Properties

Label 1920.2.bc.i.607.4
Level $1920$
Weight $2$
Character 1920.607
Analytic conductor $15.331$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1920,2,Mod(607,1920)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1920.607"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1920, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.bc (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,8,0,-4,0,-16,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 14 x^{14} - 10 x^{13} - 26 x^{12} + 78 x^{11} - 66 x^{10} - 74 x^{9} + 233 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 607.4
Root \(0.424183 + 1.34910i\) of defining polynomial
Character \(\chi\) \(=\) 1920.607
Dual form 1920.2.bc.i.1183.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +(0.609492 - 2.15140i) q^{5} +(0.566689 + 0.566689i) q^{7} -1.00000 q^{9} +(-3.64458 - 3.64458i) q^{11} +2.74185 q^{13} +(2.15140 + 0.609492i) q^{15} +(2.08381 + 2.08381i) q^{17} +(-5.79168 - 5.79168i) q^{19} +(-0.566689 + 0.566689i) q^{21} +(-4.28027 + 4.28027i) q^{23} +(-4.25704 - 2.62252i) q^{25} -1.00000i q^{27} +(-2.63716 + 2.63716i) q^{29} -8.10909i q^{31} +(3.64458 - 3.64458i) q^{33} +(1.56457 - 0.873782i) q^{35} +2.28428 q^{37} +2.74185i q^{39} +2.27486i q^{41} -3.06480 q^{43} +(-0.609492 + 2.15140i) q^{45} +(-1.80573 + 1.80573i) q^{47} -6.35773i q^{49} +(-2.08381 + 2.08381i) q^{51} +6.32215i q^{53} +(-10.0623 + 5.61960i) q^{55} +(5.79168 - 5.79168i) q^{57} +(-5.56839 + 5.56839i) q^{59} +(-4.82071 - 4.82071i) q^{61} +(-0.566689 - 0.566689i) q^{63} +(1.67114 - 5.89881i) q^{65} -3.34296 q^{67} +(-4.28027 - 4.28027i) q^{69} -2.81803 q^{71} +(-10.7052 - 10.7052i) q^{73} +(2.62252 - 4.25704i) q^{75} -4.13068i q^{77} +12.1478 q^{79} +1.00000 q^{81} -1.97640i q^{83} +(5.75316 - 3.21304i) q^{85} +(-2.63716 - 2.63716i) q^{87} -10.0322 q^{89} +(1.55378 + 1.55378i) q^{91} +8.10909 q^{93} +(-15.9902 + 8.93024i) q^{95} +(-1.02135 - 1.02135i) q^{97} +(3.64458 + 3.64458i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{5} - 4 q^{7} - 16 q^{9} + 8 q^{13} + 4 q^{15} - 8 q^{17} + 8 q^{19} + 4 q^{21} - 32 q^{25} + 12 q^{29} - 12 q^{35} + 24 q^{37} - 24 q^{43} - 8 q^{45} + 32 q^{47} + 8 q^{51} - 4 q^{55} - 8 q^{57}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 0.609492 2.15140i 0.272573 0.962135i
\(6\) 0 0
\(7\) 0.566689 + 0.566689i 0.214188 + 0.214188i 0.806044 0.591856i \(-0.201604\pi\)
−0.591856 + 0.806044i \(0.701604\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −3.64458 3.64458i −1.09888 1.09888i −0.994542 0.104339i \(-0.966727\pi\)
−0.104339 0.994542i \(-0.533273\pi\)
\(12\) 0 0
\(13\) 2.74185 0.760452 0.380226 0.924894i \(-0.375846\pi\)
0.380226 + 0.924894i \(0.375846\pi\)
\(14\) 0 0
\(15\) 2.15140 + 0.609492i 0.555489 + 0.157370i
\(16\) 0 0
\(17\) 2.08381 + 2.08381i 0.505397 + 0.505397i 0.913110 0.407713i \(-0.133674\pi\)
−0.407713 + 0.913110i \(0.633674\pi\)
\(18\) 0 0
\(19\) −5.79168 5.79168i −1.32870 1.32870i −0.906502 0.422201i \(-0.861258\pi\)
−0.422201 0.906502i \(-0.638742\pi\)
\(20\) 0 0
\(21\) −0.566689 + 0.566689i −0.123662 + 0.123662i
\(22\) 0 0
\(23\) −4.28027 + 4.28027i −0.892499 + 0.892499i −0.994758 0.102259i \(-0.967393\pi\)
0.102259 + 0.994758i \(0.467393\pi\)
\(24\) 0 0
\(25\) −4.25704 2.62252i −0.851408 0.524505i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −2.63716 + 2.63716i −0.489709 + 0.489709i −0.908214 0.418506i \(-0.862554\pi\)
0.418506 + 0.908214i \(0.362554\pi\)
\(30\) 0 0
\(31\) 8.10909i 1.45644i −0.685346 0.728218i \(-0.740349\pi\)
0.685346 0.728218i \(-0.259651\pi\)
\(32\) 0 0
\(33\) 3.64458 3.64458i 0.634439 0.634439i
\(34\) 0 0
\(35\) 1.56457 0.873782i 0.264460 0.147696i
\(36\) 0 0
\(37\) 2.28428 0.375534 0.187767 0.982214i \(-0.439875\pi\)
0.187767 + 0.982214i \(0.439875\pi\)
\(38\) 0 0
\(39\) 2.74185i 0.439047i
\(40\) 0 0
\(41\) 2.27486i 0.355273i 0.984096 + 0.177637i \(0.0568452\pi\)
−0.984096 + 0.177637i \(0.943155\pi\)
\(42\) 0 0
\(43\) −3.06480 −0.467378 −0.233689 0.972311i \(-0.575080\pi\)
−0.233689 + 0.972311i \(0.575080\pi\)
\(44\) 0 0
\(45\) −0.609492 + 2.15140i −0.0908578 + 0.320712i
\(46\) 0 0
\(47\) −1.80573 + 1.80573i −0.263392 + 0.263392i −0.826431 0.563039i \(-0.809632\pi\)
0.563039 + 0.826431i \(0.309632\pi\)
\(48\) 0 0
\(49\) 6.35773i 0.908247i
\(50\) 0 0
\(51\) −2.08381 + 2.08381i −0.291791 + 0.291791i
\(52\) 0 0
\(53\) 6.32215i 0.868415i 0.900813 + 0.434207i \(0.142971\pi\)
−0.900813 + 0.434207i \(0.857029\pi\)
\(54\) 0 0
\(55\) −10.0623 + 5.61960i −1.35680 + 0.757746i
\(56\) 0 0
\(57\) 5.79168 5.79168i 0.767127 0.767127i
\(58\) 0 0
\(59\) −5.56839 + 5.56839i −0.724942 + 0.724942i −0.969608 0.244665i \(-0.921322\pi\)
0.244665 + 0.969608i \(0.421322\pi\)
\(60\) 0 0
\(61\) −4.82071 4.82071i −0.617228 0.617228i 0.327591 0.944820i \(-0.393763\pi\)
−0.944820 + 0.327591i \(0.893763\pi\)
\(62\) 0 0
\(63\) −0.566689 0.566689i −0.0713961 0.0713961i
\(64\) 0 0
\(65\) 1.67114 5.89881i 0.207279 0.731658i
\(66\) 0 0
\(67\) −3.34296 −0.408407 −0.204204 0.978928i \(-0.565461\pi\)
−0.204204 + 0.978928i \(0.565461\pi\)
\(68\) 0 0
\(69\) −4.28027 4.28027i −0.515284 0.515284i
\(70\) 0 0
\(71\) −2.81803 −0.334439 −0.167219 0.985920i \(-0.553479\pi\)
