Properties

Label 192.9.e.h
Level 192192
Weight 99
Character orbit 192.e
Analytic conductor 78.21778.217
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [192,9,Mod(65,192)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(192, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("192.65"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: N N == 192=263 192 = 2^{6} \cdot 3
Weight: k k == 9 9
Character orbit: [χ][\chi] == 192.e (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,126,0,0,0,5572,0,2754] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 78.216693131778.2166931317
Analytic rank: 00
Dimension: 22
Coefficient field: Q(2)\Q(\sqrt{-2})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+2 x^{2} + 2 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 223 2^{2}\cdot 3
Twist minimal: no (minimal twist has level 6)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=122\beta = 12\sqrt{-2}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(3β+63)q3+34βq5+2786q7+(378β+1377)q9+1322βq11+13150q13+(2142β29376)q15+3912βq17144002q19+(8358β+175518)q21++(1820394β143918208)q99+O(q100) q + (3 \beta + 63) q^{3} + 34 \beta q^{5} + 2786 q^{7} + (378 \beta + 1377) q^{9} + 1322 \beta q^{11} + 13150 q^{13} + (2142 \beta - 29376) q^{15} + 3912 \beta q^{17} - 144002 q^{19} + (8358 \beta + 175518) q^{21}+ \cdots + (1820394 \beta - 143918208) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+126q3+5572q7+2754q9+26300q1358752q15288004q19+351036q21+115394q25479682q27+1457476q312284416q33+3928892q37+1656900q39+287836416q99+O(q100) 2 q + 126 q^{3} + 5572 q^{7} + 2754 q^{9} + 26300 q^{13} - 58752 q^{15} - 288004 q^{19} + 351036 q^{21} + 115394 q^{25} - 479682 q^{27} + 1457476 q^{31} - 2284416 q^{33} + 3928892 q^{37} + 1656900 q^{39}+ \cdots - 287836416 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/192Z)×\left(\mathbb{Z}/192\mathbb{Z}\right)^\times.

nn 6565 127127 133133
χ(n)\chi(n) 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
65.1
1.41421i
1.41421i
0 63.0000 50.9117i 0 576.999i 0 2786.00 0 1377.00 6414.87i 0
65.2 0 63.0000 + 50.9117i 0 576.999i 0 2786.00 0 1377.00 + 6414.87i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 192.9.e.h 2
3.b odd 2 1 inner 192.9.e.h 2
4.b odd 2 1 192.9.e.c 2
8.b even 2 1 6.9.b.a 2
8.d odd 2 1 48.9.e.d 2
12.b even 2 1 192.9.e.c 2
24.f even 2 1 48.9.e.d 2
24.h odd 2 1 6.9.b.a 2
40.f even 2 1 150.9.d.a 2
40.i odd 4 2 150.9.b.a 4
72.j odd 6 2 162.9.d.a 4
72.n even 6 2 162.9.d.a 4
120.i odd 2 1 150.9.d.a 2
120.w even 4 2 150.9.b.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.9.b.a 2 8.b even 2 1
6.9.b.a 2 24.h odd 2 1
48.9.e.d 2 8.d odd 2 1
48.9.e.d 2 24.f even 2 1
150.9.b.a 4 40.i odd 4 2
150.9.b.a 4 120.w even 4 2
150.9.d.a 2 40.f even 2 1
150.9.d.a 2 120.i odd 2 1
162.9.d.a 4 72.j odd 6 2
162.9.d.a 4 72.n even 6 2
192.9.e.c 2 4.b odd 2 1
192.9.e.c 2 12.b even 2 1
192.9.e.h 2 1.a even 1 1 trivial
192.9.e.h 2 3.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S9new(192,[χ])S_{9}^{\mathrm{new}}(192, [\chi]):

T52+332928 T_{5}^{2} + 332928 Copy content Toggle raw display
T72786 T_{7} - 2786 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2126T+6561 T^{2} - 126T + 6561 Copy content Toggle raw display
55 T2+332928 T^{2} + 332928 Copy content Toggle raw display
77 (T2786)2 (T - 2786)^{2} Copy content Toggle raw display
1111 T2+503332992 T^{2} + 503332992 Copy content Toggle raw display
1313 (T13150)2 (T - 13150)^{2} Copy content Toggle raw display
1717 T2+4407478272 T^{2} + 4407478272 Copy content Toggle raw display
1919 (T+144002)2 (T + 144002)^{2} Copy content Toggle raw display
2323 T2+2435461632 T^{2} + 2435461632 Copy content Toggle raw display
2929 T2+393632899200 T^{2} + 393632899200 Copy content Toggle raw display
3131 (T728738)2 (T - 728738)^{2} Copy content Toggle raw display
3737 (T1964446)2 (T - 1964446)^{2} Copy content Toggle raw display
4141 T2+972443423232 T^{2} + 972443423232 Copy content Toggle raw display
4343 (T78142)2 (T - 78142)^{2} Copy content Toggle raw display
4747 T2+12388250880000 T^{2} + 12388250880000 Copy content Toggle raw display
5353 T2+272534585472 T^{2} + 272534585472 Copy content Toggle raw display
5959 T2+25042474046592 T^{2} + 25042474046592 Copy content Toggle raw display
6161 (T+17578274)2 (T + 17578274)^{2} Copy content Toggle raw display
6767 (T17136766)2 (T - 17136766)^{2} Copy content Toggle raw display
7171 T2+670324718707200 T^{2} + 670324718707200 Copy content Toggle raw display
7373 (T28139330)2 (T - 28139330)^{2} Copy content Toggle raw display
7979 (T9182498)2 (T - 9182498)^{2} Copy content Toggle raw display
8383 T2+75 ⁣ ⁣48 T^{2} + 75\!\cdots\!48 Copy content Toggle raw display
8989 T2+66 ⁣ ⁣12 T^{2} + 66\!\cdots\!12 Copy content Toggle raw display
9797 (T+128722558)2 (T + 128722558)^{2} Copy content Toggle raw display
show more
show less