 0 1.00000 00
−1.00000 π\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 1.00000 00
−1.00000 π\pi
660660 0 0
661661 32.0000i 1.24466i −0.782757 0.622328i 0.786187π-0.786187\pi
0.782757 0.622328i 0.213813π-0.213813\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 46.2492i 1.79078i
668668 0 0
669669 −37.5967 14.3607i −1.45357 0.555216i
670670 0 0
671671 0 0
672672 0 0
673673 0 0 1.00000 00
−1.00000 π\pi
674674 0 0
675675 −11.9098 23.0902i −0.458410 0.888741i
676676 0 0
677677 0 0 1.00000 00
−1.00000 π\pi
678678 0 0
679679 0 0
680680 0 0
681681 21.2361 + 8.11146i 0.813768 + 0.310832i
682682 0 0
683683 10.8754 0.416135 0.208068 0.978114i 0.433283π-0.433283\pi
0.208068 + 0.978114i 0.433283π0.433283\pi
684684 0 0
685685 0 0
686686 0 0
687687 −16.5836 + 43.4164i −0.632704 + 1.65644i
688688 0 0
689689 0 0
690690 0 0
691691 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 22.3607 0.844551 0.422276 0.906467i 0.361231π-0.361231\pi
0.422276 + 0.906467i 0.361231π0.361231\pi
702702 0 0
703703 0 0
704704 0 0
705705 0.403252 1.05573i 0.0151874 0.0397610i
706706 0 0
707707 −13.7508 −0.517151
708708 0 0
709709 26.8328i 1.00773i 0.863783 + 0.503864i 0.168089π0.168089\pi
−0.863783 + 0.503864i 0.831911π0.831911\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 −15.4164 −0.574137
722722 0 0
723723 −21.7082 8.29180i −0.807337 0.308375i
724724 0 0
725725 30.0000 1.11417
726726 0 0
727727 −35.0132 −1.29857 −0.649283 0.760547i 0.724931π-0.724931\pi
−0.649283 + 0.760547i 0.724931π0.724931\pi
728728 0 0
729729 −15.6525 + 22.0000i −0.579721 + 0.814815i
730730 0 0
731731 0 0
732732 0 0
733733 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
734734 0 0
735735 23.2148 + 8.86726i 0.856290 + 0.327074i
736736 0 0
737737 0 0
738738 0 0
739739 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
740740 0 0
741741 0 0
742742 0 0
743743 14.5410i 0.533458i 0.963772 + 0.266729i 0.0859429π0.0859429\pi
−0.963772 + 0.266729i 0.914057π0.914057\pi
744744 0 0
745745 −10.0000 −0.366372
746746 0 0
747747 39.5967 + 35.4164i 1.44877 + 1.29582i
748748 0 0
749749 4.80650 0.175626
750750 0 0
751751 0 0 1.00000 00
−1.00000 π\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
758758 0 0
759759 0 0
760760 0 0
761761 35.7771i 1.29692i 0.761249 + 0.648459i 0.224586π0.224586\pi
−0.761249 + 0.648459i 0.775414π0.775414\pi
762762 0 0
763763 12.2229i 0.442499i
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 −14.0000 −0.504853 −0.252426 0.967616i 0.581229π-0.581229\pi
−0.252426 + 0.967616i 0.581229π0.581229\pi
770770 0 0
771771 0 0
772772 0 0
773773 0 0 1.00000 00
−1.00000 π\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 −14.2918 27.7082i −0.510747 0.990210i
784784 0 0
785785 0 0
786786 0 0
787787 56.0689i 1.99864i −0.0368739 0.999320i 0.511740π-0.511740\pi
0.0368739 0.999320i 0.488260π-0.488260\pi
788788 0 0
789789 19.2361 50.3607i 0.684822 1.79289i
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 1.00000 00
−1.00000 π\pi
798798 0 0
799799 0 0
800800 0 0
801801 −35.7771 + 40.0000i −1.26412 + 1.41333i
802802 0 0
803803 0 0
804804 0 0
805805 13.1672i 0.464082i
806806 0 0
807807 36.1803 + 13.8197i 1.27361 + 0.486475i
808808 0 0
809809 17.8885i 0.628928i 0.949269 + 0.314464i 0.101825π0.101825\pi
−0.949269 + 0.314464i 0.898175π0.898175\pi
810810 0 0
811811 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
812812 0 0
813813 0 0
814814 0 0
815815 55.1246i 1.93093i
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 31.3050 1.09255 0.546275 0.837606i 0.316045π-0.316045\pi
0.546275 + 0.837606i 0.316045π0.316045\pi
822822 0 0
823823 −27.8197 −0.969732 −0.484866 0.874588i 0.661132π-0.661132\pi
−0.484866 + 0.874588i 0.661132π0.661132\pi
824824 0 0
825825 0 0
826826 0 0
827827 −56.5410 −1.96612 −0.983062 0.183274i 0.941331π-0.941331\pi
−0.983062 + 0.183274i 0.941331π0.941331\pi
828828 0 0
829829 56.0000i 1.94496i −0.232986 0.972480i 0.574849π-0.574849\pi
0.232986 0.972480i 0.425151π-0.425151\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 53.0132i 1.83460i
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
840840 0 0
841841 7.00000 0.241379
842842 0 0
843843 −7.41641 + 19.4164i −0.255435 + 0.668737i
844844 0 0
845845 −29.0689 −1.00000
846846 0 0