−0.167219 + 0.985920i \(0.553479\pi\)
\(72\) 0 0
\(73\) −10.7052 10.7052i −1.25295 1.25295i −0.954391 0.298559i \(-0.903494\pi\)
−0.298559 0.954391i \(-0.596506\pi\)
\(74\) 0 0
\(75\) 2.62252 4.25704i 0.302823 0.491560i
\(76\) 0 0
\(77\) 4.13068i 0.470735i
\(78\) 0 0
\(79\) 12.1478 1.36673 0.683367 0.730075i \(-0.260515\pi\)
0.683367 + 0.730075i \(0.260515\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 1.97640i 0.216938i −0.994100 0.108469i \(-0.965405\pi\)
0.994100 0.108469i \(-0.0345948\pi\)
\(84\) 0 0
\(85\) 5.75316 3.21304i 0.624018 0.348503i
\(86\) 0 0
\(87\) −2.63716 2.63716i −0.282733 0.282733i
\(88\) 0 0
\(89\) −10.0322 −1.06341 −0.531706 0.846929i \(-0.678449\pi\)
−0.531706 + 0.846929i \(0.678449\pi\)
\(90\) 0 0
\(91\) 1.55378 + 1.55378i 0.162880 + 0.162880i
\(92\) 0 0
\(93\) 8.10909 0.840874
\(94\) 0 0
\(95\) −15.9902 + 8.93024i −1.64056 + 0.916223i
\(96\) 0 0
\(97\) −1.02135 1.02135i −0.103702 0.103702i 0.653352 0.757054i \(-0.273362\pi\)
−0.757054 + 0.653352i \(0.773362\pi\)
\(98\) 0 0
\(99\) 3.64458 + 3.64458i 0.366294 + 0.366294i
\(100\) 0 0
\(101\) 13.1932 13.1932i 1.31277 1.31277i 0.393412 0.919362i \(-0.371295\pi\)
0.919362 0.393412i \(-0.128705\pi\)
\(102\) 0 0
\(103\) 4.51726 4.51726i 0.445099 0.445099i −0.448623 0.893721i \(-0.648085\pi\)
0.893721 + 0.448623i \(0.148085\pi\)
\(104\) 0 0
\(105\) 0.873782 + 1.56457i 0.0852723 + 0.152686i
\(106\) 0 0
\(107\) 3.88249i 0.375334i −0.982233 0.187667i \(-0.939907\pi\)
0.982233 0.187667i \(-0.0600926\pi\)
\(108\) 0 0
\(109\) −2.51614 + 2.51614i −0.241003 + 0.241003i −0.817265 0.576262i \(-0.804511\pi\)
0.576262 + 0.817265i \(0.304511\pi\)
\(110\) 0 0
\(111\) 2.28428i 0.216815i
\(112\) 0 0
\(113\) −3.89520 + 3.89520i −0.366429 + 0.366429i −0.866173 0.499744i \(-0.833427\pi\)
0.499744 + 0.866173i \(0.333427\pi\)
\(114\) 0 0
\(115\) 6.59978 + 11.8174i 0.615433 + 1.10198i
\(116\) 0 0
\(117\) −2.74185 −0.253484
\(118\) 0 0
\(119\) 2.36174i 0.216500i
\(120\) 0 0
\(121\) 15.5659i 1.41508i
\(122\) 0 0
\(123\) −2.27486 −0.205117
\(124\) 0 0
\(125\) −8.23673 + 7.56018i −0.736715 + 0.676203i
\(126\) 0 0
\(127\) 3.11993 3.11993i 0.276849 0.276849i −0.555001 0.831850i \(-0.687282\pi\)
0.831850 + 0.555001i \(0.187282\pi\)
\(128\) 0 0
\(129\) 3.06480i 0.269841i
\(130\) 0 0
\(131\) 8.69631 8.69631i 0.759800 0.759800i −0.216486 0.976286i \(-0.569459\pi\)
0.976286 + 0.216486i \(0.0694595\pi\)
\(132\) 0 0
\(133\) 6.56416i 0.569185i
\(134\) 0 0
\(135\) −2.15140 0.609492i −0.185163 0.0524567i
\(136\) 0 0
\(137\) 16.1963 16.1963i 1.38375 1.38375i 0.545891 0.837856i \(-0.316191\pi\)
0.837856 0.545891i \(-0.183809\pi\)
\(138\) 0 0
\(139\) −10.8859 + 10.8859i −0.923329 + 0.923329i −0.997263 0.0739337i \(-0.976445\pi\)
0.0739337 + 0.997263i \(0.476445\pi\)
\(140\) 0 0
\(141\) −1.80573 1.80573i −0.152070 0.152070i
\(142\) 0 0
\(143\) −9.99288 9.99288i −0.835646 0.835646i
\(144\) 0 0
\(145\) 4.06626 + 7.28092i 0.337684 + 0.604647i
\(146\) 0 0
\(147\) 6.35773 0.524377
\(148\) 0 0
\(149\) 8.06960 + 8.06960i 0.661088 + 0.661088i 0.955636 0.294549i \(-0.0951694\pi\)
−0.294549 + 0.955636i \(0.595169\pi\)
\(150\) 0 0
\(151\) 10.9071 0.887609 0.443804 0.896124i \(-0.353628\pi\)
0.443804 + 0.896124i \(0.353628\pi\)
\(152\) 0 0
\(153\) −2.08381 2.08381i −0.168466 0.168466i
\(154\) 0 0
\(155\) −17.4459 4.94243i −1.40129 0.396985i
\(156\) 0 0
\(157\) 14.0713i 1.12301i −0.827472 0.561507i \(-0.810222\pi\)
0.827472 0.561507i \(-0.189778\pi\)
\(158\) 0 0
\(159\) −6.32215 −0.501379
\(160\) 0 0
\(161\) −4.85117 −0.382325
\(162\) 0 0
\(163\) 2.82750i 0.221467i 0.993850 + 0.110734i \(0.0353200\pi\)
−0.993850 + 0.110734i \(0.964680\pi\)
\(164\) 0 0
\(165\) −5.61960 10.0623i −0.437485 0.783347i
\(166\) 0 0
\(167\) −5.12509 5.12509i −0.396591 0.396591i 0.480438 0.877029i \(-0.340478\pi\)
−0.877029 + 0.480438i \(0.840478\pi\)
\(168\) 0 0
\(169\) −5.48226 −0.421712
\(170\) 0 0
\(171\) 5.79168 + 5.79168i 0.442901 + 0.442901i
\(172\) 0 0
\(173\) −4.60016 −0.349743 −0.174872 0.984591i \(-0.555951\pi\)
−0.174872 + 0.984591i \(0.555951\pi\)
\(174\) 0 0
\(175\) −0.926262 3.89857i −0.0700188 0.294704i
\(176\) 0 0
\(177\) −5.56839 5.56839i −0.418546 0.418546i
\(178\) 0 0
\(179\) −3.06396 3.06396i −0.229011 0.229011i 0.583268 0.812280i \(-0.301774\pi\)
−0.812280 + 0.583268i \(0.801774\pi\)
\(180\) 0 0
\(181\) 3.08559 3.08559i 0.229350 0.229350i −0.583071 0.812421i \(-0.698149\pi\)
0.812421 + 0.583071i \(0.198149\pi\)
\(182\) 0 0
\(183\) 4.82071 4.82071i 0.356357 0.356357i
\(184\) 0 0
\(185\) 1.39225 4.91440i 0.102360 0.361314i
\(186\) 0 0
\(187\) 15.1892i 1.11074i
\(188\) 0 0
\(189\) 0.566689 0.566689i 0.0412205 0.0412205i
\(190\) 0 0
\(191\) 21.0908i 1.52608i −0.646353 0.763038i \(-0.723707\pi\)
0.646353 0.763038i \(-0.276293\pi\)
\(192\) 0 0
\(193\) 15.2332 15.2332i 1.09651 1.09651i 0.101692 0.994816i \(-0.467574\pi\)
0.994816 0.101692i \(-0.0324255\pi\)
\(194\) 0 0
\(195\) 5.89881 + 1.67114i 0.422423 + 0.119673i
\(196\) 0 0
\(197\) −14.0460 −1.00073 −0.500367 0.865814i \(-0.666801\pi\)
−0.500367 + 0.865814i \(0.666801\pi\)
\(198\) 0 0
\(199\) 2.42066i 0.171596i 0.996313 + 0.0857978i \(0.0273439\pi\)
