Properties

Label 192.4.k.a.143.7
Level $192$
Weight $4$
Character 192.143
Analytic conductor $11.328$
Analytic rank $0$
Dimension $44$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [192,4,Mod(47,192)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("192.47"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(192, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 192.k (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.3283667211\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 143.7
Character \(\chi\) \(=\) 192.143
Dual form 192.4.k.a.47.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.47813 - 3.86039i) q^{3} +(13.5794 - 13.5794i) q^{5} +19.7355 q^{7} +(-2.80518 + 26.8539i) q^{9} +(20.5372 + 20.5372i) q^{11} +(36.7137 - 36.7137i) q^{13} +(-99.6526 - 5.19077i) q^{15} +4.20201i q^{17} +(-38.6629 - 38.6629i) q^{19} +(-68.6426 - 76.1866i) q^{21} +69.4323i q^{23} -243.800i q^{25} +(113.423 - 82.5723i) q^{27} +(23.0218 + 23.0218i) q^{29} -219.983i q^{31} +(7.85044 - 150.713i) q^{33} +(267.996 - 267.996i) q^{35} +(68.0025 + 68.0025i) q^{37} +(-269.424 - 14.0339i) q^{39} -325.789 q^{41} +(36.9411 - 36.9411i) q^{43} +(326.567 + 402.752i) q^{45} -192.724 q^{47} +46.4894 q^{49} +(16.2214 - 14.6152i) q^{51} +(-461.968 + 461.968i) q^{53} +557.767 q^{55} +(-14.7791 + 283.729i) q^{57} +(-0.977987 - 0.977987i) q^{59} +(216.498 - 216.498i) q^{61} +(-55.3615 + 529.974i) q^{63} -997.098i q^{65} +(27.8307 + 27.8307i) q^{67} +(268.036 - 241.495i) q^{69} +786.600i q^{71} +510.757i q^{73} +(-941.161 + 847.968i) q^{75} +(405.313 + 405.313i) q^{77} +230.706i q^{79} +(-713.262 - 150.660i) q^{81} +(593.835 - 593.835i) q^{83} +(57.0607 + 57.0607i) q^{85} +(8.80017 - 168.946i) q^{87} +1015.01 q^{89} +(724.562 - 724.562i) q^{91} +(-849.221 + 765.131i) q^{93} -1050.04 q^{95} +805.334 q^{97} +(-609.115 + 493.894i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 2 q^{3} + 8 q^{7} - 4 q^{13} - 20 q^{19} - 56 q^{21} + 134 q^{27} - 4 q^{33} - 4 q^{37} - 596 q^{39} + 436 q^{43} - 252 q^{45} + 972 q^{49} + 648 q^{51} - 280 q^{55} - 916 q^{61} + 1636 q^{67} + 52 q^{69}+ \cdots - 1196 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.47813 3.86039i −0.669367 0.742932i
\(4\) 0 0
\(5\) 13.5794 13.5794i 1.21458 1.21458i 0.245073 0.969505i \(-0.421188\pi\)
0.969505 0.245073i \(-0.0788119\pi\)
\(6\) 0 0
\(7\) 19.7355 1.06562 0.532808 0.846236i \(-0.321137\pi\)
0.532808 + 0.846236i \(0.321137\pi\)
\(8\) 0 0
\(9\) −2.80518 + 26.8539i −0.103895 + 0.994588i
\(10\) 0 0
\(11\) 20.5372 + 20.5372i 0.562928 + 0.562928i 0.930138 0.367210i \(-0.119687\pi\)
−0.367210 + 0.930138i \(0.619687\pi\)
\(12\) 0 0
