Properties

Label 192.7
Level 192
Weight 7
Dimension 2570
Nonzero newspaces 8
Sturm bound 14336
Trace bound 11

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) = \( 7 \)
Nonzero newspaces: \( 8 \)
Sturm bound: \(14336\)
Trace bound: \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(\Gamma_1(192))\).

Total New Old
Modular forms 6288 2614 3674
Cusp forms 6000 2570 3430
Eisenstein series 288 44 244

Trace form

\( 2570 q - 6 q^{3} - 16 q^{4} - 8 q^{6} - 16 q^{7} - 10 q^{9} - 16 q^{10} + 2720 q^{11} - 8 q^{12} - 10096 q^{13} - 4 q^{15} - 16 q^{16} + 19552 q^{17} - 8 q^{18} + 7860 q^{19} - 16532 q^{21} + 127424 q^{22}+ \cdots + 4709180 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{7}^{\mathrm{new}}(\Gamma_1(192))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
192.7.b \(\chi_{192}(31, \cdot)\) 192.7.b.a 8 1
192.7.b.b 8
192.7.b.c 8
192.7.e \(\chi_{192}(65, \cdot)\) 192.7.e.a 1 1
192.7.e.b 1
192.7.e.c 2
192.7.e.d 2
192.7.e.e 2
192.7.e.f 2
192.7.e.g 6
192.7.e.h 6
192.7.e.i 12
192.7.e.j 12
192.7.g \(\chi_{192}(127, \cdot)\) 192.7.g.a 2 1
192.7.g.b 2
192.7.g.c 2
192.7.g.d 4
192.7.g.e 6
192.7.g.f 8
192.7.h \(\chi_{192}(161, \cdot)\) 192.7.h.a 4 1
192.7.h.b 4
192.7.h.c 8
192.7.h.d 32
192.7.i \(\chi_{192}(17, \cdot)\) 192.7.i.a 92 2
192.7.l \(\chi_{192}(79, \cdot)\) 192.7.l.a 48 2
192.7.m \(\chi_{192}(7, \cdot)\) None 0 4
192.7.p \(\chi_{192}(41, \cdot)\) None 0 4
192.7.q \(\chi_{192}(5, \cdot)\) n/a 1520 8
192.7.t \(\chi_{192}(19, \cdot)\) n/a 768 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{7}^{\mathrm{old}}(\Gamma_1(192))\) into lower level spaces

\( S_{7}^{\mathrm{old}}(\Gamma_1(192)) \cong \) \(S_{7}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 14}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 7}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 10}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 5}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 3}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(96))\)\(^{\oplus 2}\)