−0.996313 + 0.0857978i \(0.972656\pi\)
\(200\) 0 0
\(201\) 3.34296i 0.235794i
\(202\) 0 0
\(203\) −2.98890 −0.209780
\(204\) 0 0
\(205\) 4.89413 + 1.38651i 0.341821 + 0.0968380i
\(206\) 0 0
\(207\) 4.28027 4.28027i 0.297500 0.297500i
\(208\) 0 0
\(209\) 42.2164i 2.92017i
\(210\) 0 0
\(211\) −5.18795 + 5.18795i −0.357153 + 0.357153i −0.862762 0.505609i \(-0.831268\pi\)
0.505609 + 0.862762i \(0.331268\pi\)
\(212\) 0 0
\(213\) 2.81803i 0.193088i
\(214\) 0 0
\(215\) −1.86797 + 6.59361i −0.127395 + 0.449681i
\(216\) 0 0
\(217\) 4.59533 4.59533i 0.311951 0.311951i
\(218\) 0 0
\(219\) 10.7052 10.7052i 0.723391 0.723391i
\(220\) 0 0
\(221\) 5.71348 + 5.71348i 0.384331 + 0.384331i
\(222\) 0 0
\(223\) 11.3379 + 11.3379i 0.759240 + 0.759240i 0.976184 0.216944i \(-0.0696089\pi\)
−0.216944 + 0.976184i \(0.569609\pi\)
\(224\) 0 0
\(225\) 4.25704 + 2.62252i 0.283803 + 0.174835i
\(226\) 0 0
\(227\) −19.8951 −1.32049 −0.660243 0.751052i \(-0.729547\pi\)
−0.660243 + 0.751052i \(0.729547\pi\)
\(228\) 0 0
\(229\) −14.1933 14.1933i −0.937918 0.937918i 0.0602643 0.998182i \(-0.480806\pi\)
−0.998182 + 0.0602643i \(0.980806\pi\)
\(230\) 0 0
\(231\) 4.13068 0.271779
\(232\) 0 0
\(233\) 13.9475 + 13.9475i 0.913734 + 0.913734i 0.996564 0.0828295i \(-0.0263957\pi\)
−0.0828295 + 0.996564i \(0.526396\pi\)
\(234\) 0 0
\(235\) 2.78426 + 4.98541i 0.181625 + 0.325212i
\(236\) 0 0
\(237\) 12.1478i 0.789085i
\(238\) 0 0
\(239\) −16.4452 −1.06375 −0.531876 0.846822i \(-0.678513\pi\)
−0.531876 + 0.846822i \(0.678513\pi\)
\(240\) 0 0
\(241\) −4.70995 −0.303394 −0.151697 0.988427i \(-0.548474\pi\)
−0.151697 + 0.988427i \(0.548474\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) −13.6780 3.87499i −0.873856 0.247564i
\(246\) 0 0
\(247\) −15.8799 15.8799i −1.01042 1.01042i
\(248\) 0 0
\(249\) 1.97640 0.125249
\(250\) 0 0
\(251\) 14.6935 + 14.6935i 0.927448 + 0.927448i 0.997541 0.0700924i \(-0.0223294\pi\)
−0.0700924 + 0.997541i \(0.522329\pi\)
\(252\) 0 0
\(253\) 31.1996 1.96150
\(254\) 0 0
\(255\) 3.21304 + 5.75316i 0.201208 + 0.360277i
\(256\) 0 0
\(257\) 5.02979 + 5.02979i 0.313750 + 0.313750i 0.846360 0.532611i \(-0.178789\pi\)
−0.532611 + 0.846360i \(0.678789\pi\)
\(258\) 0 0
\(259\) 1.29448 + 1.29448i 0.0804349 + 0.0804349i
\(260\) 0 0
\(261\) 2.63716 2.63716i 0.163236 0.163236i
\(262\) 0 0
\(263\) 8.84851 8.84851i 0.545622 0.545622i −0.379549 0.925172i \(-0.623921\pi\)
0.925172 + 0.379549i \(0.123921\pi\)
\(264\) 0 0
\(265\) 13.6015 + 3.85330i 0.835532 + 0.236707i
\(266\) 0 0
\(267\) 10.0322i 0.613961i
\(268\) 0 0
\(269\) −4.66057 + 4.66057i −0.284160 + 0.284160i −0.834766 0.550605i \(-0.814397\pi\)
0.550605 + 0.834766i \(0.314397\pi\)
\(270\) 0 0
\(271\) 3.87643i 0.235477i 0.993045 + 0.117738i \(0.0375644\pi\)
−0.993045 + 0.117738i \(0.962436\pi\)
\(272\) 0 0
\(273\) −1.55378 + 1.55378i −0.0940388 + 0.0940388i
\(274\) 0 0
\(275\) 5.95712 + 25.0731i 0.359228 + 1.51196i
\(276\) 0 0
\(277\) 14.6951 0.882941 0.441471 0.897276i \(-0.354457\pi\)
0.441471 + 0.897276i \(0.354457\pi\)
\(278\) 0 0
\(279\) 8.10909i 0.485479i
\(280\) 0 0
\(281\) 0.328587i 0.0196019i 0.999952 + 0.00980093i \(0.00311978\pi\)
−0.999952 + 0.00980093i \(0.996880\pi\)
\(282\) 0 0
\(283\) 22.9890 1.36656 0.683278 0.730158i \(-0.260554\pi\)
0.683278 + 0.730158i \(0.260554\pi\)
\(284\) 0 0
\(285\) −8.93024 15.9902i −0.528981 0.947178i
\(286\) 0 0
\(287\) −1.28914 + 1.28914i −0.0760953 + 0.0760953i
\(288\) 0 0
\(289\) 8.31550i 0.489147i
\(290\) 0 0
\(291\) 1.02135 1.02135i 0.0598725 0.0598725i
\(292\) 0 0
\(293\) 22.0162i 1.28620i 0.765781 + 0.643101i \(0.222352\pi\)
−0.765781 + 0.643101i \(0.777648\pi\)
\(294\) 0 0
\(295\) 8.58594 + 15.3737i 0.499893 + 0.895092i
\(296\) 0 0
\(297\) −3.64458 + 3.64458i −0.211480 + 0.211480i
\(298\) 0 0
\(299\) −11.7359 + 11.7359i −0.678703 + 0.678703i
\(300\) 0 0
\(301\) −1.73679 1.73679i −0.100107 0.100107i
\(302\) 0 0
\(303\) 13.1932 + 13.1932i 0.757931 + 0.757931i
\(304\) 0 0
\(305\) −13.3095 + 7.43308i −0.762097 + 0.425617i
\(306\) 0 0
\(307\) 3.08698 0.176183 0.0880916 0.996112i \(-0.471923\pi\)
0.0880916 + 0.996112i \(0.471923\pi\)
\(308\) 0 0
\(309\) 4.51726 + 4.51726i 0.256978 + 0.256978i
\(310\) 0 0
\(311\) 24.3682 1.38179 0.690897 0.722953i \(-0.257216\pi\)
0.690897 + 0.722953i \(0.257216\pi\)
\(312\) 0 0
\(313\) 3.31911 + 3.31911i 0.187607 + 0.187607i 0.794661 0.607054i \(-0.207649\pi\)
−0.607054 + 0.794661i \(0.707649\pi\)
\(314\) 0 0
\(315\) −1.56457 + 0.873782i −0.0881533 + 0.0492320i
\(316\) 0 0
\(317\) 5.35749i 0.300907i −0.988617 0.150453i \(-0.951927\pi\)
0.988617 0.150453i \(-0.0480733\pi\)
\(318\) 0 0
\(319\) 19.2227 1.07626
\(320\) 0 0
\(321\) 3.88249 0.216699
\(322\) 0 0
\(323\) 24.1375i 1.34305i
\(324\) 0 0
\(325\) −11.6722 7.19056i −0.647455 0.398861i
\(326\) 0 0
\(327\) −2.51614 2.51614i −0.139143 0.139143i
\(328\) 0 0
\(329\) −2.04657 −0.112831
\(330\) 0 0
\(331\) 2.76903 + 2.76903i 0.152200 + 0.152200i 0.779100 0.626900i \(-0.215677\pi\)
−0.626900 + 0.779100i \(0.715677\pi\)
\(332\) 0 0
\(333\) −2.28428 −0.125178
\(334\) 0 0
\(335\) −2.03751 + 7.19204i −0.111321 + 0.392943i
\(336\) 0 0
\(337\) −7.30028 7.30028i −0.397672 0.397672i 0.479739 0.877411i \(-0.340731\pi\)
