Properties

Label 192.4.k.a.47.5
Level $192$
Weight $4$
Character 192.47
Analytic conductor $11.328$
Analytic rank $0$
Dimension $44$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [192,4,Mod(47,192)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("192.47"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(192, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 192.k (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.3283667211\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 47.5
Character \(\chi\) \(=\) 192.47
Dual form 192.4.k.a.143.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.86039 + 3.47813i) q^{3} +(-13.5794 - 13.5794i) q^{5} +19.7355 q^{7} +(2.80518 - 26.8539i) q^{9} +(-20.5372 + 20.5372i) q^{11} +(36.7137 + 36.7137i) q^{13} +(99.6526 + 5.19077i) q^{15} +4.20201i q^{17} +(-38.6629 + 38.6629i) q^{19} +(-76.1866 + 68.6426i) q^{21} +69.4323i q^{23} +243.800i q^{25} +(82.5723 + 113.423i) q^{27} +(-23.0218 + 23.0218i) q^{29} +219.983i q^{31} +(7.85044 - 150.713i) q^{33} +(-267.996 - 267.996i) q^{35} +(68.0025 - 68.0025i) q^{37} +(-269.424 - 14.0339i) q^{39} +325.789 q^{41} +(36.9411 + 36.9411i) q^{43} +(-402.752 + 326.567i) q^{45} +192.724 q^{47} +46.4894 q^{49} +(-14.6152 - 16.2214i) q^{51} +(461.968 + 461.968i) q^{53} +557.767 q^{55} +(14.7791 - 283.729i) q^{57} +(0.977987 - 0.977987i) q^{59} +(216.498 + 216.498i) q^{61} +(55.3615 - 529.974i) q^{63} -997.098i q^{65} +(27.8307 - 27.8307i) q^{67} +(-241.495 - 268.036i) q^{69} +786.600i q^{71} -510.757i q^{73} +(-847.968 - 941.161i) q^{75} +(-405.313 + 405.313i) q^{77} -230.706i q^{79} +(-713.262 - 150.660i) q^{81} +(-593.835 - 593.835i) q^{83} +(57.0607 - 57.0607i) q^{85} +(8.80017 - 168.946i) q^{87} -1015.01 q^{89} +(724.562 + 724.562i) q^{91} +(-765.131 - 849.221i) q^{93} +1050.04 q^{95} +805.334 q^{97} +(493.894 + 609.115i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 2 q^{3} + 8 q^{7} - 4 q^{13} - 20 q^{19} - 56 q^{21} + 134 q^{27} - 4 q^{33} - 4 q^{37} - 596 q^{39} + 436 q^{43} - 252 q^{45} + 972 q^{49} + 648 q^{51} - 280 q^{55} - 916 q^{61} + 1636 q^{67} + 52 q^{69}+ \cdots - 1196 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.86039 + 3.47813i −0.742932 + 0.669367i
\(4\) 0 0
\(5\) −13.5794 13.5794i −1.21458 1.21458i −0.969505 0.245073i \(-0.921188\pi\)
−0.245073 0.969505i \(-0.578812\pi\)
\(6\) 0 0
\(7\) 19.7355 1.06562 0.532808 0.846236i \(-0.321137\pi\)
0.532808 + 0.846236i \(0.321137\pi\)
\(8\) 0 0
\(9\) 2.80518 26.8539i 0.103895 0.994588i
\(10\) 0 0
\(11\) −20.5372 + 20.5372i −0.562928 + 0.562928i −0.930138 0.367210i \(-0.880313\pi\)
0.367210 + 0.930138i \(0.380313\pi\)
\(12\) 0 0
\(13\) 36.7137 + 36.7137i 0.783272 + 0.783272i 0.980381 0.197110i \(-0.0631555\pi\)
−0.197110 + 0.980381i \(0.563155\pi\)
\(14\) 0 0
\(15\) 99.6526 + 5.19077i 1.71535 + 0.0893501i
\(16\) 0 0
\(17\) 4.20201i 0.0599493i 0.999551 + 0.0299746i \(0.00954265\pi\)
−0.999551 + 0.0299746i \(0.990457\pi\)
\(18\) 0 0
\(19\) −38.6629 + 38.6629i −0.466836 + 0.466836i −0.900888 0.434052i \(-0.857083\pi\)
0.434052 + 0.900888i \(0.357083\pi\)
\(20\) 0 0
\(21\) −76.1866 + 68.6426i −0.791680 + 0.713288i
\(22\) 0 0
\(23\) 69.4323i 0.629462i 0.949181 + 0.314731i \(0.101914\pi\)
−0.949181 + 0.314731i \(0.898086\pi\)
\(24\) 0 0
\(25\) 243.800i 1.95040i
\(26\) 0 0
\(27\) 82.5723 + 113.423i 0.588557 + 0.808455i
\(28\) 0 0
\(29\) −23.0218 + 23.0218i −0.147415 + 0.147415i −0.776962 0.629547i \(-0.783240\pi\)
0.629547 + 0.776962i \(0.283240\pi\)
\(30\) 0 0
\(31\) 219.983i 1.27452i 0.770648 + 0.637261i \(0.219933\pi\)
−0.770648 + 0.637261i \(0.780067\pi\)
\(32\) 0 0
\(33\) 7.85044 150.713i 0.0414117 0.795023i
\(34\) 0 0
\(35\) −267.996 267.996i −1.29427 1.29427i
\(36\) 0 0
\(37\) 68.0025 68.0025i 0.302150 0.302150i −0.539705 0.841854i \(-0.681464\pi\)
0.841854 + 0.539705i \(0.181464\pi\)
\(38\) 0 0
\(39\) −269.424 14.0339i −1.10621 0.0576212i
\(40\) 0 0
\(41\) 325.789 1.24097 0.620485 0.784219i \(-0.286936\pi\)
0.620485 + 0.784219i \(0.286936\pi\)
\(42\) 0 0
\(43\) 36.9411 + 36.9411i 0.131011 + 0.131011i 0.769572 0.638561i \(-0.220470\pi\)
−0.638561 + 0.769572i \(0.720470\pi\)
\(44\) 0 0
\(45\) −402.752 + 326.567i −1.33419 + 1.08182i
\(46\) 0 0
\(47\) 192.724 0.598120 0.299060 0.954234i \(-0.403327\pi\)
0.299060 + 0.954234i \(0.403327\pi\)
\(48\) 0 0
\(49\) 46.4894 0.135538
\(50\) 0 0
\(51\) −14.6152 16.2214i −0.0401281 0.0445382i
\(52\) 0 0
\(53\) 461.968 + 461.968i 1.19729 + 1.19729i 0.974976 + 0.222312i \(0.0713602\pi\)
0.222312 + 0.974976i \(0.428640\pi\)
\(54\) 0 0
\(55\) 557.767 1.36744
\(56\) 0 0
\(57\) 14.7791 283.729i 0.0343427 0.659312i
\(58\) 0 0
\(59\) 0.977987 0.977987i 0.00215802 0.00215802i −0.706027 0.708185i \(-0.749514\pi\)
0.708185 + 0.706027i \(0.249514\pi\)
\(60\) 0 0
\(61\) 216.498 + 216.498i 0.454421 + 0.454421i 0.896819 0.442398i \(-0.145872\pi\)
−0.442398 + 0.896819i \(0.645872\pi\)
\(62\) 0 0
\(63\) 55.3615 529.974i 0.110713 1.05985i
\(64\) 0 0
\(65\) 997.098i 1.90269i
\(66\) 0 0
\(67\) 27.8307 27.8307i 0.0507472 0.0507472i −0.681278 0.732025i \(-0.738575\pi\)
0.732025 + 0.681278i \(0.238575\pi\)
\(68\) 0 0
\(69\) −241.495 268.036i −0.421341 0.467648i
\(70\) 0 0
\(71\) 786.600i 1.31482i 0.753533 + 0.657411i \(0.228348\pi\)
