| L(s) = 1 | + i·3-s + (0.609 − 2.15i)5-s + (0.566 + 0.566i)7-s − 9-s + (−3.64 − 3.64i)11-s + 2.74·13-s + (2.15 + 0.609i)15-s + (2.08 + 2.08i)17-s + (−5.79 − 5.79i)19-s + (−0.566 + 0.566i)21-s + (−4.28 + 4.28i)23-s + (−4.25 − 2.62i)25-s − i·27-s + (−2.63 + 2.63i)29-s − 8.10i·31-s + ⋯ |
| L(s) = 1 | + 0.577i·3-s + (0.272 − 0.962i)5-s + (0.214 + 0.214i)7-s − 0.333·9-s + (−1.09 − 1.09i)11-s + 0.760·13-s + (0.555 + 0.157i)15-s + (0.505 + 0.505i)17-s + (−1.32 − 1.32i)19-s + (−0.123 + 0.123i)21-s + (−0.892 + 0.892i)23-s + (−0.851 − 0.524i)25-s − 0.192i·27-s + (−0.489 + 0.489i)29-s − 1.45i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.613 + 0.789i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.613 + 0.789i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.8387817371\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8387817371\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 - iT \) |
| 5 | \( 1 + (-0.609 + 2.15i)T \) |
| good | 7 | \( 1 + (-0.566 - 0.566i)T + 7iT^{2} \) |
| 11 | \( 1 + (3.64 + 3.64i)T + 11iT^{2} \) |
| 13 | \( 1 - 2.74T + 13T^{2} \) |
| 17 | \( 1 + (-2.08 - 2.08i)T + 17iT^{2} \) |
| 19 | \( 1 + (5.79 + 5.79i)T + 19iT^{2} \) |
| 23 | \( 1 + (4.28 - 4.28i)T - 23iT^{2} \) |
| 29 | \( 1 + (2.63 - 2.63i)T - 29iT^{2} \) |
| 31 | \( 1 + 8.10iT - 31T^{2} \) |
| 37 | \( 1 - 2.28T + 37T^{2} \) |
| 41 | \( 1 - 2.27iT - 41T^{2} \) |
| 43 | \( 1 + 3.06T + 43T^{2} \) |
| 47 | \( 1 + (1.80 - 1.80i)T - 47iT^{2} \) |
| 53 | \( 1 - 6.32iT - 53T^{2} \) |
| 59 | \( 1 + (5.56 - 5.56i)T - 59iT^{2} \) |
| 61 | \( 1 + (4.82 + 4.82i)T + 61iT^{2} \) |
| 67 | \( 1 + 3.34T + 67T^{2} \) |
| 71 | \( 1 + 2.81T + 71T^{2} \) |
| 73 | \( 1 + (10.7 + 10.7i)T + 73iT^{2} \) |
| 79 | \( 1 - 12.1T + 79T^{2} \) |
| 83 | \( 1 + 1.97iT - 83T^{2} \) |
| 89 | \( 1 + 10.0T + 89T^{2} \) |
| 97 | \( 1 + (1.02 + 1.02i)T + 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.859091854464964047417047306015, −8.322538899131571765279122066978, −7.67372188599854003438478699520, −6.09678335470837403468399692591, −5.77751369409300002665221255429, −4.85391915188864612619736820027, −4.06389206077893432835517517233, −3.01423994271802970071453435321, −1.80940802886379468712955103043, −0.28224838032415902157166295126,
1.69596306063600972339445650089, 2.45381937734027330020887561432, 3.53850523536078556020986154154, 4.58672591681878957884047545747, 5.70095414795233902344182356209, 6.36352346536470650469562610290, 7.14795132398772159138052134682, 7.86373480795585482758131496988, 8.423296415393541172645764044157, 9.655713425768943489350631421365