−0.877411 + 0.479739i \(0.840731\pi\)
\(338\) 0 0
\(339\) −3.89520 3.89520i −0.211558 0.211558i
\(340\) 0 0
\(341\) −29.5542 + 29.5542i −1.60045 + 1.60045i
\(342\) 0 0
\(343\) 7.56968 7.56968i 0.408724 0.408724i
\(344\) 0 0
\(345\) −11.8174 + 6.59978i −0.636226 + 0.355320i
\(346\) 0 0
\(347\) 17.0824i 0.917032i 0.888686 + 0.458516i \(0.151619\pi\)
−0.888686 + 0.458516i \(0.848381\pi\)
\(348\) 0 0
\(349\) 1.38113 1.38113i 0.0739302 0.0739302i −0.669175 0.743105i \(-0.733352\pi\)
0.743105 + 0.669175i \(0.233352\pi\)
\(350\) 0 0
\(351\) 2.74185i 0.146349i
\(352\) 0 0
\(353\) −6.69565 + 6.69565i −0.356373 + 0.356373i −0.862474 0.506101i \(-0.831086\pi\)
0.506101 + 0.862474i \(0.331086\pi\)
\(354\) 0 0
\(355\) −1.71757 + 6.06271i −0.0911590 + 0.321775i
\(356\) 0 0
\(357\) −2.36174 −0.124997
\(358\) 0 0
\(359\) 1.90946i 0.100777i −0.998730 0.0503886i \(-0.983954\pi\)
0.998730 0.0503886i \(-0.0160460\pi\)
\(360\) 0 0
\(361\) 48.0872i 2.53090i
\(362\) 0 0
\(363\) −15.5659 −0.816996
\(364\) 0 0
\(365\) −29.5559 + 16.5064i −1.54703 + 0.863986i
\(366\) 0 0
\(367\) −20.2767 + 20.2767i −1.05844 + 1.05844i −0.0602537 + 0.998183i \(0.519191\pi\)
−0.998183 + 0.0602537i \(0.980809\pi\)
\(368\) 0 0
\(369\) 2.27486i 0.118424i
\(370\) 0 0
\(371\) −3.58269 + 3.58269i −0.186004 + 0.186004i
\(372\) 0 0
\(373\) 34.5736i 1.79015i 0.445914 + 0.895076i \(0.352879\pi\)
−0.445914 + 0.895076i \(0.647121\pi\)
\(374\) 0 0
\(375\) −7.56018 8.23673i −0.390406 0.425343i
\(376\) 0 0
\(377\) −7.23070 + 7.23070i −0.372400 + 0.372400i
\(378\) 0 0
\(379\) 21.2172 21.2172i 1.08986 1.08986i 0.0943133 0.995543i \(-0.469934\pi\)
0.995543 0.0943133i \(-0.0300656\pi\)
\(380\) 0 0
\(381\) 3.11993 + 3.11993i 0.159839 + 0.159839i
\(382\) 0 0
\(383\) −3.13204 3.13204i −0.160040 0.160040i 0.622544 0.782584i \(-0.286099\pi\)
−0.782584 + 0.622544i \(0.786099\pi\)
\(384\) 0 0
\(385\) −8.88674 2.51762i −0.452910 0.128310i
\(386\) 0 0
\(387\) 3.06480 0.155793
\(388\) 0 0
\(389\) 15.2777 + 15.2777i 0.774610 + 0.774610i 0.978909 0.204299i \(-0.0654913\pi\)
−0.204299 + 0.978909i \(0.565491\pi\)
\(390\) 0 0
\(391\) −17.8385 −0.902133
\(392\) 0 0
\(393\) 8.69631 + 8.69631i 0.438671 + 0.438671i
\(394\) 0 0
\(395\) 7.40399 26.1348i 0.372535 1.31498i
\(396\) 0 0
\(397\) 9.39676i 0.471610i −0.971800 0.235805i \(-0.924227\pi\)
0.971800 0.235805i \(-0.0757726\pi\)
\(398\) 0 0
\(399\) 6.56416 0.328619
\(400\) 0 0
\(401\) 0.722171 0.0360635 0.0180317 0.999837i \(-0.494260\pi\)
0.0180317 + 0.999837i \(0.494260\pi\)
\(402\) 0 0
\(403\) 22.2339i 1.10755i
\(404\) 0 0
\(405\) 0.609492 2.15140i 0.0302859 0.106904i
\(406\) 0 0
\(407\) −8.32524 8.32524i −0.412667 0.412667i
\(408\) 0 0
\(409\) −20.7860 −1.02780 −0.513900 0.857850i \(-0.671800\pi\)
−0.513900 + 0.857850i \(0.671800\pi\)
\(410\) 0 0
\(411\) 16.1963 + 16.1963i 0.798907 + 0.798907i
\(412\) 0 0
\(413\) −6.31109 −0.310548
\(414\) 0 0
\(415\) −4.25203 1.20460i −0.208724 0.0591315i
\(416\) 0 0
\(417\) −10.8859 10.8859i −0.533085 0.533085i
\(418\) 0 0
\(419\) −6.25484 6.25484i −0.305569 0.305569i 0.537619 0.843188i \(-0.319324\pi\)
−0.843188 + 0.537619i \(0.819324\pi\)
\(420\) 0 0
\(421\) −16.2076 + 16.2076i −0.789909 + 0.789909i −0.981479 0.191570i \(-0.938642\pi\)
0.191570 + 0.981479i \(0.438642\pi\)
\(422\) 0 0
\(423\) 1.80573 1.80573i 0.0877974 0.0877974i
\(424\) 0 0
\(425\) −3.40601 14.3357i −0.165216 0.695382i
\(426\) 0 0
\(427\) 5.46368i 0.264406i
\(428\) 0 0
\(429\) 9.99288 9.99288i 0.482461 0.482461i
\(430\) 0 0
\(431\) 16.1416i 0.777512i 0.921341 + 0.388756i \(0.127095\pi\)
−0.921341 + 0.388756i \(0.872905\pi\)
\(432\) 0 0
\(433\) −23.9381 + 23.9381i −1.15039 + 1.15039i −0.163919 + 0.986474i \(0.552414\pi\)
−0.986474 + 0.163919i \(0.947586\pi\)
\(434\) 0 0
\(435\) −7.28092 + 4.06626i −0.349093 + 0.194962i
\(436\) 0 0
\(437\) 49.5800 2.37173
\(438\) 0 0
\(439\) 13.2194i 0.630927i −0.948938 0.315464i \(-0.897840\pi\)
0.948938 0.315464i \(-0.102160\pi\)
\(440\) 0 0
\(441\) 6.35773i 0.302749i
\(442\) 0 0
\(443\) 7.03868 0.334418 0.167209 0.985921i \(-0.446525\pi\)
0.167209 + 0.985921i \(0.446525\pi\)
\(444\) 0 0
\(445\) −6.11455 + 21.5833i −0.289857 + 1.02315i
\(446\) 0 0
\(447\) −8.06960 + 8.06960i −0.381679 + 0.381679i
\(448\) 0 0
\(449\) 28.2211i 1.33184i −0.746025 0.665918i \(-0.768040\pi\)
0.746025 0.665918i \(-0.231960\pi\)
\(450\) 0 0
\(451\) 8.29089 8.29089i 0.390403 0.390403i
\(452\) 0 0
\(453\) 10.9071i 0.512461i
\(454\) 0 0
\(455\) 4.28981 2.39578i 0.201109 0.112316i
\(456\) 0 0
\(457\) 27.6086 27.6086i 1.29148 1.29148i 0.357605 0.933873i \(-0.383594\pi\)
0.933873 0.357605i \(-0.116406\pi\)
\(458\) 0 0
\(459\) 2.08381 2.08381i 0.0972638 0.0972638i
\(460\) 0 0
\(461\) 16.4823 + 16.4823i 0.767657 + 0.767657i 0.977694 0.210036i \(-0.0673583\pi\)
−0.210036 + 0.977694i \(0.567358\pi\)
\(462\) 0 0
\(463\) 18.5827 + 18.5827i 0.863610 + 0.863610i 0.991755 0.128145i \(-0.0409024\pi\)
−0.128145 + 0.991755i \(0.540902\pi\)
\(464\) 0 0
\(465\) 4.94243 17.4459i 0.229200 0.809034i
\(466\) 0 0
\(467\) −11.5112 −0.532676 −0.266338 0.963880i \(-0.585814\pi\)
−0.266338 + 0.963880i \(0.585814\pi\)
\(468\) 0 0
\(469\) −1.89442 1.89442i −0.0874761 0.0874761i
\(470\) 0 0