−0.753533 + 0.657411i \(0.771652\pi\)
\(72\) 0 0
\(73\) 510.757i 0.818898i −0.912333 0.409449i \(-0.865721\pi\)
0.912333 0.409449i \(-0.134279\pi\)
\(74\) 0 0
\(75\) −847.968 941.161i −1.30553 1.44901i
\(76\) 0 0
\(77\) −405.313 + 405.313i −0.599866 + 0.599866i
\(78\) 0 0
\(79\) 230.706i 0.328562i −0.986414 0.164281i \(-0.947470\pi\)
0.986414 0.164281i \(-0.0525304\pi\)
\(80\) 0 0
\(81\) −713.262 150.660i −0.978411 0.206666i
\(82\) 0 0
\(83\) −593.835 593.835i −0.785323 0.785323i 0.195400 0.980724i \(-0.437399\pi\)
−0.980724 + 0.195400i \(0.937399\pi\)
\(84\) 0 0
\(85\) 57.0607 57.0607i 0.0728130 0.0728130i
\(86\) 0 0
\(87\) 8.80017 168.946i 0.0108446 0.208194i
\(88\) 0 0
\(89\) −1015.01 −1.20889 −0.604443 0.796648i \(-0.706604\pi\)
−0.604443 + 0.796648i \(0.706604\pi\)
\(90\) 0 0
\(91\) 724.562 + 724.562i 0.834667 + 0.834667i
\(92\) 0 0
\(93\) −765.131 849.221i −0.853123 0.946883i
\(94\) 0 0
\(95\) 1050.04 1.13402
\(96\) 0 0
\(97\) 805.334 0.842982 0.421491 0.906833i \(-0.361507\pi\)
0.421491 + 0.906833i \(0.361507\pi\)
\(98\) 0 0
\(99\) 493.894 + 609.115i 0.501396 + 0.618368i
\(100\) 0 0
\(101\) −611.231 611.231i −0.602176 0.602176i 0.338714 0.940889i \(-0.390008\pi\)
−0.940889 + 0.338714i \(0.890008\pi\)
\(102\) 0 0
\(103\) −1268.38 −1.21337 −0.606685 0.794942i \(-0.707501\pi\)
−0.606685 + 0.794942i \(0.707501\pi\)
\(104\) 0 0
\(105\) 1966.69 + 102.442i 1.82790 + 0.0952129i
\(106\) 0 0
\(107\) −153.071 + 153.071i −0.138298 + 0.138298i −0.772867 0.634568i \(-0.781178\pi\)
0.634568 + 0.772867i \(0.281178\pi\)
\(108\) 0 0
\(109\) −119.589 119.589i −0.105088 0.105088i 0.652608 0.757696i \(-0.273675\pi\)
−0.757696 + 0.652608i \(0.773675\pi\)
\(110\) 0 0
\(111\) −25.9942 + 499.038i −0.0222276 + 0.426726i
\(112\) 0 0
\(113\) 2097.44i 1.74611i 0.487622 + 0.873055i \(0.337865\pi\)
−0.487622 + 0.873055i \(0.662135\pi\)
\(114\) 0 0
\(115\) 942.848 942.848i 0.764531 0.764531i
\(116\) 0 0
\(117\) 1088.89 882.916i 0.860411 0.697655i
\(118\) 0 0
\(119\) 82.9287i 0.0638829i
\(120\) 0 0
\(121\) 487.443i 0.366223i
\(122\) 0 0
\(123\) −1257.67 + 1133.14i −0.921956 + 0.830664i
\(124\) 0 0
\(125\) 1613.23 1613.23i 1.15433 1.15433i
\(126\) 0 0
\(127\) 781.522i 0.546054i −0.962006 0.273027i \(-0.911975\pi\)
0.962006 0.273027i \(-0.0880249\pi\)
\(128\) 0 0
\(129\) −271.093 14.1209i −0.185027 0.00963779i
\(130\) 0 0
\(131\) −150.465 150.465i −0.100353 0.100353i 0.655148 0.755501i \(-0.272606\pi\)
−0.755501 + 0.655148i \(0.772606\pi\)
\(132\) 0 0
\(133\) −763.032 + 763.032i −0.497468 + 0.497468i
\(134\) 0 0
\(135\) 418.936 2661.50i 0.267083 1.69678i
\(136\) 0 0
\(137\) −1912.58 −1.19272 −0.596361 0.802716i \(-0.703387\pi\)
−0.596361 + 0.802716i \(0.703387\pi\)
\(138\) 0 0
\(139\) −112.824 112.824i −0.0688461 0.0688461i 0.671845 0.740691i \(-0.265502\pi\)
−0.740691 + 0.671845i \(0.765502\pi\)
\(140\) 0 0
\(141\) −743.988 + 670.318i −0.444362 + 0.400362i
\(142\) 0 0
\(143\) −1507.99 −0.881852
\(144\) 0 0
\(145\) 625.244 0.358094
\(146\) 0 0
\(147\) −179.467 + 161.696i −0.100695 + 0.0907244i
\(148\) 0 0
\(149\) 597.206 + 597.206i 0.328356 + 0.328356i 0.851961 0.523605i \(-0.175413\pi\)
−0.523605 + 0.851961i \(0.675413\pi\)
\(150\) 0 0
\(151\) 2256.11 1.21589 0.607946 0.793978i \(-0.291994\pi\)
0.607946 + 0.793978i \(0.291994\pi\)
\(152\) 0 0
\(153\) 112.840 + 11.7874i 0.0596248 + 0.00622845i
\(154\) 0 0
\(155\) 2987.24 2987.24i 1.54801 1.54801i
\(156\) 0 0
\(157\) 2287.02 + 2287.02i 1.16258 + 1.16258i 0.983910 + 0.178666i \(0.0571782\pi\)
0.178666 + 0.983910i \(0.442822\pi\)
\(158\) 0 0
\(159\) −3390.16 176.589i −1.69093 0.0880782i
\(160\) 0 0
\(161\) 1370.28i 0.670765i
\(162\) 0 0
\(163\) −2602.79 + 2602.79i −1.25071 + 1.25071i −0.295313 + 0.955400i \(0.595424\pi\)
−0.955400 + 0.295313i \(0.904576\pi\)
\(164\) 0 0
\(165\) −2153.19 + 1939.99i −1.01592 + 0.915320i
\(166\) 0 0
\(167\) 1654.83i 0.766795i 0.923583 + 0.383397i \(0.125246\pi\)
−0.923583 + 0.383397i \(0.874754\pi\)
\(168\) 0 0
\(169\) 498.785i 0.227030i
\(170\) 0 0
\(171\) 929.794 + 1146.71i 0.415808 + 0.512812i
\(172\) 0 0
\(173\) 2534.53 2534.53i 1.11385 1.11385i 0.121229 0.992625i \(-0.461317\pi\)
0.992625 0.121229i \(-0.0386835\pi\)
\(174\) 0 0
\(175\) 4811.50i 2.07837i
\(176\) 0 0
\(177\) −0.373839 + 7.17697i −0.000158754 + 0.00304777i
\(178\) 0 0
\(179\) 3012.01 + 3012.01i 1.25770 + 1.25770i 0.952190 + 0.305508i \(0.0988262\pi\)
0.305508 + 0.952190i \(0.401174\pi\)
\(180\) 0 0
\(181\) 432.978 432.978i 0.177807 0.177807i −0.612592 0.790399i \(-0.709873\pi\)
0.790399 + 0.612592i \(0.209873\pi\)
\(182\) 0 0
\(183\) −1588.77 82.7570i −0.641778 0.0334294i
\(184\) 0 0
\(185\) −1846.87 −0.733969
\(186\) 0 0
\(187\) −86.2977 86.2977i −0.0337471 0.0337471i
\(188\) 0 0
\(189\) 1629.60 + 2238.46i 0.627176 + 0.861503i
\(190\) 0 0
\(191\) −888.400 −0.336557 −0.168278 0.985740i \(-0.553821\pi\)
−0.168278 + 0.985740i \(0.553821\pi\)
\(192\) 0 0
\(193\) −2530.09 −0.943627 −0.471813 0.881698i \(-0.656400\pi\)
−0.471813 + 0.881698i \(0.656400\pi\)
\(194\) 0 0
\(195\) 3468.04 + 3849.18i 1.27360 + 1.41357i
\(196\) 0 0
\(197\) 1032.98 + 1032.98i 0.373587 + 0.373587i 0.868782 0.495195i \(-0.164903\pi\)
−0.495195 + 0.868782i \(0.664903\pi\)
\(198\) 0 0