847847 −8.40325 −0.288739
848848 0 0
849849 −6.06888 + 15.8885i −0.208284 + 0.545293i
850850 0 0
851851 0 0
852852 0 0
853853 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
858858 0 0
859859 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
860860 0 0
861861 −5.66563 + 14.8328i −0.193084 + 0.505501i
862862 0 0
863863 47.7082i 1.62401i −0.583653 0.812003i 0.698377π-0.698377\pi
0.583653 0.812003i 0.301623π-0.301623\pi
864864 0 0
865865 0 0
866866 0 0
867867 27.5066 + 10.5066i 0.934172 + 0.356822i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 −8.54102 −0.288739
876876 0 0
877877 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
878878 0 0
879879 0 0
880880 0 0
881881 12.0000i 0.404290i −0.979356 0.202145i 0.935209π-0.935209\pi
0.979356 0.202145i 0.0647913π-0.0647913\pi
882882 0 0
883883 23.3475i 0.785707i −0.919601 0.392853i 0.871488π-0.871488\pi
0.919601 0.392853i 0.128512π-0.128512\pi
884884 0 0
885885 0 0
886886 0 0
887887 16.8754i 0.566620i −0.959028 0.283310i 0.908567π-0.908567\pi
0.959028 0.283310i 0.0914325π-0.0914325\pi
888888 0 0
889889 −14.2492 −0.477904
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 3.19350 8.36068i 0.106273 0.278226i
904904 0 0
905905 60.0000i 1.99447i
906906 0 0
907907 39.4853i 1.31109i −0.755157 0.655544i 0.772439π-0.772439\pi
0.755157 0.655544i 0.227561π-0.227561\pi
908908 0 0
909909 40.2492 + 36.0000i 1.33498 + 1.19404i
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 0 0
914914 0 0
915915 −11.0557 + 28.9443i −0.365491 + 0.956868i
916916 0 0
917917 0 0
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0 0
921921 13.3475 34.9443i 0.439816 1.15145i
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 45.1246 + 40.3607i 1.48209 + 1.32562i
928928 0 0
929929 36.0000i 1.18112i 0.806993 + 0.590561i 0.201093π0.201093\pi
−0.806993 + 0.590561i 0.798907π0.798907\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0 0 1.00000 00
−1.00000 π\pi
938938 0 0
939939 0 0
940940 0 0
941941 42.0000 1.36916 0.684580 0.728937i 0.259985π-0.259985\pi
0.684580 + 0.728937i 0.259985π0.259985\pi
942942 0 0
943943 −92.4984 −3.01216
944944 0 0
945945 4.06888 + 7.88854i 0.132361 + 0.256614i
946946 0 0
947947 −49.7082 −1.61530 −0.807650 0.589662i 0.799261π-0.799261\pi
−0.807650 + 0.589662i 0.799261π0.799261\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 31.0000 1.00000
962962 0 0
963963 −14.0689 12.5836i −0.453363 0.405501i
964964 0 0
965965 0 0
966966 0 0
967967 −62.0689 −1.99600 −0.998000 0.0632081i 0.979867π-0.979867\pi
−0.998000 + 0.0632081i 0.979867π0.979867\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 1.00000 00
−1.00000 π\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
978978 0 0
979979 0 0
980980 0 0
981981 32.0000 35.7771i 1.02168 1.14227i
982982 0 0
983983 62.5410i 1.99475i 0.0724180 + 0.997374i 0.476928π0.476928\pi
−0.0724180 + 0.997374i 0.523072π0.523072\pi
984984 0 0
985985 0 0
986986 0 0
987987 −0.137767 + 0.360680i −0.00438519 + 0.0114806i
988988 0 0
989989 52.1378 1.65788
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.m.e.959.1 4
3.2 odd 2 1920.2.m.q.959.3 yes 4
4.3 odd 2 1920.2.m.r.959.4 yes 4
5.4 even 2 1920.2.m.r.959.4 yes 4
8.3 odd 2 1920.2.m.f.959.1 yes 4
8.5 even 2 1920.2.m.q.959.4 yes 4
12.11 even 2 1920.2.m.f.959.2 yes 4
15.14 odd 2 1920.2.m.f.959.2 yes 4
20.19 odd 2 CM 1920.2.m.e.959.1 4
24.5 odd 2 inner 1920.2.m.e.959.2 yes 4
24.11 even 2 1920.2.m.r.959.3 yes 4
40.19 odd 2 1920.2.m.q.959.4 yes 4
40.29 even 2 1920.2.m.f.959.1 yes 4
60.59 even 2 1920.2.m.q.959.3 yes 4
120.29 odd 2 1920.2.m.r.959.3 yes 4
120.59 even 2 inner 1920.2.m.e.959.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.m.e.959.1 4 1.1 even 1 trivial
1920.2.m.e.959.1 4 20.19 odd 2 CM
1920.2.m.e.959.2 yes 4 24.5 odd 2 inner
1920.2.m.e.959.2 yes 4 120.59 even 2 inner
1920.2.m.f.959.1 yes 4 8.3 odd 2
1920.2.m.f.959.1 yes 4 40.29 even 2
1920.2.m.f.959.2 yes 4 12.11 even 2
1920.2.m.f.959.2 yes 4 15.14 odd 2
1920.2.m.q.959.3 yes 4 3.2 odd 2
1920.2.m.q.959.3 yes 4 60.59 even 2
1920.2.m.q.959.4 yes 4 8.5 even 2
1920.2.m.q.959.4 yes 4 40.19 odd 2
1920.2.m.r.959.3 yes 4 24.11 even 2
1920.2.m.r.959.3 yes 4 120.29 odd 2
1920.2.m.r.959.4 yes 4 4.3 odd 2
1920.2.m.r.959.4 yes 4 5.4 even 2