\(471\) 14.0713 0.648373
\(472\) 0 0
\(473\) 11.1699 + 11.1699i 0.513593 + 0.513593i
\(474\) 0 0
\(475\) 9.46659 + 39.8442i 0.434357 + 1.82818i
\(476\) 0 0
\(477\) 6.32215i 0.289472i
\(478\) 0 0
\(479\) 10.5991 0.484286 0.242143 0.970241i \(-0.422150\pi\)
0.242143 + 0.970241i \(0.422150\pi\)
\(480\) 0 0
\(481\) 6.26316 0.285575
\(482\) 0 0
\(483\) 4.85117i 0.220736i
\(484\) 0 0
\(485\) −2.81983 + 1.57482i −0.128042 + 0.0715091i
\(486\) 0 0
\(487\) 23.1871 + 23.1871i 1.05071 + 1.05071i 0.998644 + 0.0520644i \(0.0165801\pi\)
0.0520644 + 0.998644i \(0.483420\pi\)
\(488\) 0 0
\(489\) −2.82750 −0.127864
\(490\) 0 0
\(491\) 17.0460 + 17.0460i 0.769277 + 0.769277i 0.977979 0.208702i \(-0.0669239\pi\)
−0.208702 + 0.977979i \(0.566924\pi\)
\(492\) 0 0
\(493\) −10.9907 −0.494995
\(494\) 0 0
\(495\) 10.0623 5.61960i 0.452266 0.252582i
\(496\) 0 0
\(497\) −1.59695 1.59695i −0.0716328 0.0716328i
\(498\) 0 0
\(499\) 23.5253 + 23.5253i 1.05314 + 1.05314i 0.998507 + 0.0546291i \(0.0173976\pi\)
0.0546291 + 0.998507i \(0.482602\pi\)
\(500\) 0 0
\(501\) 5.12509 5.12509i 0.228972 0.228972i
\(502\) 0 0
\(503\) −16.1405 + 16.1405i −0.719669 + 0.719669i −0.968537 0.248868i \(-0.919941\pi\)
0.248868 + 0.968537i \(0.419941\pi\)
\(504\) 0 0
\(505\) −20.3427 36.4250i −0.905239 1.62089i
\(506\) 0 0
\(507\) 5.48226i 0.243476i
\(508\) 0 0
\(509\) 29.4832 29.4832i 1.30682 1.30682i 0.383124 0.923697i \(-0.374848\pi\)
0.923697 0.383124i \(-0.125152\pi\)
\(510\) 0 0
\(511\) 12.1330i 0.536734i
\(512\) 0 0
\(513\) −5.79168 + 5.79168i −0.255709 + 0.255709i
\(514\) 0 0
\(515\) −6.96519 12.4717i −0.306923 0.549567i
\(516\) 0 0
\(517\) 13.1622 0.578873
\(518\) 0 0
\(519\) 4.60016i 0.201924i
\(520\) 0 0
\(521\) 18.6350i 0.816416i 0.912889 + 0.408208i \(0.133846\pi\)
−0.912889 + 0.408208i \(0.866154\pi\)
\(522\) 0 0
\(523\) 16.2282 0.709611 0.354805 0.934940i \(-0.384547\pi\)
0.354805 + 0.934940i \(0.384547\pi\)
\(524\) 0 0
\(525\) 3.89857 0.926262i 0.170148 0.0404254i
\(526\) 0 0
\(527\) 16.8978 16.8978i 0.736079 0.736079i
\(528\) 0 0
\(529\) 13.6415i 0.593108i
\(530\) 0 0
\(531\) 5.56839 5.56839i 0.241647 0.241647i
\(532\) 0 0
\(533\) 6.23732i 0.270168i
\(534\) 0 0
\(535\) −8.35278 2.36635i −0.361122 0.102306i
\(536\) 0 0
\(537\) 3.06396 3.06396i 0.132220 0.132220i
\(538\) 0 0
\(539\) −23.1712 + 23.1712i −0.998055 + 0.998055i
\(540\) 0 0
\(541\) 12.4579 + 12.4579i 0.535609 + 0.535609i 0.922236 0.386627i \(-0.126360\pi\)
−0.386627 + 0.922236i \(0.626360\pi\)
\(542\) 0 0
\(543\) 3.08559 + 3.08559i 0.132415 + 0.132415i
\(544\) 0 0
\(545\) 3.87966 + 6.94679i 0.166186 + 0.297568i
\(546\) 0 0
\(547\) −1.52574 −0.0652358 −0.0326179 0.999468i \(-0.510384\pi\)
−0.0326179 + 0.999468i \(0.510384\pi\)
\(548\) 0 0
\(549\) 4.82071 + 4.82071i 0.205743 + 0.205743i
\(550\) 0 0
\(551\) 30.5472 1.30135
\(552\) 0 0
\(553\) 6.88402 + 6.88402i 0.292738 + 0.292738i
\(554\) 0 0
\(555\) 4.91440 + 1.39225i 0.208605 + 0.0590978i
\(556\) 0 0
\(557\) 14.5277i 0.615560i −0.951458 0.307780i \(-0.900414\pi\)
0.951458 0.307780i \(-0.0995860\pi\)
\(558\) 0 0
\(559\) −8.40322 −0.355419
\(560\) 0 0
\(561\) 15.1892 0.641288
\(562\) 0 0
\(563\) 37.1864i 1.56722i −0.621253 0.783610i \(-0.713376\pi\)
0.621253 0.783610i \(-0.286624\pi\)
\(564\) 0 0
\(565\) 6.00603 + 10.7542i 0.252676 + 0.452434i
\(566\) 0 0
\(567\) 0.566689 + 0.566689i 0.0237987 + 0.0237987i
\(568\) 0 0
\(569\) −22.2439 −0.932513 −0.466256 0.884650i \(-0.654398\pi\)
−0.466256 + 0.884650i \(0.654398\pi\)
\(570\) 0 0
\(571\) −32.0005 32.0005i −1.33918 1.33918i −0.896854 0.442327i \(-0.854153\pi\)
−0.442327 0.896854i \(-0.645847\pi\)
\(572\) 0 0
\(573\) 21.0908 0.881081
\(574\) 0 0
\(575\) 29.4464 6.99617i 1.22800 0.291761i
\(576\) 0 0
\(577\) 3.38284 + 3.38284i 0.140830 + 0.140830i 0.774007 0.633177i \(-0.218250\pi\)
−0.633177 + 0.774007i \(0.718250\pi\)
\(578\) 0 0
\(579\) 15.2332 + 15.2332i 0.633069 + 0.633069i
\(580\) 0 0
\(581\) 1.12000 1.12000i 0.0464656 0.0464656i
\(582\) 0 0
\(583\) 23.0416 23.0416i 0.954284 0.954284i
\(584\) 0 0
\(585\) −1.67114 + 5.89881i −0.0690930 + 0.243886i
\(586\) 0 0
\(587\) 5.27446i 0.217700i −0.994058 0.108850i \(-0.965283\pi\)
0.994058 0.108850i \(-0.0347168\pi\)
\(588\) 0 0
\(589\) −46.9653 + 46.9653i −1.93517 + 1.93517i
\(590\) 0 0
\(591\) 14.0460i 0.577774i
\(592\) 0 0
\(593\) 20.6039 20.6039i 0.846101 0.846101i −0.143543 0.989644i \(-0.545850\pi\)
0.989644 + 0.143543i \(0.0458495\pi\)
\(594\) 0 0
\(595\) 5.08105 + 1.43946i 0.208303 + 0.0590122i
\(596\) 0 0
\(597\) −2.42066 −0.0990708
\(598\) 0 0
\(599\) 31.6423i 1.29287i 0.762969 + 0.646435i \(0.223741\pi\)
−0.762969 + 0.646435i \(0.776259\pi\)
\(600\) 0 0
\(601\) 12.1679i 0.496338i −0.968717 0.248169i \(-0.920171\pi\)
0.968717 0.248169i \(-0.0798289\pi\)
\(602\) 0 0
\(603\) 3.34296 0.136136
\(604\) 0 0
\(605\) 33.4884 + 9.48727i 1.36150 + 0.385712i
\(606\) 0 0
\(607\) −19.4977 + 19.4977i −0.791387 + 0.791387i −0.981720 0.190332i \(-0.939043\pi\)
0.190332 + 0.981720i \(0.439043\pi\)
\(608\) 0 0
\(609\) 2.98890i 0.121116i
\(610\) 0 0
\(611\) −4.95103 + 4.95103i −0.200297 + 0.200297i
\(612\) 0 0
\(613\) 40.9232i 1.65287i −0.563029 0.826437i \(-0.690364\pi\)
