Properties

Label 1920.2.f.j
Level 19201920
Weight 22
Character orbit 1920.f
Analytic conductor 15.33115.331
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1920,2,Mod(769,1920)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1920, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1920.769"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 1920=2735 1920 = 2^{7} \cdot 3 \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1920.f (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,4,0,0,0,-2,0,0,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 15.331277188115.3312771881
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+iq3+(i+2)q5+4iq7q9+6iq13+(2i1)q15+2iq176q194q216iq23+(4i+3)q25iq27+8q298q31+(8i4)q3510iq37++(6i12)q95+O(q100) q + i q^{3} + (i + 2) q^{5} + 4 i q^{7} - q^{9} + 6 i q^{13} + (2 i - 1) q^{15} + 2 i q^{17} - 6 q^{19} - 4 q^{21} - 6 i q^{23} + (4 i + 3) q^{25} - i q^{27} + 8 q^{29} - 8 q^{31} + (8 i - 4) q^{35} - 10 i q^{37} + \cdots + ( - 6 i - 12) q^{95} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+4q52q92q1512q198q21+6q25+16q2916q318q3512q3912q414q4518q494q51+24q59+28q6112q65+12q69+24q95+O(q100) 2 q + 4 q^{5} - 2 q^{9} - 2 q^{15} - 12 q^{19} - 8 q^{21} + 6 q^{25} + 16 q^{29} - 16 q^{31} - 8 q^{35} - 12 q^{39} - 12 q^{41} - 4 q^{45} - 18 q^{49} - 4 q^{51} + 24 q^{59} + 28 q^{61} - 12 q^{65} + 12 q^{69}+ \cdots - 24 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1920Z)×\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times.

nn 511511 641641 901901 15371537
χ(n)\chi(n) 11 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
769.1
1.00000i
1.00000i
0 1.00000i 0 2.00000 1.00000i 0 4.00000i 0 −1.00000 0
769.2 0 1.00000i 0 2.00000 + 1.00000i 0 4.00000i 0 −1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1920.2.f.j yes 2
4.b odd 2 1 1920.2.f.k yes 2
5.b even 2 1 inner 1920.2.f.j yes 2
5.c odd 4 1 9600.2.a.ba 1
5.c odd 4 1 9600.2.a.bd 1
8.b even 2 1 1920.2.f.b 2
8.d odd 2 1 1920.2.f.c yes 2
16.e even 4 1 3840.2.d.i 2
16.e even 4 1 3840.2.d.w 2
16.f odd 4 1 3840.2.d.h 2
16.f odd 4 1 3840.2.d.z 2
20.d odd 2 1 1920.2.f.k yes 2
20.e even 4 1 9600.2.a.bb 1
20.e even 4 1 9600.2.a.bc 1
40.e odd 2 1 1920.2.f.c yes 2
40.f even 2 1 1920.2.f.b 2
40.i odd 4 1 9600.2.a.c 1
40.i odd 4 1 9600.2.a.cb 1
40.k even 4 1 9600.2.a.d 1
40.k even 4 1 9600.2.a.ca 1
80.k odd 4 1 3840.2.d.h 2
80.k odd 4 1 3840.2.d.z 2
80.q even 4 1 3840.2.d.i 2
80.q even 4 1 3840.2.d.w 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1920.2.f.b 2 8.b even 2 1
1920.2.f.b 2 40.f even 2 1
1920.2.f.c yes 2 8.d odd 2 1
1920.2.f.c yes 2 40.e odd 2 1
1920.2.f.j yes 2 1.a even 1 1 trivial
1920.2.f.j yes 2 5.b even 2 1 inner
1920.2.f.k yes 2 4.b odd 2 1
1920.2.f.k yes 2 20.d odd 2 1
3840.2.d.h 2 16.f odd 4 1
3840.2.d.h 2 80.k odd 4 1
3840.2.d.i 2 16.e even 4 1
3840.2.d.i 2 80.q even 4 1
3840.2.d.w 2 16.e even 4 1
3840.2.d.w 2 80.q even 4 1
3840.2.d.z 2 16.f odd 4 1
3840.2.d.z 2 80.k odd 4 1
9600.2.a.c 1 40.i odd 4 1
9600.2.a.d 1 40.k even 4 1
9600.2.a.ba 1 5.c odd 4 1
9600.2.a.bb 1 20.e even 4 1
9600.2.a.bc 1 20.e even 4 1
9600.2.a.bd 1 5.c odd 4 1
9600.2.a.ca 1 40.k even 4 1
9600.2.a.cb 1 40.i odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1920,[χ])S_{2}^{\mathrm{new}}(1920, [\chi]):

T72+16 T_{7}^{2} + 16 Copy content Toggle raw display
T11 T_{11} Copy content Toggle raw display
T19+6 T_{19} + 6 Copy content Toggle raw display
T298 T_{29} - 8 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+1 T^{2} + 1 Copy content Toggle raw display
55 T24T+5 T^{2} - 4T + 5 Copy content Toggle raw display
77 T2+16 T^{2} + 16 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+36 T^{2} + 36 Copy content Toggle raw display
1717 T2+4 T^{2} + 4 Copy content Toggle raw display
1919 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
2323 T2+36 T^{2} + 36 Copy content Toggle raw display
2929 (T8)2 (T - 8)^{2} Copy content Toggle raw display
3131 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
3737 T2+100 T^{2} + 100 Copy content Toggle raw display
4141 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
4343 T2+16 T^{2} + 16 Copy content Toggle raw display
4747 T2+4 T^{2} + 4 Copy content Toggle raw display
5353 T2+36 T^{2} + 36 Copy content Toggle raw display
5959 (T12)2 (T - 12)^{2} Copy content Toggle raw display
6161 (T14)2 (T - 14)^{2} Copy content Toggle raw display
6767 T2+16 T^{2} + 16 Copy content Toggle raw display
7171 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
7373 T2+16 T^{2} + 16 Copy content Toggle raw display
7979 (T12)2 (T - 12)^{2} Copy content Toggle raw display
8383 T2+64 T^{2} + 64 Copy content Toggle raw display
8989 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
9797 T2 T^{2} Copy content Toggle raw display
show more
show less