\(13\) 36.7137 36.7137i 0.783272 0.783272i −0.197110 0.980381i \(-0.563155\pi\)
0.980381 + 0.197110i \(0.0631555\pi\)
\(14\) 0 0
\(15\) −99.6526 5.19077i −1.71535 0.0893501i
\(16\) 0 0
\(17\) 4.20201i 0.0599493i 0.999551 + 0.0299746i \(0.00954265\pi\)
−0.999551 + 0.0299746i \(0.990457\pi\)
\(18\) 0 0
\(19\) −38.6629 38.6629i −0.466836 0.466836i 0.434052 0.900888i \(-0.357083\pi\)
−0.900888 + 0.434052i \(0.857083\pi\)
\(20\) 0 0
\(21\) −68.6426 76.1866i −0.713288 0.791680i
\(22\) 0 0
\(23\) 69.4323i 0.629462i 0.949181 + 0.314731i \(0.101914\pi\)
−0.949181 + 0.314731i \(0.898086\pi\)
\(24\) 0 0
\(25\) 243.800i 1.95040i
\(26\) 0 0
\(27\) 113.423 82.5723i 0.808455 0.588557i
\(28\) 0 0
\(29\) 23.0218 + 23.0218i 0.147415 + 0.147415i 0.776962 0.629547i \(-0.216760\pi\)
−0.629547 + 0.776962i \(0.716760\pi\)
\(30\) 0 0
\(31\) 219.983i 1.27452i −0.770648 0.637261i \(-0.780067\pi\)
0.770648 0.637261i \(-0.219933\pi\)
\(32\) 0 0
\(33\) 7.85044 150.713i 0.0414117 0.795023i
\(34\) 0 0
\(35\) 267.996 267.996i 1.29427 1.29427i
\(36\) 0 0
\(37\) 68.0025 + 68.0025i 0.302150 + 0.302150i 0.841854 0.539705i \(-0.181464\pi\)
−0.539705 + 0.841854i \(0.681464\pi\)
\(38\) 0 0
\(39\) −269.424 14.0339i −1.10621 0.0576212i
\(40\) 0 0
\(41\) −325.789 −1.24097 −0.620485 0.784219i \(-0.713064\pi\)
−0.620485 + 0.784219i \(0.713064\pi\)
\(42\) 0 0
\(43\) 36.9411 36.9411i 0.131011 0.131011i −0.638561 0.769572i \(-0.720470\pi\)
0.769572 + 0.638561i \(0.220470\pi\)
\(44\) 0 0
\(45\) 326.567 + 402.752i 1.08182 + 1.33419i
\(46\) 0 0
\(47\) −192.724 −0.598120 −0.299060 0.954234i \(-0.596673\pi\)
−0.299060 + 0.954234i \(0.596673\pi\)
\(48\) 0 0
\(49\) 46.4894 0.135538
\(50\) 0 0
\(51\) 16.2214 14.6152i 0.0445382 0.0401281i
\(52\) 0 0
\(53\) −461.968 + 461.968i −1.19729 + 1.19729i −0.222312 + 0.974976i \(0.571360\pi\)
−0.974976 + 0.222312i \(0.928640\pi\)
\(54\) 0 0
\(55\) 557.767 1.36744
\(56\) 0 0
\(57\) −14.7791 + 283.729i −0.0343427 + 0.659312i
\(58\) 0 0
\(59\) −0.977987 0.977987i −0.00215802 0.00215802i 0.706027 0.708185i \(-0.250486\pi\)
−0.708185 + 0.706027i \(0.750486\pi\)
\(60\) 0 0
\(61\) 216.498 216.498i 0.454421 0.454421i −0.442398 0.896819i \(-0.645872\pi\)
0.896819 + 0.442398i \(0.145872\pi\)
\(62\) 0 0
\(63\) −55.3615 + 529.974i −0.110713 + 1.05985i
\(64\) 0 0
\(65\) 997.098i 1.90269i
\(66\) 0 0
\(67\) 27.8307 + 27.8307i 0.0507472 + 0.0507472i 0.732025 0.681278i \(-0.238575\pi\)
−0.681278 + 0.732025i \(0.738575\pi\)
\(68\) 0 0
\(69\) 268.036 241.495i 0.467648 0.421341i
\(70\) 0 0
\(71\) 786.600i 1.31482i 0.753533 + 0.657411i \(0.228348\pi\)
−0.753533 + 0.657411i \(0.771652\pi\)
\(72\) 0 0