0.563029 0.826437i \(-0.309636\pi\)
\(614\) 0 0
\(615\) −1.38651 + 4.89413i −0.0559094 + 0.197350i
\(616\) 0 0
\(617\) −12.9650 + 12.9650i −0.521952 + 0.521952i −0.918160 0.396209i \(-0.870326\pi\)
0.396209 + 0.918160i \(0.370326\pi\)
\(618\) 0 0
\(619\) 12.2565 12.2565i 0.492632 0.492632i −0.416503 0.909135i \(-0.636744\pi\)
0.909135 + 0.416503i \(0.136744\pi\)
\(620\) 0 0
\(621\) 4.28027 + 4.28027i 0.171761 + 0.171761i
\(622\) 0 0
\(623\) −5.68514 5.68514i −0.227770 0.227770i
\(624\) 0 0
\(625\) 11.2447 + 22.3284i 0.449790 + 0.893134i
\(626\) 0 0
\(627\) −42.2164 −1.68596
\(628\) 0 0
\(629\) 4.76000 + 4.76000i 0.189794 + 0.189794i
\(630\) 0 0
\(631\) 7.42406 0.295547 0.147774 0.989021i \(-0.452789\pi\)
0.147774 + 0.989021i \(0.452789\pi\)
\(632\) 0 0
\(633\) −5.18795 5.18795i −0.206202 0.206202i
\(634\) 0 0
\(635\) −4.81064 8.61379i −0.190905 0.341828i
\(636\) 0 0
\(637\) 17.4319i 0.690678i
\(638\) 0 0
\(639\) 2.81803 0.111480
\(640\) 0 0
\(641\) −28.7869 −1.13702 −0.568508 0.822678i \(-0.692479\pi\)
−0.568508 + 0.822678i \(0.692479\pi\)
\(642\) 0 0
\(643\) 5.25971i 0.207423i −0.994607 0.103711i \(-0.966928\pi\)
0.994607 0.103711i \(-0.0330718\pi\)
\(644\) 0 0
\(645\) −6.59361 1.86797i −0.259623 0.0735514i
\(646\) 0 0
\(647\) −32.0670 32.0670i −1.26068 1.26068i −0.950762 0.309923i \(-0.899697\pi\)
−0.309923 0.950762i \(-0.600303\pi\)
\(648\) 0 0
\(649\) 40.5888 1.59325
\(650\) 0 0
\(651\) 4.59533 + 4.59533i 0.180105 + 0.180105i
\(652\) 0 0
\(653\) −31.6376 −1.23807 −0.619037 0.785362i \(-0.712477\pi\)
−0.619037 + 0.785362i \(0.712477\pi\)
\(654\) 0 0
\(655\) −13.4089 24.0096i −0.523929 0.938131i
\(656\) 0 0
\(657\) 10.7052 + 10.7052i 0.417650 + 0.417650i
\(658\) 0 0
\(659\) 12.8616 + 12.8616i 0.501015 + 0.501015i 0.911753 0.410738i \(-0.134729\pi\)
−0.410738 + 0.911753i \(0.634729\pi\)
\(660\) 0 0
\(661\) −28.8603 + 28.8603i −1.12254 + 1.12254i −0.131178 + 0.991359i \(0.541876\pi\)
−0.991359 + 0.131178i \(0.958124\pi\)
\(662\) 0 0
\(663\) −5.71348 + 5.71348i −0.221893 + 0.221893i
\(664\) 0 0
\(665\) −14.1221 4.00081i −0.547633 0.155145i
\(666\) 0 0
\(667\) 22.5756i 0.874129i
\(668\) 0 0
\(669\) −11.3379 + 11.3379i −0.438347 + 0.438347i
\(670\) 0 0
\(671\) 35.1389i 1.35652i
\(672\) 0 0
\(673\) 8.69401 8.69401i 0.335130 0.335130i −0.519401 0.854531i \(-0.673845\pi\)
0.854531 + 0.519401i \(0.173845\pi\)
\(674\) 0 0
\(675\) −2.62252 + 4.25704i −0.100941 + 0.163853i
\(676\) 0 0
\(677\) −13.3965 −0.514871 −0.257435 0.966295i \(-0.582877\pi\)
−0.257435 + 0.966295i \(0.582877\pi\)
\(678\) 0 0
\(679\) 1.15757i 0.0444236i
\(680\) 0 0
\(681\) 19.8951i 0.762383i
\(682\) 0 0
\(683\) 20.0009 0.765312 0.382656 0.923891i \(-0.375009\pi\)
0.382656 + 0.923891i \(0.375009\pi\)
\(684\) 0 0
\(685\) −24.9733 44.7164i −0.954179 1.70852i
\(686\) 0 0
\(687\) 14.1933 14.1933i 0.541507 0.541507i
\(688\) 0 0
\(689\) 17.3344i 0.660388i
\(690\) 0 0
\(691\) 29.3786 29.3786i 1.11761 1.11761i 0.125524 0.992091i \(-0.459939\pi\)
0.992091 0.125524i \(-0.0400613\pi\)
\(692\) 0 0
\(693\) 4.13068i 0.156912i
\(694\) 0 0
\(695\) 16.7850 + 30.0548i 0.636693 + 1.14004i
\(696\) 0 0
\(697\) −4.74036 + 4.74036i −0.179554 + 0.179554i
\(698\) 0 0
\(699\) −13.9475 + 13.9475i −0.527545 + 0.527545i
\(700\) 0 0
\(701\) −22.4862 22.4862i −0.849291 0.849291i 0.140754 0.990045i \(-0.455047\pi\)
−0.990045 + 0.140754i \(0.955047\pi\)
\(702\) 0 0
\(703\) −13.2298 13.2298i −0.498973 0.498973i
\(704\) 0 0
\(705\) −4.98541 + 2.78426i −0.187762 + 0.104861i
\(706\) 0 0
\(707\) 14.9529 0.562362
\(708\) 0 0
\(709\) −3.15802 3.15802i −0.118602 0.118602i 0.645315 0.763917i \(-0.276726\pi\)
−0.763917 + 0.645315i \(0.776726\pi\)
\(710\) 0 0
\(711\) −12.1478 −0.455578
\(712\) 0 0
\(713\) 34.7091 + 34.7091i 1.29987 + 1.29987i
\(714\) 0 0
\(715\) −27.5893 + 15.4081i −1.03178 + 0.576230i
\(716\) 0 0
\(717\) 16.4452i 0.614157i
\(718\) 0 0
\(719\) 1.88866 0.0704352 0.0352176 0.999380i \(-0.488788\pi\)
0.0352176 + 0.999380i \(0.488788\pi\)
\(720\) 0 0
\(721\) 5.11976 0.190670
\(722\) 0 0
\(723\) 4.70995i 0.175165i
\(724\) 0 0
\(725\) 18.1425 4.31048i 0.673796 0.160087i
\(726\) 0 0
\(727\) −0.978984 0.978984i −0.0363085 0.0363085i 0.688719 0.725028i \(-0.258173\pi\)
−0.725028 + 0.688719i \(0.758173\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −6.38645 6.38645i −0.236211 0.236211i
\(732\) 0 0
\(733\) 18.1447 0.670189 0.335094 0.942185i \(-0.391232\pi\)
0.335094 + 0.942185i \(0.391232\pi\)
\(734\) 0 0
\(735\) 3.87499 13.6780i 0.142931 0.504521i
\(736\) 0 0
\(737\) 12.1837 + 12.1837i 0.448791 + 0.448791i
\(738\) 0 0
\(739\) −18.8493 18.8493i −0.693383 0.693383i 0.269592 0.962975i \(-0.413111\pi\)
−0.962975 + 0.269592i \(0.913111\pi\)
\(740\) 0 0
\(741\) 15.8799 15.8799i 0.583364 0.583364i
\(742\) 0 0
\(743\) −6.80504 + 6.80504i −0.249653 + 0.249653i −0.820828 0.571175i \(-0.806488\pi\)
0.571175 + 0.820828i \(0.306488\pi\)
\(744\) 0 0
\(745\) 22.2793 12.4426i 0.816250 0.455861i
\(746\) 0 0
\(747\) 1.97640i 0.0723127i
\(748\) 0 0
\(749\) 2.20016 2.20016i 0.0803922 0.0803922i
\(750\) 0 0
\(751\) 1.26232i 0.0460627i −0.999735 0.0230313i \(-0.992668\pi\)
0.999735 0.0230313i \(-0.00733175\pi\)
\(752\) 0 0
\(753\) −14.6935 + 14.6935i −0.535462 + 0.535462i