\(199\) −641.440 −0.228495 −0.114247 0.993452i \(-0.536446\pi\)
−0.114247 + 0.993452i \(0.536446\pi\)
\(200\) 0 0
\(201\) −10.6384 + 204.236i −0.00373320 + 0.0716702i
\(202\) 0 0
\(203\) −454.346 + 454.346i −0.157088 + 0.157088i
\(204\) 0 0
\(205\) −4424.02 4424.02i −1.50725 1.50725i
\(206\) 0 0
\(207\) 1864.53 + 194.770i 0.626056 + 0.0653983i
\(208\) 0 0
\(209\) 1588.06i 0.525591i
\(210\) 0 0
\(211\) 2040.63 2040.63i 0.665796 0.665796i −0.290944 0.956740i \(-0.593969\pi\)
0.956740 + 0.290944i \(0.0939695\pi\)
\(212\) 0 0
\(213\) −2735.90 3036.58i −0.880098 0.976822i
\(214\) 0 0
\(215\) 1003.28i 0.318246i
\(216\) 0 0
\(217\) 4341.48i 1.35815i
\(218\) 0 0
\(219\) 1776.48 + 1971.72i 0.548144 + 0.608386i
\(220\) 0 0
\(221\) −154.271 + 154.271i −0.0469566 + 0.0469566i
\(222\) 0 0
\(223\) 4220.28i 1.26731i −0.773614 0.633657i \(-0.781553\pi\)
0.773614 0.633657i \(-0.218447\pi\)
\(224\) 0 0
\(225\) 6546.97 + 683.901i 1.93984 + 0.202637i
\(226\) 0 0
\(227\) −4171.11 4171.11i −1.21959 1.21959i −0.967777 0.251810i \(-0.918974\pi\)
−0.251810 0.967777i \(-0.581026\pi\)
\(228\) 0 0
\(229\) 2178.48 2178.48i 0.628638 0.628638i −0.319087 0.947725i \(-0.603376\pi\)
0.947725 + 0.319087i \(0.103376\pi\)
\(230\) 0 0
\(231\) 154.932 2974.39i 0.0441290 0.847190i
\(232\) 0 0
\(233\) −3707.90 −1.04254 −0.521272 0.853391i \(-0.674542\pi\)
−0.521272 + 0.853391i \(0.674542\pi\)
\(234\) 0 0
\(235\) −2617.07 2617.07i −0.726463 0.726463i
\(236\) 0 0
\(237\) 802.425 + 890.613i 0.219929 + 0.244099i
\(238\) 0 0
\(239\) −1721.72 −0.465979 −0.232990 0.972479i \(-0.574851\pi\)
−0.232990 + 0.972479i \(0.574851\pi\)
\(240\) 0 0
\(241\) −3133.35 −0.837497 −0.418748 0.908102i \(-0.637531\pi\)
−0.418748 + 0.908102i \(0.637531\pi\)
\(242\) 0 0
\(243\) 3277.48 1899.22i 0.865229 0.501377i
\(244\) 0 0
\(245\) −631.297 631.297i −0.164621 0.164621i
\(246\) 0 0
\(247\) −2838.92 −0.731319
\(248\) 0 0
\(249\) 4357.87 + 226.996i 1.10911 + 0.0577721i
\(250\) 0 0
\(251\) −2709.36 + 2709.36i −0.681327 + 0.681327i −0.960299 0.278972i \(-0.910006\pi\)
0.278972 + 0.960299i \(0.410006\pi\)
\(252\) 0 0
\(253\) −1425.95 1425.95i −0.354342 0.354342i
\(254\) 0 0
\(255\) −21.8117 + 418.741i −0.00535647 + 0.102834i
\(256\) 0 0
\(257\) 4861.83i 1.18005i 0.807385 + 0.590025i \(0.200882\pi\)
−0.807385 + 0.590025i \(0.799118\pi\)
\(258\) 0 0
\(259\) 1342.06 1342.06i 0.321976 0.321976i
\(260\) 0 0
\(261\) 553.644 + 682.805i 0.131302 + 0.161933i
\(262\) 0 0
\(263\) 5128.25i 1.20236i 0.799113 + 0.601181i \(0.205303\pi\)
−0.799113 + 0.601181i \(0.794697\pi\)
\(264\) 0 0
\(265\) 12546.5i 2.90840i
\(266\) 0 0
\(267\) 3918.33 3530.34i 0.898120 0.809189i
\(268\) 0 0
\(269\) 2562.79 2562.79i 0.580877 0.580877i −0.354267 0.935144i \(-0.615270\pi\)
0.935144 + 0.354267i \(0.115270\pi\)
\(270\) 0 0
\(271\) 4786.88i 1.07300i −0.843901 0.536499i \(-0.819747\pi\)
0.843901 0.536499i \(-0.180253\pi\)
\(272\) 0 0
\(273\) −5317.21 276.966i −1.17880 0.0614021i
\(274\) 0 0
\(275\) −5006.97 5006.97i −1.09793 1.09793i
\(276\) 0 0
\(277\) 288.977 288.977i 0.0626821 0.0626821i −0.675071 0.737753i \(-0.735887\pi\)
0.737753 + 0.675071i \(0.235887\pi\)
\(278\) 0 0
\(279\) 5907.41 + 617.092i 1.26762 + 0.132417i
\(280\) 0 0
\(281\) 6854.61 1.45520 0.727601 0.686001i \(-0.240635\pi\)
0.727601 + 0.686001i \(0.240635\pi\)
\(282\) 0 0
\(283\) −3730.40 3730.40i −0.783566 0.783566i 0.196865 0.980431i \(-0.436924\pi\)
−0.980431 + 0.196865i \(0.936924\pi\)
\(284\) 0 0
\(285\) −4053.55 + 3652.17i −0.842498 + 0.759074i
\(286\) 0 0
\(287\) 6429.61 1.32240
\(288\) 0 0
\(289\) 4895.34 0.996406
\(290\) 0 0
\(291\) −3108.90 + 2801.06i −0.626278 + 0.564265i
\(292\) 0 0
\(293\) 4295.66 + 4295.66i 0.856502 + 0.856502i 0.990924 0.134422i \(-0.0429178\pi\)
−0.134422 + 0.990924i \(0.542918\pi\)
\(294\) 0 0
\(295\) −26.5609 −0.00524216
\(296\) 0 0
\(297\) −4025.21 633.591i −0.786418 0.123787i
\(298\) 0 0
\(299\) −2549.11 + 2549.11i −0.493040 + 0.493040i
\(300\) 0 0
\(301\) 729.051 + 729.051i 0.139607 + 0.139607i
\(302\) 0 0
\(303\) 4485.53 + 233.645i 0.850452 + 0.0442989i
\(304\) 0 0
\(305\) 5879.81i 1.10386i
\(306\) 0 0
\(307\) −5854.72 + 5854.72i −1.08843 + 1.08843i −0.0927348 + 0.995691i \(0.529561\pi\)
−0.995691 + 0.0927348i \(0.970439\pi\)
\(308\) 0 0
\(309\) 4896.44 4411.59i 0.901451 0.812190i
\(310\) 0 0
\(311\) 4251.57i 0.775190i −0.921830 0.387595i \(-0.873306\pi\)
0.921830 0.387595i \(-0.126694\pi\)
\(312\) 0 0
\(313\) 468.690i 0.0846388i 0.999104 + 0.0423194i \(0.0134747\pi\)
−0.999104 + 0.0423194i \(0.986525\pi\)
\(314\) 0 0
\(315\) −7948.50 + 6444.95i −1.42174 + 1.15280i
\(316\) 0 0
\(317\) −4956.33 + 4956.33i −0.878155 + 0.878155i −0.993344 0.115188i \(-0.963253\pi\)
0.115188 + 0.993344i \(0.463253\pi\)
\(318\) 0 0
\(319\) 945.608i 0.165968i
\(320\) 0 0
\(321\) 58.5118 1123.31i 0.0101739 0.195318i
\(322\) 0 0
\(323\) −162.462 162.462i −0.0279865 0.0279865i
\(324\) 0 0
\(325\) −8950.78 + 8950.78i −1.52769 + 1.52769i
\(326\) 0 0
\(327\) 877.607 + 45.7134i 0.148415 + 0.00773075i
\(328\) 0 0
\(329\) 3803.49 0.637366
\(330\) 0 0
\(331\) 3112.74 + 3112.74i 0.516894 + 0.516894i 0.916630 0.399736i \(-0.130898\pi\)
−0.399736 + 0.916630i \(0.630898\pi\)
\(332\) 0 0
\(333\) −1635.37 2016.89i −0.269123 0.331907i
\(334\) 0 0
\(335\) −755.848 −0.123273
