Properties

Label 2-1920-5.4-c1-0-45
Degree $2$
Conductor $1920$
Sign $-0.894 + 0.447i$
Analytic cond. $15.3312$
Root an. cond. $3.91551$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·3-s + (2 − i)5-s − 4i·7-s − 9-s − 6i·13-s + (−1 − 2i)15-s − 2i·17-s − 6·19-s − 4·21-s + 6i·23-s + (3 − 4i)25-s + i·27-s + 8·29-s − 8·31-s + (−4 − 8i)35-s + ⋯
L(s)  = 1  − 0.577i·3-s + (0.894 − 0.447i)5-s − 1.51i·7-s − 0.333·9-s − 1.66i·13-s + (−0.258 − 0.516i)15-s − 0.485i·17-s − 1.37·19-s − 0.872·21-s + 1.25i·23-s + (0.600 − 0.800i)25-s + 0.192i·27-s + 1.48·29-s − 1.43·31-s + (−0.676 − 1.35i)35-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1920\)    =    \(2^{7} \cdot 3 \cdot 5\)
Sign: $-0.894 + 0.447i$
Analytic conductor: \(15.3312\)
Root analytic conductor: \(3.91551\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1920} (769, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1920,\ (\ :1/2),\ -0.894 + 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.655820207\)
\(L(\frac12)\) \(\approx\) \(1.655820207\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + iT \)
5 \( 1 + (-2 + i)T \)
good7 \( 1 + 4iT - 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 + 6iT - 13T^{2} \)
17 \( 1 + 2iT - 17T^{2} \)
19 \( 1 + 6T + 19T^{2} \)
23 \( 1 - 6iT - 23T^{2} \)
29 \( 1 - 8T + 29T^{2} \)
31 \( 1 + 8T + 31T^{2} \)
37 \( 1 - 10iT - 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 + 4iT - 43T^{2} \)
47 \( 1 + 2iT - 47T^{2} \)
53 \( 1 - 6iT - 53T^{2} \)
59 \( 1 - 12T + 59T^{2} \)
61 \( 1 - 14T + 61T^{2} \)
67 \( 1 - 4iT - 67T^{2} \)
71 \( 1 + 8T + 71T^{2} \)
73 \( 1 - 4iT - 73T^{2} \)
79 \( 1 - 12T + 79T^{2} \)
83 \( 1 + 8iT - 83T^{2} \)
89 \( 1 + 6T + 89T^{2} \)
97 \( 1 - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.677837639968309451837005472450, −8.121732002480809353675107529992, −7.21516605585194194959190067794, −6.62294726370191494405706318762, −5.63860816953378232698023246273, −4.95065225135551634082598349079, −3.83291737925194375357772197923, −2.79139402660676206332875153889, −1.52897513463252493945054421534, −0.58184425971407767233654672679, 2.05373433774555767093572023145, 2.39645388668815366288858194558, 3.76119844539937844423297141054, 4.73602281260995820595505859434, 5.57182273236609865220494082500, 6.37911386646073402901520764011, 6.79989865345280484695001224396, 8.392865466590526959443821282965, 8.852788276641653995601695500925, 9.406171627091146240017670032624

Graph of the $Z$-function along the critical line