\(754\) 0 0
\(755\) 6.64781 23.4656i 0.241938 0.854000i
\(756\) 0 0
\(757\) −29.2534 −1.06323 −0.531617 0.846985i \(-0.678415\pi\)
−0.531617 + 0.846985i \(0.678415\pi\)
\(758\) 0 0
\(759\) 31.1996i 1.13247i
\(760\) 0 0
\(761\) 43.1952i 1.56583i −0.622131 0.782913i \(-0.713733\pi\)
0.622131 0.782913i \(-0.286267\pi\)
\(762\) 0 0
\(763\) −2.85174 −0.103240
\(764\) 0 0
\(765\) −5.75316 + 3.21304i −0.208006 + 0.116168i
\(766\) 0 0
\(767\) −15.2677 + 15.2677i −0.551284 + 0.551284i
\(768\) 0 0
\(769\) 22.3663i 0.806550i −0.915079 0.403275i \(-0.867872\pi\)
0.915079 0.403275i \(-0.132128\pi\)
\(770\) 0 0
\(771\) −5.02979 + 5.02979i −0.181143 + 0.181143i
\(772\) 0 0
\(773\) 25.3081i 0.910270i −0.890422 0.455135i \(-0.849591\pi\)
0.890422 0.455135i \(-0.150409\pi\)
\(774\) 0 0
\(775\) −21.2663 + 34.5207i −0.763907 + 1.24002i
\(776\) 0 0
\(777\) −1.29448 + 1.29448i −0.0464391 + 0.0464391i
\(778\) 0 0
\(779\) 13.1753 13.1753i 0.472053 0.472053i
\(780\) 0 0
\(781\) 10.2705 + 10.2705i 0.367508 + 0.367508i
\(782\) 0 0
\(783\) 2.63716 + 2.63716i 0.0942445 + 0.0942445i
\(784\) 0 0
\(785\) −30.2731 8.57637i −1.08049 0.306104i
\(786\) 0 0
\(787\) −28.2019 −1.00529 −0.502645 0.864493i \(-0.667640\pi\)
−0.502645 + 0.864493i \(0.667640\pi\)
\(788\) 0 0
\(789\) 8.84851 + 8.84851i 0.315015 + 0.315015i
\(790\) 0 0
\(791\) −4.41473 −0.156970
\(792\) 0 0
\(793\) −13.2177 13.2177i −0.469373 0.469373i
\(794\) 0 0
\(795\) −3.85330 + 13.6015i −0.136663 + 0.482395i
\(796\) 0 0
\(797\) 15.2969i 0.541846i −0.962601 0.270923i \(-0.912671\pi\)
0.962601 0.270923i \(-0.0873288\pi\)
\(798\) 0 0
\(799\) −7.52557 −0.266235
\(800\) 0 0
\(801\) 10.0322 0.354470
\(802\) 0 0
\(803\) 78.0319i 2.75369i
\(804\) 0 0
\(805\) −2.95675 + 10.4368i −0.104212 + 0.367849i
\(806\) 0 0
\(807\) −4.66057 4.66057i −0.164060 0.164060i
\(808\) 0 0
\(809\) −6.74990 −0.237314 −0.118657 0.992935i \(-0.537859\pi\)
−0.118657 + 0.992935i \(0.537859\pi\)
\(810\) 0 0
\(811\) 4.99242 + 4.99242i 0.175307 + 0.175307i 0.789307 0.613999i \(-0.210440\pi\)
−0.613999 + 0.789307i \(0.710440\pi\)
\(812\) 0 0
\(813\) −3.87643 −0.135952
\(814\) 0 0
\(815\) 6.08309 + 1.72334i 0.213081 + 0.0603660i
\(816\) 0 0
\(817\) 17.7504 + 17.7504i 0.621006 + 0.621006i
\(818\) 0 0
\(819\) −1.55378 1.55378i −0.0542933 0.0542933i
\(820\) 0 0
\(821\) 28.2761 28.2761i 0.986842 0.986842i −0.0130724 0.999915i \(-0.504161\pi\)
0.999915 + 0.0130724i \(0.00416120\pi\)
\(822\) 0 0
\(823\) 20.7586 20.7586i 0.723599 0.723599i −0.245738 0.969336i \(-0.579030\pi\)
0.969336 + 0.245738i \(0.0790302\pi\)
\(824\) 0 0
\(825\) −25.0731 + 5.95712i −0.872933 + 0.207400i
\(826\) 0 0
\(827\) 17.1914i 0.597804i −0.954284 0.298902i \(-0.903380\pi\)
0.954284 0.298902i \(-0.0966204\pi\)
\(828\) 0 0
\(829\) 21.3409 21.3409i 0.741201 0.741201i −0.231608 0.972809i \(-0.574399\pi\)
0.972809 + 0.231608i \(0.0743987\pi\)
\(830\) 0 0
\(831\) 14.6951i 0.509766i
\(832\) 0 0
\(833\) 13.2483 13.2483i 0.459025 0.459025i
\(834\) 0 0
\(835\) −14.1498 + 7.90241i −0.489674 + 0.273474i
\(836\) 0 0
\(837\) −8.10909 −0.280291
\(838\) 0 0
\(839\) 24.3978i 0.842305i −0.906990 0.421153i \(-0.861626\pi\)
0.906990 0.421153i \(-0.138374\pi\)
\(840\) 0 0
\(841\) 15.0907i 0.520371i
\(842\) 0 0
\(843\) −0.328587 −0.0113171
\(844\) 0 0
\(845\) −3.34140 + 11.7945i −0.114947 + 0.405744i
\(846\) 0 0
\(847\) −8.82100 + 8.82100i −0.303093 + 0.303093i
\(848\) 0 0
\(849\) 22.9890i 0.788982i
\(850\) 0 0
\(851\) −9.77735 + 9.77735i −0.335163 + 0.335163i
\(852\) 0 0
\(853\) 57.1946i 1.95831i −0.203124 0.979153i \(-0.565109\pi\)
0.203124 0.979153i \(-0.434891\pi\)
\(854\) 0 0
\(855\) 15.9902 8.93024i 0.546854 0.305408i
\(856\) 0 0
\(857\) −13.4584 + 13.4584i −0.459731 + 0.459731i −0.898567 0.438836i \(-0.855391\pi\)
0.438836 + 0.898567i \(0.355391\pi\)
\(858\) 0 0
\(859\) 2.91627 2.91627i 0.0995019 0.0995019i −0.655603 0.755105i \(-0.727586\pi\)
0.755105 + 0.655603i \(0.227586\pi\)
\(860\) 0 0
\(861\) −1.28914 1.28914i −0.0439337 0.0439337i
\(862\) 0 0
\(863\) −25.5234 25.5234i −0.868825 0.868825i 0.123517 0.992342i \(-0.460583\pi\)
−0.992342 + 0.123517i \(0.960583\pi\)
\(864\) 0 0
\(865\) −2.80376 + 9.89677i −0.0953307 + 0.336500i
\(866\) 0 0
\(867\) 8.31550 0.282409
\(868\) 0 0
\(869\) −44.2736 44.2736i −1.50188 1.50188i
\(870\) 0 0
\(871\) −9.16589 −0.310574
\(872\) 0 0
\(873\) 1.02135 + 1.02135i 0.0345674 + 0.0345674i
\(874\) 0 0
\(875\) −8.95193 0.383390i −0.302631 0.0129609i
\(876\) 0 0
\(877\) 52.9978i 1.78961i 0.446460 + 0.894804i \(0.352685\pi\)
−0.446460 + 0.894804i \(0.647315\pi\)
\(878\) 0 0
\(879\) −22.0162 −0.742589
\(880\) 0 0
\(881\) 42.2460 1.42331 0.711653 0.702531i \(-0.247947\pi\)
0.711653 + 0.702531i \(0.247947\pi\)
\(882\) 0 0
\(883\) 23.6484i 0.795830i 0.917422 + 0.397915i \(0.130266\pi\)
−0.917422 + 0.397915i \(0.869734\pi\)
\(884\) 0 0
\(885\) −15.3737 + 8.58594i −0.516782 + 0.288613i
\(886\) 0 0
\(887\) −30.6018 30.6018i −1.02751 1.02751i −0.999611 0.0278982i \(-0.991119\pi\)
−0.0278982 0.999611i \(-0.508881\pi\)
\(888\) 0 0
\(889\) 3.53606 0.118596
\(890\) 0 0
\(891\) −3.64458 3.64458i −0.122098 0.122098i
\(892\) 0 0
\(893\) 20.9164 0.699940
\(894\) 0 0