\(336\) 0 0
\(337\) −6448.09 −1.04228 −0.521142 0.853470i \(-0.674494\pi\)
−0.521142 + 0.853470i \(0.674494\pi\)
\(338\) 0 0
\(339\) −7295.17 8096.92i −1.16879 1.29724i
\(340\) 0 0
\(341\) −4517.85 4517.85i −0.717464 0.717464i
\(342\) 0 0
\(343\) −5851.78 −0.921185
\(344\) 0 0
\(345\) −360.407 + 6919.11i −0.0562425 + 1.07975i
\(346\) 0 0
\(347\) 9064.25 9064.25i 1.40229 1.40229i 0.609516 0.792774i \(-0.291364\pi\)
0.792774 0.609516i \(-0.208636\pi\)
\(348\) 0 0
\(349\) 4033.73 + 4033.73i 0.618684 + 0.618684i 0.945194 0.326510i \(-0.105873\pi\)
−0.326510 + 0.945194i \(0.605873\pi\)
\(350\) 0 0
\(351\) −1132.65 + 7195.71i −0.172240 + 1.09424i
\(352\) 0 0
\(353\) 7626.45i 1.14990i −0.818188 0.574950i \(-0.805021\pi\)
0.818188 0.574950i \(-0.194979\pi\)
\(354\) 0 0
\(355\) 10681.6 10681.6i 1.59695 1.59695i
\(356\) 0 0
\(357\) −288.437 320.137i −0.0427611 0.0474606i
\(358\) 0 0
\(359\) 5750.40i 0.845389i 0.906272 + 0.422694i \(0.138916\pi\)
−0.906272 + 0.422694i \(0.861084\pi\)
\(360\) 0 0
\(361\) 3869.35i 0.564128i
\(362\) 0 0
\(363\) −1695.39 1881.72i −0.245138 0.272079i
\(364\) 0 0
\(365\) −6935.77 + 6935.77i −0.994616 + 0.994616i
\(366\) 0 0
\(367\) 1897.35i 0.269866i −0.990855 0.134933i \(-0.956918\pi\)
0.990855 0.134933i \(-0.0430820\pi\)
\(368\) 0 0
\(369\) 913.897 8748.71i 0.128931 1.23425i
\(370\) 0 0
\(371\) 9117.17 + 9117.17i 1.27585 + 1.27585i
\(372\) 0 0
\(373\) 7007.64 7007.64i 0.972766 0.972766i −0.0268725 0.999639i \(-0.508555\pi\)
0.999639 + 0.0268725i \(0.00855481\pi\)
\(374\) 0 0
\(375\) −616.662 + 11838.7i −0.0849181 + 1.63026i
\(376\) 0 0
\(377\) −1690.43 −0.230932
\(378\) 0 0
\(379\) 6022.88 + 6022.88i 0.816292 + 0.816292i 0.985569 0.169277i \(-0.0541432\pi\)
−0.169277 + 0.985569i \(0.554143\pi\)
\(380\) 0 0
\(381\) 2718.24 + 3016.98i 0.365511 + 0.405681i
\(382\) 0 0
\(383\) 5812.46 0.775464 0.387732 0.921772i \(-0.373259\pi\)
0.387732 + 0.921772i \(0.373259\pi\)
\(384\) 0 0
\(385\) 11007.8 1.45717
\(386\) 0 0
\(387\) 1095.64 888.386i 0.143913 0.116690i
\(388\) 0 0
\(389\) 1335.20 + 1335.20i 0.174030 + 0.174030i 0.788747 0.614718i \(-0.210730\pi\)
−0.614718 + 0.788747i \(0.710730\pi\)
\(390\) 0 0
\(391\) −291.755 −0.0377358
\(392\) 0 0
\(393\) 1104.19 + 57.5158i 0.141728 + 0.00738242i
\(394\) 0 0
\(395\) −3132.84 + 3132.84i −0.399064 + 0.399064i
\(396\) 0 0
\(397\) −7841.95 7841.95i −0.991375 0.991375i 0.00858791 0.999963i \(-0.497266\pi\)
−0.999963 + 0.00858791i \(0.997266\pi\)
\(398\) 0 0
\(399\) 291.672 5599.53i 0.0365961 0.702574i
\(400\) 0 0
\(401\) 1006.91i 0.125393i −0.998033 0.0626965i \(-0.980030\pi\)
0.998033 0.0626965i \(-0.0199700\pi\)
\(402\) 0 0
\(403\) −8076.39 + 8076.39i −0.998297 + 0.998297i
\(404\) 0 0
\(405\) 7639.79 + 11731.5i 0.937344 + 1.43937i
\(406\) 0 0
\(407\) 2793.17i 0.340178i
\(408\) 0 0
\(409\) 7577.54i 0.916100i 0.888926 + 0.458050i \(0.151452\pi\)
−0.888926 + 0.458050i \(0.848548\pi\)
\(410\) 0 0
\(411\) 7383.31 6652.22i 0.886111 0.798369i
\(412\) 0 0
\(413\) 19.3010 19.3010i 0.00229962 0.00229962i
\(414\) 0 0
\(415\) 16127.8i 1.90767i
\(416\) 0 0
\(417\) 827.961 + 43.1274i 0.0972313 + 0.00506465i
\(418\) 0 0
\(419\) −5402.94 5402.94i −0.629954 0.629954i 0.318102 0.948056i \(-0.396955\pi\)
−0.948056 + 0.318102i \(0.896955\pi\)
\(420\) 0 0
\(421\) −1089.62 + 1089.62i −0.126139 + 0.126139i −0.767358 0.641219i \(-0.778429\pi\)
0.641219 + 0.767358i \(0.278429\pi\)
\(422\) 0 0
\(423\) 540.624 5175.38i 0.0621419 0.594883i
\(424\) 0 0
\(425\) −1024.45 −0.116925
\(426\) 0 0
\(427\) 4272.68 + 4272.68i 0.484238 + 0.484238i
\(428\) 0 0
\(429\) 5821.44 5245.01i 0.655156 0.590283i
\(430\) 0 0
\(431\) −2457.25 −0.274621 −0.137310 0.990528i \(-0.543846\pi\)
−0.137310 + 0.990528i \(0.543846\pi\)
\(432\) 0 0
\(433\) −10663.1 −1.18346 −0.591728 0.806138i \(-0.701554\pi\)
−0.591728 + 0.806138i \(0.701554\pi\)
\(434\) 0 0
\(435\) −2413.68 + 2174.68i −0.266040 + 0.239696i
\(436\) 0 0
\(437\) −2684.46 2684.46i −0.293856 0.293856i
\(438\) 0 0
\(439\) 12250.0 1.33180 0.665900 0.746041i \(-0.268048\pi\)
0.665900 + 0.746041i \(0.268048\pi\)
\(440\) 0 0
\(441\) 130.411 1248.42i 0.0140817 0.134804i
\(442\) 0 0
\(443\) −7482.50 + 7482.50i −0.802492 + 0.802492i −0.983485 0.180992i \(-0.942069\pi\)
0.180992 + 0.983485i \(0.442069\pi\)
\(444\) 0 0
\(445\) 13783.2 + 13783.2i 1.46829 + 1.46829i
\(446\) 0 0
\(447\) −4382.61 228.284i −0.463737 0.0241554i
\(448\) 0 0
\(449\) 461.956i 0.0485547i 0.999705 + 0.0242773i \(0.00772848\pi\)
−0.999705 + 0.0242773i \(0.992272\pi\)
\(450\) 0 0
\(451\) −6690.82 + 6690.82i −0.698577 + 0.698577i
\(452\) 0 0
\(453\) −8709.46 + 7847.05i −0.903325 + 0.813878i
\(454\) 0 0
\(455\) 19678.2i 2.02754i
\(456\) 0 0
\(457\) 4766.75i 0.487919i −0.969785 0.243960i \(-0.921554\pi\)
0.969785 0.243960i \(-0.0784464\pi\)
\(458\) 0 0
\(459\) −476.605 + 346.970i −0.0484663 + 0.0352836i
\(460\) 0 0
\(461\) −6786.71 + 6786.71i −0.685658 + 0.685658i −0.961269 0.275611i \(-0.911120\pi\)
0.275611 + 0.961269i \(0.411120\pi\)
\(462\) 0 0
\(463\) 4659.31i 0.467681i 0.972275 + 0.233841i \(0.0751294\pi\)
−0.972275 + 0.233841i \(0.924871\pi\)
\(464\) 0 0
\(465\) −1141.88 + 21921.9i −0.113879 + 2.18625i
\(466\) 0 0
\(467\) −77.7107 77.7107i −0.00770026 0.00770026i 0.703246 0.710946i \(-0.251733\pi\)
