Properties

Label 192.7.b.c
Level $192$
Weight $7$
Character orbit 192.b
Analytic conductor $44.170$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [192,7,Mod(31,192)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(192, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("192.31"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 192.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,1944,0,0,0,0,0,0,0,28080] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(44.1703840550\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.14637786276096.4
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 81x^{6} + 4880x^{4} + 136161x^{2} + 2825761 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{20}\cdot 3^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + ( - \beta_{3} - \beta_{2}) q^{5} + ( - \beta_{5} - 13 \beta_{4}) q^{7} + 243 q^{9} + (5 \beta_{6} + 7 \beta_1) q^{11} + ( - 24 \beta_{3} - 15 \beta_{2}) q^{13} + (3 \beta_{5} + 162 \beta_{4}) q^{15}+ \cdots + (1215 \beta_{6} + 1701 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 1944 q^{9} + 28080 q^{17} + 64232 q^{25} - 10368 q^{33} + 11664 q^{41} - 347928 q^{49} + 101088 q^{57} - 1271808 q^{65} + 734672 q^{73} + 472392 q^{81} - 1314576 q^{89} + 3000688 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 81x^{6} + 4880x^{4} + 136161x^{2} + 2825761 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -9\nu^{7} + 14400\nu^{5} + 561240\nu^{3} + 22980951\nu ) / 2756840 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 729\nu^{6} + 43920\nu^{4} + 3557520\nu^{2} + 62346609 ) / 1025410 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 4557\nu^{6} - 29280\nu^{4} - 2371680\nu^{2} - 351603003 ) / 2050820 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 162\nu^{7} + 9760\nu^{5} + 380396\nu^{3} + 5651522\nu ) / 4204181 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 1467\nu^{7} + 133956\nu^{5} + 9004698\nu^{3} + 424928223\nu ) / 4204181 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -1941\nu^{7} - 121920\nu^{5} - 8060040\nu^{3} - 75478581\nu ) / 2756840 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -144\nu^{6} - 11664\nu^{4} - 460656\nu^{2} - 9803592 ) / 1681 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 3\beta_{6} + 4\beta_{5} + 18\beta_{4} - 7\beta_1 ) / 288 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{7} - 12\beta_{3} + 158\beta_{2} - 5832 ) / 288 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -30\beta_{6} - 549\beta_{4} - 10\beta_1 ) / 36 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -81\beta_{7} - 972\beta_{3} - 6722\beta_{2} - 230328 ) / 288 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 4677\beta_{6} - 6236\beta_{5} + 147618\beta_{4} + 67167\beta_1 ) / 288 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 3660\beta_{3} + 1220\beta_{2} + 553311 ) / 9 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 177117\beta_{6} + 236156\beta_{5} + 8265582\beta_{4} - 3614553\beta_1 ) / 288 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
31.1
2.75877 + 5.77834i
−3.62480 + 5.27834i
−3.62480 5.27834i
2.75877 5.77834i
−2.75877 5.77834i
3.62480 5.27834i
3.62480 + 5.27834i
−2.75877 + 5.77834i
0 −15.5885 0 118.172i 0 450.040i 0 243.000 0
31.2 0 −15.5885 0 35.0337i 0 346.040i 0 243.000 0
31.3 0 −15.5885 0 35.0337i 0 346.040i 0 243.000 0
31.4 0 −15.5885 0 118.172i 0 450.040i 0 243.000 0
31.5 0 15.5885 0 118.172i 0 450.040i 0 243.000 0
31.6 0 15.5885 0 35.0337i 0 346.040i 0 243.000 0
31.7 0 15.5885 0 35.0337i 0 346.040i 0 243.000 0
31.8 0 15.5885 0 118.172i 0 450.040i 0 243.000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 31.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 192.7.b.c 8
3.b odd 2 1 576.7.b.d 8
4.b odd 2 1 inner 192.7.b.c 8
8.b even 2 1 inner 192.7.b.c 8
8.d odd 2 1 inner 192.7.b.c 8
12.b even 2 1 576.7.b.d 8
16.e even 4 2 768.7.g.i 8
16.f odd 4 2 768.7.g.i 8
24.f even 2 1 576.7.b.d 8
24.h odd 2 1 576.7.b.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
192.7.b.c 8 1.a even 1 1 trivial
192.7.b.c 8 4.b odd 2 1 inner
192.7.b.c 8 8.b even 2 1 inner
192.7.b.c 8 8.d odd 2 1 inner
576.7.b.d 8 3.b odd 2 1
576.7.b.d 8 12.b even 2 1
576.7.b.d 8 24.f even 2 1
576.7.b.d 8 24.h odd 2 1
768.7.g.i 8 16.e even 4 2
768.7.g.i 8 16.f odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 15192T_{5}^{2} + 17139600 \) acting on \(S_{7}^{\mathrm{new}}(192, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{2} - 243)^{4} \) Copy content Toggle raw display
$5$ \( (T^{4} + 15192 T^{2} + 17139600)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 322280 T^{2} + 24252455824)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} + \cdots + 5476947922944)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} + \cdots + 10172629575936)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 7020 T - 10494684)^{4} \) Copy content Toggle raw display
$19$ \( (T^{4} + \cdots + 418927889481984)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} + \cdots + 15\!\cdots\!56)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + \cdots + 21\!\cdots\!96)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + \cdots + 21\!\cdots\!00)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + \cdots + 16\!\cdots\!00)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 2916 T - 1845871740)^{4} \) Copy content Toggle raw display
$43$ \( (T^{4} + \cdots + 12\!\cdots\!16)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} + \cdots + 97\!\cdots\!84)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + \cdots + 26\!\cdots\!00)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} + \cdots + 40\!\cdots\!36)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + \cdots + 82\!\cdots\!00)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} + \cdots + 15\!\cdots\!64)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + \cdots + 13\!\cdots\!36)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 183668 T - 107658277340)^{4} \) Copy content Toggle raw display
$79$ \( (T^{4} + \cdots + 11\!\cdots\!00)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} + \cdots + 11\!\cdots\!96)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 328644 T - 542546548092)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} - 750172 T - 206348707004)^{4} \) Copy content Toggle raw display
show more
show less