\(895\) −8.45927 + 4.72435i −0.282762 + 0.157918i
\(896\) 0 0
\(897\) −11.7359 11.7359i −0.391849 0.391849i
\(898\) 0 0
\(899\) 21.3850 + 21.3850i 0.713229 + 0.713229i
\(900\) 0 0
\(901\) −13.1741 + 13.1741i −0.438894 + 0.438894i
\(902\) 0 0
\(903\) 1.73679 1.73679i 0.0577967 0.0577967i
\(904\) 0 0
\(905\) −4.75770 8.51898i −0.158151 0.283181i
\(906\) 0 0
\(907\) 34.6654i 1.15105i 0.817785 + 0.575523i \(0.195202\pi\)
−0.817785 + 0.575523i \(0.804798\pi\)
\(908\) 0 0
\(909\) −13.1932 + 13.1932i −0.437591 + 0.437591i
\(910\) 0 0
\(911\) 19.8125i 0.656418i 0.944605 + 0.328209i \(0.106445\pi\)
−0.944605 + 0.328209i \(0.893555\pi\)
\(912\) 0 0
\(913\) −7.20314 + 7.20314i −0.238389 + 0.238389i
\(914\) 0 0
\(915\) −7.43308 13.3095i −0.245730 0.439997i
\(916\) 0 0
\(917\) 9.85620 0.325480
\(918\) 0 0
\(919\) 16.7104i 0.551226i −0.961269 0.275613i \(-0.911119\pi\)
0.961269 0.275613i \(-0.0888808\pi\)
\(920\) 0 0
\(921\) 3.08698i 0.101719i
\(922\) 0 0
\(923\) −7.72661 −0.254325
\(924\) 0 0
\(925\) −9.72428 5.99058i −0.319732 0.196969i
\(926\) 0 0
\(927\) −4.51726 + 4.51726i −0.148366 + 0.148366i
\(928\) 0 0
\(929\) 9.62355i 0.315739i −0.987460 0.157869i \(-0.949538\pi\)
0.987460 0.157869i \(-0.0504625\pi\)
\(930\) 0 0
\(931\) −36.8219 + 36.8219i −1.20679 + 1.20679i
\(932\) 0 0
\(933\) 24.3682i 0.797780i
\(934\) 0 0
\(935\) −32.6780 9.25769i −1.06868 0.302759i
\(936\) 0 0
\(937\) 19.6920 19.6920i 0.643310 0.643310i −0.308057 0.951368i \(-0.599679\pi\)
0.951368 + 0.308057i \(0.0996789\pi\)
\(938\) 0 0
\(939\) −3.31911 + 3.31911i −0.108315 + 0.108315i
\(940\) 0 0
\(941\) 19.3709 + 19.3709i 0.631473 + 0.631473i 0.948437 0.316965i \(-0.102664\pi\)
−0.316965 + 0.948437i \(0.602664\pi\)
\(942\) 0 0
\(943\) −9.73702 9.73702i −0.317081 0.317081i
\(944\) 0 0
\(945\) −0.873782 1.56457i −0.0284241 0.0508954i
\(946\) 0 0
\(947\) 3.74620 0.121735 0.0608676 0.998146i \(-0.480613\pi\)
0.0608676 + 0.998146i \(0.480613\pi\)
\(948\) 0 0
\(949\) −29.3521 29.3521i −0.952809 0.952809i
\(950\) 0 0
\(951\) 5.35749 0.173728
\(952\) 0 0
\(953\) −11.3723 11.3723i −0.368385 0.368385i 0.498503 0.866888i \(-0.333883\pi\)
−0.866888 + 0.498503i \(0.833883\pi\)
\(954\) 0 0
\(955\) −45.3747 12.8547i −1.46829 0.415968i
\(956\) 0 0
\(957\) 19.2227i 0.621381i
\(958\) 0 0
\(959\) 18.3566 0.592765
\(960\) 0 0
\(961\) −34.7574 −1.12121
\(962\) 0 0
\(963\) 3.88249i 0.125111i
\(964\) 0 0
\(965\) −23.4881 42.0571i −0.756110 1.35387i
\(966\) 0 0
\(967\) −7.94580 7.94580i −0.255520 0.255520i 0.567709 0.823229i \(-0.307830\pi\)
−0.823229 + 0.567709i \(0.807830\pi\)
\(968\) 0 0
\(969\) 24.1375 0.775408
\(970\) 0 0
\(971\) −27.9413 27.9413i −0.896679 0.896679i 0.0984615 0.995141i \(-0.468608\pi\)
−0.995141 + 0.0984615i \(0.968608\pi\)
\(972\) 0 0
\(973\) −12.3378 −0.395533
\(974\) 0 0
\(975\) 7.19056 11.6722i 0.230282 0.373808i
\(976\) 0 0
\(977\) −26.4111 26.4111i −0.844968 0.844968i 0.144533 0.989500i \(-0.453832\pi\)
−0.989500 + 0.144533i \(0.953832\pi\)
\(978\) 0 0
\(979\) 36.5631 + 36.5631i 1.16856 + 1.16856i
\(980\) 0 0
\(981\) 2.51614 2.51614i 0.0803342 0.0803342i
\(982\) 0 0
\(983\) 25.4583 25.4583i 0.811993 0.811993i −0.172940 0.984932i \(-0.555327\pi\)
0.984932 + 0.172940i \(0.0553265\pi\)
\(984\) 0 0
\(985\) −8.56090 + 30.2185i −0.272773 + 0.962840i
\(986\) 0 0
\(987\) 2.04657i 0.0651430i
\(988\) 0 0
\(989\) 13.1182 13.1182i 0.417134 0.417134i
\(990\) 0 0
\(991\) 29.0499i 0.922801i −0.887192 0.461400i \(-0.847347\pi\)
0.887192 0.461400i \(-0.152653\pi\)
\(992\) 0 0
\(993\) −2.76903 + 2.76903i −0.0878726 + 0.0878726i
\(994\) 0 0
\(995\) 5.20780 + 1.47537i 0.165098 + 0.0467724i
\(996\) 0 0
\(997\) 40.4803 1.28202 0.641011 0.767531i \(-0.278515\pi\)
0.641011 + 0.767531i \(0.278515\pi\)
\(998\) 0 0
\(999\) 2.28428i 0.0722715i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.bc.i.607.4 16
4.3 odd 2 1920.2.bc.j.607.4 16
5.3 odd 4 1920.2.y.i.223.7 16
8.3 odd 2 960.2.bc.e.367.5 16
8.5 even 2 240.2.bc.e.67.3 yes 16
16.3 odd 4 240.2.y.e.187.8 yes 16
16.5 even 4 1920.2.y.j.1567.7 16
16.11 odd 4 1920.2.y.i.1567.7 16
16.13 even 4 960.2.y.e.847.2 16
20.3 even 4 1920.2.y.j.223.7 16
24.5 odd 2 720.2.bd.f.307.6 16
40.3 even 4 960.2.y.e.943.2 16
40.13 odd 4 240.2.y.e.163.8 16
48.35 even 4 720.2.z.f.667.1 16
80.3 even 4 240.2.bc.e.43.3 yes 16
80.13 odd 4 960.2.bc.e.463.5 16
80.43 even 4 inner 1920.2.bc.i.1183.4 16
80.53 odd 4 1920.2.bc.j.1183.4 16
120.53 even 4 720.2.z.f.163.1 16
240.83 odd 4 720.2.bd.f.523.6 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
240.2.y.e.163.8 16 40.13 odd 4
240.2.y.e.187.8 yes 16 16.3 odd 4
240.2.bc.e.43.3 yes 16 80.3 even 4
240.2.bc.e.67.3 yes 16 8.5 even 2
720.2.z.f.163.1 16 120.53 even 4
720.2.z.f.667.1 16 48.35 even 4
720.2.bd.f.307.6 16 24.5 odd 2
720.2.bd.f.523.6 16 240.83 odd 4
960.2.y.e.847.2 16 16.13 even 4
960.2.y.e.943.2 16 40.3 even 4
960.2.bc.e.367.5 16 8.3 odd 2
960.2.bc.e.463.5 16 80.13 odd 4
1920.2.y.i.223.7 16 5.3 odd 4
1920.2.y.i.1567.7 16 16.11 odd 4
1920.2.y.j.223.7 16 20.3 even 4
1920.2.y.j.1567.7 16 16.5 even 4
1920.2.bc.i.607.4 16 1.1 even 1 trivial
1920.2.bc.i.1183.4 16 80.43 even 4 inner
1920.2.bc.j.607.4 16 4.3 odd 2
1920.2.bc.j.1183.4 16 80.53 odd 4