−0.710946 + 0.703246i \(0.751733\pi\)
\(468\) 0 0
\(469\) 549.252 549.252i 0.0540770 0.0540770i
\(470\) 0 0
\(471\) −16783.4 874.224i −1.64190 0.0855246i
\(472\) 0 0
\(473\) −1517.34 −0.147500
\(474\) 0 0
\(475\) −9426.01 9426.01i −0.910516 0.910516i
\(476\) 0 0
\(477\) 13701.5 11109.7i 1.31520 1.06642i
\(478\) 0 0
\(479\) −4315.85 −0.411683 −0.205842 0.978585i \(-0.565993\pi\)
−0.205842 + 0.978585i \(0.565993\pi\)
\(480\) 0 0
\(481\) 4993.24 0.473331
\(482\) 0 0
\(483\) −4766.02 5289.81i −0.448988 0.498333i
\(484\) 0 0
\(485\) −10935.9 10935.9i −1.02387 1.02387i
\(486\) 0 0
\(487\) 11571.8 1.07673 0.538367 0.842711i \(-0.319042\pi\)
0.538367 + 0.842711i \(0.319042\pi\)
\(488\) 0 0
\(489\) 994.927 19100.6i 0.0920085 1.76638i
\(490\) 0 0
\(491\) −3134.09 + 3134.09i −0.288064 + 0.288064i −0.836314 0.548250i \(-0.815294\pi\)
0.548250 + 0.836314i \(0.315294\pi\)
\(492\) 0 0
\(493\) −96.7378 96.7378i −0.00883743 0.00883743i
\(494\) 0 0
\(495\) 1564.63 14978.2i 0.142071 1.36004i
\(496\) 0 0
\(497\) 15523.9i 1.40109i
\(498\) 0 0
\(499\) 4382.81 4382.81i 0.393190 0.393190i −0.482633 0.875823i \(-0.660320\pi\)
0.875823 + 0.482633i \(0.160320\pi\)
\(500\) 0 0
\(501\) −5755.73 6388.29i −0.513267 0.569676i
\(502\) 0 0
\(503\) 11741.7i 1.04082i −0.853915 0.520412i \(-0.825778\pi\)
0.853915 0.520412i \(-0.174222\pi\)
\(504\) 0 0
\(505\) 16600.3i 1.46278i
\(506\) 0 0
\(507\) −1734.84 1925.50i −0.151966 0.168668i
\(508\) 0 0
\(509\) 9177.29 9177.29i 0.799167 0.799167i −0.183797 0.982964i \(-0.558839\pi\)
0.982964 + 0.183797i \(0.0588389\pi\)
\(510\) 0 0
\(511\) 10080.0i 0.872631i
\(512\) 0 0
\(513\) −7577.76 1192.78i −0.652176 0.102656i
\(514\) 0 0
\(515\) 17223.8 + 17223.8i 1.47373 + 1.47373i
\(516\) 0 0
\(517\) −3958.01 + 3958.01i −0.336699 + 0.336699i
\(518\) 0 0
\(519\) −968.833 + 18599.7i −0.0819404 + 1.57309i
\(520\) 0 0
\(521\) 21786.3 1.83200 0.916001 0.401176i \(-0.131398\pi\)
0.916001 + 0.401176i \(0.131398\pi\)
\(522\) 0 0
\(523\) 3381.21 + 3381.21i 0.282696 + 0.282696i 0.834183 0.551487i \(-0.185939\pi\)
−0.551487 + 0.834183i \(0.685939\pi\)
\(524\) 0 0
\(525\) −16735.1 18574.3i −1.39120 1.54409i
\(526\) 0 0
\(527\) −924.372 −0.0764066
\(528\) 0 0
\(529\) 7346.16 0.603777
\(530\) 0 0
\(531\) −23.5193 29.0062i −0.00192213 0.00237055i
\(532\) 0 0
\(533\) 11960.9 + 11960.9i 0.972017 + 0.972017i
\(534\) 0 0
\(535\) 4157.21 0.335948
\(536\) 0 0
\(537\) −22103.7 1151.35i −1.77624 0.0925222i
\(538\) 0 0
\(539\) −954.764 + 954.764i −0.0762979 + 0.0762979i
\(540\) 0 0
\(541\) −2531.45 2531.45i −0.201175 0.201175i 0.599328 0.800503i \(-0.295434\pi\)
−0.800503 + 0.599328i \(0.795434\pi\)
\(542\) 0 0
\(543\) −165.508 + 3177.42i −0.0130803 + 0.251116i
\(544\) 0 0
\(545\) 3247.89i 0.255274i
\(546\) 0 0
\(547\) 13220.9 13220.9i 1.03343 1.03343i 0.0340067 0.999422i \(-0.489173\pi\)
0.999422 0.0340067i \(-0.0108267\pi\)
\(548\) 0 0
\(549\) 6421.11 5206.49i 0.499174 0.404749i
\(550\) 0 0
\(551\) 1780.18i 0.137637i
\(552\) 0 0
\(553\) 4553.09i 0.350121i
\(554\) 0 0
\(555\) 7129.62 6423.64i 0.545289 0.491295i
\(556\) 0 0
\(557\) 1799.67 1799.67i 0.136902 0.136902i −0.635335 0.772237i \(-0.719138\pi\)
0.772237 + 0.635335i \(0.219138\pi\)
\(558\) 0 0
\(559\) 2712.49i 0.205234i
\(560\) 0 0
\(561\) 633.298 + 32.9876i 0.0476611 + 0.00248260i
\(562\) 0 0
\(563\) 9770.30 + 9770.30i 0.731384 + 0.731384i 0.970894 0.239510i \(-0.0769869\pi\)
−0.239510 + 0.970894i \(0.576987\pi\)
\(564\) 0 0
\(565\) 28481.9 28481.9i 2.12079 2.12079i
\(566\) 0 0
\(567\) −14076.6 2973.34i −1.04261 0.220227i
\(568\) 0 0
\(569\) −10828.4 −0.797804 −0.398902 0.916994i \(-0.630609\pi\)
−0.398902 + 0.916994i \(0.630609\pi\)
\(570\) 0 0
\(571\) −7393.50 7393.50i −0.541871 0.541871i 0.382206 0.924077i \(-0.375164\pi\)
−0.924077 + 0.382206i \(0.875164\pi\)
\(572\) 0 0
\(573\) 3429.57 3089.97i 0.250039 0.225280i
\(574\) 0 0
\(575\) −16927.6 −1.22770
\(576\) 0 0
\(577\) 9184.00 0.662625 0.331313 0.943521i \(-0.392508\pi\)
0.331313 + 0.943521i \(0.392508\pi\)
\(578\) 0 0
\(579\) 9767.13 8799.99i 0.701050 0.631633i
\(580\) 0 0
\(581\) −11719.6 11719.6i −0.836853 0.836853i
\(582\) 0 0
\(583\) −18975.1 −1.34797
\(584\) 0 0
\(585\) −26776.0 2797.04i −1.89239 0.197681i
\(586\) 0 0
\(587\) 13196.5 13196.5i 0.927903 0.927903i −0.0696672 0.997570i \(-0.522194\pi\)
0.997570 + 0.0696672i \(0.0221937\pi\)
\(588\) 0 0
\(589\) −8505.20 8505.20i −0.594993 0.594993i
\(590\) 0 0
\(591\) −7580.53 394.860i −0.527617 0.0274828i
\(592\) 0 0
\(593\) 6984.22i 0.483655i −0.970319 0.241828i \(-0.922253\pi\)
0.970319 0.241828i \(-0.0777469\pi\)
\(594\) 0 0
\(595\) 1126.12 1126.12i 0.0775907 0.0775907i
\(596\) 0 0
\(597\) 2476.21 2231.01i 0.169756 0.152947i
\(598\) 0 0
\(599\) 6684.31i 0.455949i −0.973667 0.227975i \(-0.926790\pi\)
0.973667 0.227975i \(-0.0732104\pi\)
\(600\) 0 0
\(601\) 14533.0i 0.986377i −0.869923 0.493188i \(-0.835831\pi\)
0.869923 0.493188i \(-0.164169\pi\)
\(602\) 0 0
\(603\) −669.292 825.432i −0.0452001 0.0557449i
\(604\) 0 0
\(605\) 6619.18 6619.18i 0.444806 0.444806i
\(606\) 0 0
\(607\) 12378.6i 0.827733i −0.910338 0.413866i \(-0.864178\pi\)
0.910338 0.413866i \(-0.135822\pi\)
\(608\) 0 0
\(609\) 173.676 3334.23i 0.0115561 0.221855i
\(610\) 0 0
