gp: [N,k,chi] = [192,9,Mod(65,192)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(192, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 9, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("192.65");
S:= CuspForms(chi, 9);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,126,0,0,0,5572,0,2754]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of β = 12 − 2 \beta = 12\sqrt{-2} β = 1 2 − 2 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 192 Z ) × \left(\mathbb{Z}/192\mathbb{Z}\right)^\times ( Z / 1 9 2 Z ) × .
n n n
65 65 6 5
127 127 1 2 7
133 133 1 3 3
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 9 n e w ( 192 , [ χ ] ) S_{9}^{\mathrm{new}}(192, [\chi]) S 9 n e w ( 1 9 2 , [ χ ] ) :
T 5 2 + 332928 T_{5}^{2} + 332928 T 5 2 + 3 3 2 9 2 8
T5^2 + 332928
T 7 − 2786 T_{7} - 2786 T 7 − 2 7 8 6
T7 - 2786
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 − 126 T + 6561 T^{2} - 126T + 6561 T 2 − 1 2 6 T + 6 5 6 1
T^2 - 126*T + 6561
5 5 5
T 2 + 332928 T^{2} + 332928 T 2 + 3 3 2 9 2 8
T^2 + 332928
7 7 7
( T − 2786 ) 2 (T - 2786)^{2} ( T − 2 7 8 6 ) 2
(T - 2786)^2
11 11 1 1
T 2 + 503332992 T^{2} + 503332992 T 2 + 5 0 3 3 3 2 9 9 2
T^2 + 503332992
13 13 1 3
( T − 13150 ) 2 (T - 13150)^{2} ( T − 1 3 1 5 0 ) 2
(T - 13150)^2
17 17 1 7
T 2 + 4407478272 T^{2} + 4407478272 T 2 + 4 4 0 7 4 7 8 2 7 2
T^2 + 4407478272
19 19 1 9
( T + 144002 ) 2 (T + 144002)^{2} ( T + 1 4 4 0 0 2 ) 2
(T + 144002)^2
23 23 2 3
T 2 + 2435461632 T^{2} + 2435461632 T 2 + 2 4 3 5 4 6 1 6 3 2
T^2 + 2435461632
29 29 2 9
T 2 + 393632899200 T^{2} + 393632899200 T 2 + 3 9 3 6 3 2 8 9 9 2 0 0
T^2 + 393632899200
31 31 3 1
( T − 728738 ) 2 (T - 728738)^{2} ( T − 7 2 8 7 3 8 ) 2
(T - 728738)^2
37 37 3 7
( T − 1964446 ) 2 (T - 1964446)^{2} ( T − 1 9 6 4 4 4 6 ) 2
(T - 1964446)^2
41 41 4 1
T 2 + 972443423232 T^{2} + 972443423232 T 2 + 9 7 2 4 4 3 4 2 3 2 3 2
T^2 + 972443423232
43 43 4 3
( T − 78142 ) 2 (T - 78142)^{2} ( T − 7 8 1 4 2 ) 2
(T - 78142)^2
47 47 4 7
T 2 + 12388250880000 T^{2} + 12388250880000 T 2 + 1 2 3 8 8 2 5 0 8 8 0 0 0 0
T^2 + 12388250880000
53 53 5 3
T 2 + 272534585472 T^{2} + 272534585472 T 2 + 2 7 2 5 3 4 5 8 5 4 7 2
T^2 + 272534585472
59 59 5 9
T 2 + 25042474046592 T^{2} + 25042474046592 T 2 + 2 5 0 4 2 4 7 4 0 4 6 5 9 2
T^2 + 25042474046592
61 61 6 1
( T + 17578274 ) 2 (T + 17578274)^{2} ( T + 1 7 5 7 8 2 7 4 ) 2
(T + 17578274)^2
67 67 6 7
( T − 17136766 ) 2 (T - 17136766)^{2} ( T − 1 7 1 3 6 7 6 6 ) 2
(T - 17136766)^2
71 71 7 1
T 2 + 670324718707200 T^{2} + 670324718707200 T 2 + 6 7 0 3 2 4 7 1 8 7 0 7 2 0 0
T^2 + 670324718707200
73 73 7 3
( T − 28139330 ) 2 (T - 28139330)^{2} ( T − 2 8 1 3 9 3 3 0 ) 2
(T - 28139330)^2
79 79 7 9
( T − 9182498 ) 2 (T - 9182498)^{2} ( T − 9 1 8 2 4 9 8 ) 2
(T - 9182498)^2
83 83 8 3
T 2 + 75 ⋯ 48 T^{2} + 75\!\cdots\!48 T 2 + 7 5 ⋯ 4 8
T^2 + 7587880165842048
89 89 8 9
T 2 + 66 ⋯ 12 T^{2} + 66\!\cdots\!12 T 2 + 6 6 ⋯ 1 2
T^2 + 6602019835802112
97 97 9 7
( T + 128722558 ) 2 (T + 128722558)^{2} ( T + 1 2 8 7 2 2 5 5 8 ) 2
(T + 128722558)^2
show more
show less