\(611\) 7075.59 + 7075.59i 0.468490 + 0.468490i
\(612\) 0 0
\(613\) −18856.7 + 18856.7i −1.24244 + 1.24244i −0.283455 + 0.958986i \(0.591481\pi\)
−0.958986 + 0.283455i \(0.908519\pi\)
\(614\) 0 0
\(615\) 32465.8 + 1691.10i 2.12869 + 0.110881i
\(616\) 0 0
\(617\) 4117.09 0.268635 0.134317 0.990938i \(-0.457116\pi\)
0.134317 + 0.990938i \(0.457116\pi\)
\(618\) 0 0
\(619\) 11488.2 + 11488.2i 0.745958 + 0.745958i 0.973717 0.227759i \(-0.0731399\pi\)
−0.227759 + 0.973717i \(0.573140\pi\)
\(620\) 0 0
\(621\) −7875.23 + 5733.19i −0.508892 + 0.370475i
\(622\) 0 0
\(623\) −20031.7 −1.28821
\(624\) 0 0
\(625\) −13338.3 −0.853652
\(626\) 0 0
\(627\) 5523.49 + 6130.53i 0.351813 + 0.390478i
\(628\) 0 0
\(629\) 285.747 + 285.747i 0.0181137 + 0.0181137i
\(630\) 0 0
\(631\) −12047.6 −0.760077 −0.380039 0.924971i \(-0.624089\pi\)
−0.380039 + 0.924971i \(0.624089\pi\)
\(632\) 0 0
\(633\) −780.039 + 14975.2i −0.0489791 + 0.940302i
\(634\) 0 0
\(635\) −10612.6 + 10612.6i −0.663225 + 0.663225i
\(636\) 0 0
\(637\) 1706.80 + 1706.80i 0.106163 + 0.106163i
\(638\) 0 0
\(639\) 21123.3 + 2206.55i 1.30771 + 0.136604i
\(640\) 0 0
\(641\) 15280.3i 0.941550i −0.882253 0.470775i \(-0.843974\pi\)
0.882253 0.470775i \(-0.156026\pi\)
\(642\) 0 0
\(643\) −10573.2 + 10573.2i −0.648468 + 0.648468i −0.952623 0.304155i \(-0.901626\pi\)
0.304155 + 0.952623i \(0.401626\pi\)
\(644\) 0 0
\(645\) 3489.53 + 3873.03i 0.213023 + 0.236435i
\(646\) 0 0
\(647\) 4804.62i 0.291946i 0.989289 + 0.145973i \(0.0466312\pi\)
−0.989289 + 0.145973i \(0.953369\pi\)
\(648\) 0 0
\(649\) 40.1703i 0.00242962i
\(650\) 0 0
\(651\) −15100.2 16759.8i −0.909101 1.00901i
\(652\) 0 0
\(653\) −1034.28 + 1034.28i −0.0619823 + 0.0619823i −0.737418 0.675436i \(-0.763955\pi\)
0.675436 + 0.737418i \(0.263955\pi\)
\(654\) 0 0
\(655\) 4086.45i 0.243772i
\(656\) 0 0
\(657\) −13715.8 1432.76i −0.814467 0.0850798i
\(658\) 0 0
\(659\) −3161.81 3161.81i −0.186899 0.186899i 0.607455 0.794354i \(-0.292191\pi\)
−0.794354 + 0.607455i \(0.792191\pi\)
\(660\) 0 0
\(661\) −17535.7 + 17535.7i −1.03186 + 1.03186i −0.0323858 + 0.999475i \(0.510311\pi\)
−0.999475 + 0.0323858i \(0.989689\pi\)
\(662\) 0 0
\(663\) 58.9707 1132.12i 0.00345435 0.0663167i
\(664\) 0 0
\(665\) 20723.0 1.20843
\(666\) 0 0
\(667\) −1598.46 1598.46i −0.0927923 0.0927923i
\(668\) 0 0
\(669\) 14678.7 + 16291.9i 0.848298 + 0.941528i
\(670\) 0 0
\(671\) −8892.53 −0.511613
\(672\) 0 0
\(673\) 10046.4 0.575426 0.287713 0.957717i \(-0.407105\pi\)
0.287713 + 0.957717i \(0.407105\pi\)
\(674\) 0 0
\(675\) −27652.5 + 20131.1i −1.57681 + 1.14792i
\(676\) 0 0
\(677\) 7587.41 + 7587.41i 0.430735 + 0.430735i 0.888878 0.458143i \(-0.151485\pi\)
−0.458143 + 0.888878i \(0.651485\pi\)
\(678\) 0 0
\(679\) 15893.7 0.898295
\(680\) 0 0
\(681\) 30609.8 + 1594.42i 1.72242 + 0.0897186i
\(682\) 0 0
\(683\) −2298.94 + 2298.94i −0.128795 + 0.128795i −0.768566 0.639771i \(-0.779029\pi\)
0.639771 + 0.768566i \(0.279029\pi\)
\(684\) 0 0
\(685\) 25971.7 + 25971.7i 1.44865 + 1.44865i
\(686\) 0 0
\(687\) −832.733 + 15986.8i −0.0462456 + 0.887825i
\(688\) 0 0
\(689\) 33921.1i 1.87560i
\(690\) 0 0
\(691\) −1119.72 + 1119.72i −0.0616442 + 0.0616442i −0.737257 0.675613i \(-0.763879\pi\)
0.675613 + 0.737257i \(0.263879\pi\)
\(692\) 0 0
\(693\) 9747.24 + 12021.2i 0.534296 + 0.658943i
\(694\) 0 0
\(695\) 3064.16i 0.167238i
\(696\) 0 0
\(697\) 1368.97i 0.0743952i
\(698\) 0 0
\(699\) 14313.9 12896.6i 0.774539 0.697845i
\(700\) 0 0
\(701\) −15121.9 + 15121.9i −0.814760 + 0.814760i −0.985343 0.170583i \(-0.945435\pi\)
0.170583 + 0.985343i \(0.445435\pi\)
\(702\) 0 0
\(703\) 5258.35i 0.282109i
\(704\) 0 0
\(705\) 19205.4 + 1000.38i 1.02598 + 0.0534421i
\(706\) 0 0
\(707\) −12062.9 12062.9i −0.641688 0.641688i
\(708\) 0 0
\(709\) −2222.19 + 2222.19i −0.117710 + 0.117710i −0.763508 0.645798i \(-0.776525\pi\)
0.645798 + 0.763508i \(0.276525\pi\)
\(710\) 0 0
\(711\) −6195.34 647.170i −0.326784 0.0341361i
\(712\) 0 0
\(713\) −15273.9 −0.802263
\(714\) 0 0
\(715\) 20477.6 + 20477.6i 1.07108 + 1.07108i
\(716\) 0 0
\(717\) 6646.52 5988.38i 0.346191 0.311911i
\(718\) 0 0
\(719\) 27781.8 1.44101 0.720505 0.693450i \(-0.243910\pi\)
0.720505 + 0.693450i \(0.243910\pi\)
\(720\) 0 0
\(721\) −25032.1 −1.29299
\(722\) 0 0
\(723\) 12095.9 10898.2i 0.622203 0.560593i
\(724\) 0 0
\(725\) −5612.70 5612.70i −0.287518 0.287518i
\(726\) 0 0
\(727\) 16679.8 0.850921 0.425460 0.904977i \(-0.360112\pi\)
0.425460 + 0.904977i \(0.360112\pi\)
\(728\) 0 0
\(729\) −6046.63 + 18731.2i −0.307200 + 0.951645i
\(730\) 0 0
\(731\) −155.227 + 155.227i −0.00785401 + 0.00785401i
\(732\) 0 0
\(733\) −17838.8 17838.8i −0.898898 0.898898i 0.0964409 0.995339i \(-0.469254\pi\)
−0.995339 + 0.0964409i \(0.969254\pi\)
\(734\) 0 0
\(735\) 4632.79 + 241.316i 0.232494 + 0.0121103i
\(736\) 0 0
\(737\) 1143.13i 0.0571340i
\(738\) 0 0
\(739\) −3174.87 + 3174.87i −0.158037 + 0.158037i −0.781696 0.623659i \(-0.785645\pi\)
0.623659 + 0.781696i \(0.285645\pi\)
\(740\) 0 0
\(741\) 10959.3 9874.13i 0.543320 0.489521i
\(742\) 0 0
\(743\) 20203.2i 0.997555i −0.866730 0.498777i \(-0.833782\pi\)
0.866730 0.498777i \(-0.166218\pi\)
\(744\) 0 0
\(745\) 16219.4i 0.797628i
\(746\) 0 0
\(747\) −17612.6 + 14281.0i −0.862665 + 0.699482i
\(748\) 0 0
\(749\) −3020.92 + 3020.92i −0.147373 + 0.147373i
\(750\) 0 0
\(751\) 7584.16i 0.368508i 0.982879 + 0.184254i \(0.0589870\pi\)
−0.982879 + 0.184254i \(0.941013\pi\)
\(752\) 0 0
\(753\) 1035.66 19882.7i 0.0501216 0.962237i
\(754\) 0 0
\(755\) −30636.6 30636.6i −1.47680 1.47680i
\(756\) 0 0
\(757\) −1287.51 + 1287.51i −0.0618169 + 0.0618169i −0.737339 0.675522i \(-0.763918\pi\)
0.675522 + 0.737339i \(0.263918\pi\)
\(758\) 0 0
\(759\) 10464.4 + 545.074i 0.500437 + 0.0260671i
\(760\) 0 0
\(761\) 8175.32 0.389428 0.194714 0.980860i \(-0.437622\pi\)
0.194714 + 0.980860i \(0.437622\pi\)
\(762\) 0 0
\(763\) −2360.15 2360.15i −0.111983 0.111983i
\(764\) 0 0
\(765\) −1372.24 1692.37i −0.0648540 0.0799839i
\(766\) 0 0
\(767\) 71.8109 0.00338063
\(768\) 0 0
\(769\) 30704.5 1.43984 0.719918 0.694060i \(-0.244180\pi\)
0.719918 + 0.694060i \(0.244180\pi\)
\(770\) 0 0
\(771\) −16910.1 18768.6i −0.789887 0.876697i
\(772\) 0 0
\(773\) 9803.75 + 9803.75i 0.456166 + 0.456166i 0.897395 0.441229i \(-0.145457\pi\)
−0.441229 + 0.897395i \(0.645457\pi\)
\(774\) 0 0
\(775\) −53631.9 −2.48582
\(776\) 0 0
\(777\) −513.009 + 9848.75i −0.0236861 + 0.454726i
\(778\) 0 0
\(779\) −12596.0 + 12596.0i −0.579329 + 0.579329i
\(780\) 0 0
\(781\) −16154.6 16154.6i −0.740150 0.740150i
\(782\) 0 0
\(783\) −4512.17 710.242i −0.205941 0.0324163i
\(784\) 0 0
\(785\) 62112.8i 2.82408i
\(786\) 0 0
\(787\) −6207.55 + 6207.55i −0.281163 + 0.281163i −0.833573 0.552410i \(-0.813708\pi\)
0.552410 + 0.833573i \(0.313708\pi\)
\(788\) 0 0
\(789\) −17836.7 19797.0i −0.804822 0.893274i
\(790\) 0 0
\(791\) 41394.0i 1.86068i
\(792\) 0 0
\(793\) 15896.8i 0.711870i
\(794\) 0 0
\(795\) 43638.4 + 48434.3i 1.94678 + 2.16074i
\(796\) 0 0
\(797\) −16268.2 + 16268.2i −0.723025 + 0.723025i −0.969220 0.246196i \(-0.920819\pi\)
0.246196 + 0.969220i \(0.420819\pi\)
\(798\) 0 0
\(799\) 809.827i 0.0358568i
\(800\) 0 0
\(801\) −2847.28 + 27257.0i −0.125598 + 1.20234i
\(802\) 0 0
\(803\) 10489.5 + 10489.5i 0.460981 + 0.460981i
\(804\) 0 0
\(805\) 18607.6 18607.6i 0.814696 0.814696i
\(806\) 0 0
\(807\) −979.635 + 18807.1i −0.0427321 + 0.820372i
\(808\) 0 0
\(809\) −22495.3 −0.977616 −0.488808 0.872391i \(-0.662568\pi\)
−0.488808 + 0.872391i \(0.662568\pi\)
\(810\) 0 0
\(811\) −24289.2 24289.2i −1.05168 1.05168i −0.998590 0.0530865i \(-0.983094\pi\)
−0.0530865 0.998590i \(-0.516906\pi\)
\(812\) 0 0
\(813\) 16649.4 + 18479.2i 0.718229 + 0.797164i
\(814\) 0 0
\(815\) 70688.6 3.03818
\(816\) 0 0
\(817\) −2856.51 −0.122321
\(818\) 0 0
\(819\) 21489.8 17424.8i 0.916868 0.743432i
\(820\) 0 0
\(821\) −8033.40 8033.40i −0.341495 0.341495i 0.515434 0.856929i \(-0.327631\pi\)
−0.856929 + 0.515434i \(0.827631\pi\)
\(822\) 0 0
\(823\) 14074.4 0.596114 0.298057 0.954548i \(-0.403661\pi\)
0.298057 + 0.954548i \(0.403661\pi\)
\(824\) 0 0
\(825\) 36743.8 + 1913.93i 1.55061 + 0.0807693i
\(826\) 0 0
\(827\) 6382.42 6382.42i 0.268366 0.268366i −0.560076 0.828441i \(-0.689228\pi\)
0.828441 + 0.560076i \(0.189228\pi\)
\(828\) 0 0
\(829\) 8468.39 + 8468.39i 0.354788 + 0.354788i 0.861888 0.507099i \(-0.169282\pi\)
−0.507099 + 0.861888i \(0.669282\pi\)
\(830\) 0 0
\(831\) −110.462 + 2120.66i −0.00461119 + 0.0885258i
\(832\) 0 0
\(833\) 195.349i 0.00812538i
\(834\) 0 0
\(835\) 22471.6 22471.6i 0.931332 0.931332i
\(836\) 0 0
\(837\) −24951.2 + 18164.5i −1.03039 + 0.750129i
\(838\) 0 0
\(839\) 4878.66i 0.200751i −0.994950 0.100375i \(-0.967996\pi\)
0.994950 0.100375i \(-0.0320044\pi\)
\(840\) 0 0
\(841\) 23329.0i 0.956538i
\(842\) 0 0
\(843\) −26461.4 + 23841.2i −1.08112 + 0.974064i
\(844\) 0 0
\(845\) 6773.19 6773.19i 0.275745 0.275745i
\(846\) 0 0
\(847\) 9619.92i 0.390253i
\(848\) 0 0
\(849\) 27375.6 + 1425.96i 1.10663 + 0.0576429i
\(850\) 0 0
\(851\) 4721.57 + 4721.57i 0.190192 + 0.190192i
\(852\) 0 0
\(853\) −3062.44 + 3062.44i −0.122926 + 0.122926i −0.765894 0.642967i \(-0.777703\pi\)
0.642967 + 0.765894i \(0.277703\pi\)
\(854\) 0 0
\(855\) 2945.54 28197.6i 0.117819 1.12788i
\(856\) 0 0
\(857\) 22998.9 0.916716 0.458358 0.888768i \(-0.348438\pi\)
0.458358 + 0.888768i \(0.348438\pi\)
\(858\) 0 0
\(859\) −20152.0 20152.0i −0.800441 0.800441i 0.182723 0.983164i \(-0.441509\pi\)
−0.983164 + 0.182723i \(0.941509\pi\)
\(860\) 0 0
\(861\) −24820.8 + 22363.0i −0.982451 + 0.885169i
\(862\) 0 0
\(863\) 39922.6 1.57472 0.787359 0.616495i \(-0.211448\pi\)
0.787359 + 0.616495i \(0.211448\pi\)
\(864\) 0 0
\(865\) −68834.7 −2.70572
\(866\) 0 0
\(867\) −18897.9 + 17026.7i −0.740262 + 0.666961i
\(868\) 0 0
\(869\) 4738.06 + 4738.06i 0.184957 + 0.184957i
\(870\) 0 0
\(871\) 2043.53 0.0794977
\(872\) 0 0
\(873\) 2259.10 21626.3i 0.0875820 0.838420i
\(874\) 0 0
\(875\) 31837.8 31837.8i 1.23007 1.23007i
\(876\) 0 0
\(877\) −24622.0 24622.0i −0.948035 0.948035i 0.0506799 0.998715i \(-0.483861\pi\)
−0.998715 + 0.0506799i \(0.983861\pi\)
\(878\) 0 0
\(879\) −31523.8 1642.03i −1.20964 0.0630084i
\(880\) 0 0
\(881\) 10455.7i 0.399843i 0.979812 + 0.199921i \(0.0640686\pi\)
−0.979812 + 0.199921i \(0.935931\pi\)
\(882\) 0 0
\(883\) −25017.7 + 25017.7i −0.953468 + 0.953468i −0.998964 0.0454970i \(-0.985513\pi\)
0.0454970 + 0.998964i \(0.485513\pi\)
\(884\) 0 0
\(885\) 102.535 92.3824i 0.00389457 0.00350893i
\(886\) 0 0
\(887\) 47236.6i 1.78811i 0.447960 + 0.894054i \(0.352151\pi\)
−0.447960 + 0.894054i \(0.647849\pi\)
\(888\) 0 0
\(889\) 15423.7i 0.581884i
\(890\) 0 0
\(891\) 17742.6 11554.3i 0.667114 0.434437i
\(892\) 0 0
\(893\) −7451.26 + 7451.26i −0.279224 + 0.279224i
\(894\) 0 0
\(895\) 81802.4i 3.05514i
\(896\) 0 0
\(897\) 974.408 18706.7i 0.0362704 0.696320i
\(898\) 0 0
\(899\) −5064.41 5064.41i −0.187884 0.187884i
\(900\) 0 0
\(901\) −1941.20 + 1941.20i −0.0717765 + 0.0717765i
\(902\) 0 0
\(903\) −5350.16 278.683i −0.197167 0.0102702i
\(904\) 0 0
\(905\) −11759.2 −0.431920
\(906\) 0 0
\(907\) −31025.7 31025.7i −1.13582 1.13582i −0.989191 0.146634i \(-0.953156\pi\)
−0.146634 0.989191i \(-0.546844\pi\)
\(908\) 0 0
\(909\) −18128.5 + 14699.3i −0.661480 + 0.536354i
\(910\) 0 0
\(911\) −37779.4 −1.37397 −0.686985 0.726672i \(-0.741066\pi\)
−0.686985 + 0.726672i \(0.741066\pi\)
\(912\) 0 0
\(913\) 24391.5 0.884162
\(914\) 0 0
\(915\) 20450.8 + 22698.3i 0.738887 + 0.820092i
\(916\) 0 0
\(917\) −2969.50 2969.50i −0.106937 0.106937i
\(918\) 0 0
\(919\) 29840.1 1.07109 0.535547 0.844505i \(-0.320106\pi\)
0.535547 + 0.844505i \(0.320106\pi\)
\(920\) 0 0
\(921\) 2237.99 42965.0i 0.0800698 1.53718i
\(922\) 0 0
\(923\) −28879.0 + 28879.0i −1.02986 + 1.02986i
\(924\) 0 0
\(925\) 16579.0 + 16579.0i 0.589312 + 0.589312i
\(926\) 0 0
\(927\) −3558.03 + 34060.9i −0.126064 + 1.20680i
\(928\) 0 0
\(929\) 5194.44i 0.183449i −0.995784 0.0917244i \(-0.970762\pi\)
0.995784 0.0917244i \(-0.0292379\pi\)
\(930\) 0 0
\(931\) −1797.42 + 1797.42i −0.0632738 + 0.0632738i
\(932\) 0 0
\(933\) 14787.5 + 16412.7i 0.518887 + 0.575913i
\(934\) 0 0
\(935\) 2343.74i 0.0819770i
\(936\) 0 0
\(937\) 22506.4i 0.784687i −0.919819 0.392344i \(-0.871664\pi\)
0.919819 0.392344i \(-0.128336\pi\)
\(938\) 0 0
\(939\) −1630.17 1809.33i −0.0566544 0.0628808i
\(940\) 0 0
\(941\) 32342.6 32342.6i 1.12045 1.12045i 0.128771 0.991674i \(-0.458897\pi\)
0.991674 0.128771i \(-0.0411033\pi\)
\(942\) 0 0
\(943\) 22620.3i 0.781144i
\(944\) 0 0
\(945\) 8267.90 52526.0i 0.284608 1.80812i
\(946\) 0 0
\(947\) −35064.2 35064.2i −1.20320 1.20320i −0.973186 0.230018i \(-0.926122\pi\)
−0.230018 0.973186i \(-0.573878\pi\)
\(948\) 0 0
\(949\) 18751.8 18751.8i 0.641420 0.641420i
\(950\) 0 0
\(951\) 1894.58 36372.1i 0.0646013 1.24022i
\(952\) 0 0
\(953\) −54026.3 −1.83640 −0.918198 0.396122i \(-0.870356\pi\)
−0.918198 + 0.396122i \(0.870356\pi\)
\(954\) 0 0
\(955\) 12063.9 + 12063.9i 0.408774 + 0.408774i
\(956\) 0 0
\(957\) 3288.95 + 3650.41i 0.111094 + 0.123303i
\(958\) 0 0
\(959\) −37745.7 −1.27098
\(960\) 0 0
\(961\) −18601.7 −0.624405
\(962\) 0 0
\(963\) 3681.15 + 4539.93i 0.123181 + 0.151918i
\(964\) 0 0
\(965\) 34357.1 + 34357.1i 1.14611 + 1.14611i
\(966\) 0 0
\(967\) −20637.1 −0.686291 −0.343145 0.939282i \(-0.611492\pi\)
−0.343145 + 0.939282i \(0.611492\pi\)
\(968\) 0 0
\(969\) 1192.23 + 62.1018i 0.0395253 + 0.00205882i
\(970\) 0 0
\(971\) 23101.0 23101.0i 0.763487 0.763487i −0.213464 0.976951i \(-0.568475\pi\)
0.976951 + 0.213464i \(0.0684746\pi\)
\(972\) 0 0
\(973\) −2226.64 2226.64i −0.0733635 0.0733635i
\(974\) 0 0
\(975\) 3421.47 65685.5i 0.112384 2.15756i
\(976\) 0 0
\(977\) 2329.22i 0.0762725i −0.999273 0.0381362i \(-0.987858\pi\)
0.999273 0.0381362i \(-0.0121421\pi\)
\(978\) 0 0
\(979\) 20845.5 20845.5i 0.680517 0.680517i
\(980\) 0 0
\(981\) −3546.90 + 2875.96i −0.115437 + 0.0936008i
\(982\) 0 0
\(983\) 32246.0i 1.04628i −0.852248 0.523138i \(-0.824761\pi\)
0.852248 0.523138i \(-0.175239\pi\)
\(984\) 0 0
\(985\) 28054.4i 0.907501i
\(986\) 0 0
\(987\) −14683.0 + 13229.1i −0.473519 + 0.426632i
\(988\) 0 0
\(989\) −2564.91 + 2564.91i −0.0824664 + 0.0824664i
\(990\) 0 0
\(991\) 37641.1i 1.20657i 0.797526 + 0.603284i \(0.206142\pi\)
−0.797526 + 0.603284i \(0.793858\pi\)
\(992\) 0 0
\(993\) −22842.9 1189.86i −0.730009 0.0380252i
\(994\) 0 0
\(995\) 8710.36 + 8710.36i 0.277525 + 0.277525i
\(996\) 0 0
\(997\) 23110.9 23110.9i 0.734131 0.734131i −0.237304 0.971435i \(-0.576264\pi\)
0.971435 + 0.237304i \(0.0762638\pi\)
\(998\) 0 0
\(999\) 13328.2 + 2097.94i 0.422107 + 0.0664422i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 192.4.k.a.47.5 44
3.2 odd 2 inner 192.4.k.a.47.7 44
4.3 odd 2 48.4.k.a.35.7 yes 44
8.3 odd 2 384.4.k.b.95.5 44
8.5 even 2 384.4.k.a.95.18 44
12.11 even 2 48.4.k.a.35.16 yes 44
16.3 odd 4 384.4.k.a.287.16 44
16.5 even 4 48.4.k.a.11.16 yes 44
16.11 odd 4 inner 192.4.k.a.143.7 44
16.13 even 4 384.4.k.b.287.7 44
24.5 odd 2 384.4.k.a.95.16 44
24.11 even 2 384.4.k.b.95.7 44
48.5 odd 4 48.4.k.a.11.7 44
48.11 even 4 inner 192.4.k.a.143.5 44
48.29 odd 4 384.4.k.b.287.5 44
48.35 even 4 384.4.k.a.287.18 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.4.k.a.11.7 44 48.5 odd 4
48.4.k.a.11.16 yes 44 16.5 even 4
48.4.k.a.35.7 yes 44 4.3 odd 2
48.4.k.a.35.16 yes 44 12.11 even 2
192.4.k.a.47.5 44 1.1 even 1 trivial
192.4.k.a.47.7 44 3.2 odd 2 inner
192.4.k.a.143.5 44 48.11 even 4 inner
192.4.k.a.143.7 44 16.11 odd 4 inner
384.4.k.a.95.16 44 24.5 odd 2
384.4.k.a.95.18 44 8.5 even 2
384.4.k.a.287.16 44 16.3 odd 4
384.4.k.a.287.18 44 48.35 even 4
384.4.k.b.95.5 44 8.3 odd 2
384.4.k.b.95.7 44 24.11 even 2
384.4.k.b.287.5 44 48.29 odd 4
384.4.k.b.287.7 44 16.13 even 4