\(73\) 510.757i 0.818898i 0.912333 + 0.409449i \(0.134279\pi\)
−0.912333 + 0.409449i \(0.865721\pi\)
\(74\) 0 0
\(75\) −941.161 + 847.968i −1.44901 + 1.30553i
\(76\) 0 0
\(77\) 405.313 + 405.313i 0.599866 + 0.599866i
\(78\) 0 0
\(79\) 230.706i 0.328562i 0.986414 + 0.164281i \(0.0525304\pi\)
−0.986414 + 0.164281i \(0.947470\pi\)
\(80\) 0 0
\(81\) −713.262 150.660i −0.978411 0.206666i
\(82\) 0 0
\(83\) 593.835 593.835i 0.785323 0.785323i −0.195400 0.980724i \(-0.562601\pi\)
0.980724 + 0.195400i \(0.0626006\pi\)
\(84\) 0 0
\(85\) 57.0607 + 57.0607i 0.0728130 + 0.0728130i
\(86\) 0 0
\(87\) 8.80017 168.946i 0.0108446 0.208194i
\(88\) 0 0
\(89\) 1015.01 1.20889 0.604443 0.796648i \(-0.293396\pi\)
0.604443 + 0.796648i \(0.293396\pi\)
\(90\) 0 0
\(91\) 724.562 724.562i 0.834667 0.834667i
\(92\) 0 0
\(93\) −849.221 + 765.131i −0.946883 + 0.853123i
\(94\) 0 0
\(95\) −1050.04 −1.13402
\(96\) 0 0
\(97\) 805.334 0.842982 0.421491 0.906833i \(-0.361507\pi\)
0.421491 + 0.906833i \(0.361507\pi\)
\(98\) 0 0
\(99\) −609.115 + 493.894i −0.618368 + 0.501396i
\(100\) 0 0
\(101\) 611.231 611.231i 0.602176 0.602176i −0.338714 0.940889i \(-0.609992\pi\)
0.940889 + 0.338714i \(0.109992\pi\)
\(102\) 0 0
\(103\) −1268.38 −1.21337 −0.606685 0.794942i \(-0.707501\pi\)
−0.606685 + 0.794942i \(0.707501\pi\)
\(104\) 0 0
\(105\) −1966.69 102.442i −1.82790 0.0952129i
\(106\) 0 0
\(107\) 153.071 + 153.071i 0.138298 + 0.138298i 0.772867 0.634568i \(-0.218822\pi\)
−0.634568 + 0.772867i \(0.718822\pi\)
\(108\) 0 0
\(109\) −119.589 + 119.589i −0.105088 + 0.105088i −0.757696 0.652608i \(-0.773675\pi\)
0.652608 + 0.757696i \(0.273675\pi\)
\(110\) 0 0
\(111\) 25.9942 499.038i 0.0222276 0.426726i
\(112\) 0 0
\(113\) 2097.44i 1.74611i 0.487622 + 0.873055i \(0.337865\pi\)
−0.487622 + 0.873055i \(0.662135\pi\)
\(114\) 0 0
\(115\) 942.848 + 942.848i 0.764531 + 0.764531i
\(116\) 0 0
\(117\) 882.916 + 1088.89i 0.697655 + 0.860411i
\(118\) 0 0
\(119\) 82.9287i 0.0638829i
\(120\) 0 0
\(121\) 487.443i 0.366223i
\(122\) 0 0
\(123\) 1133.14 + 1257.67i 0.830664 + 0.921956i
\(124\) 0 0
\(125\) −1613.23 1613.23i −1.15433 1.15433i
\(126\) 0 0
\(127\) 781.522i 0.546054i 0.962006 + 0.273027i \(0.0880249\pi\)
−0.962006 + 0.273027i \(0.911975\pi\)
\(128\) 0 0
\(129\) −271.093 14.1209i −0.185027 0.00963779i
\(130\) 0 0
\(131\) 150.465 150.465i 0.100353 0.100353i −0.655148 0.755501i \(-0.727394\pi\)
0.755501 + 0.655148i \(0.227394\pi\)
\(132\) 0 0
\(133\) −763.032 763.032i −0.497468 0.497468i
\(134\) 0 0
\(135\) 418.936 2661.50i 0.267083 1.69678i
\(136\) 0 0
\(137\) 1912.58 1.19272 0.596361 0.802716i \(-0.296613\pi\)
0.596361 + 0.802716i \(0.296613\pi\)
\(138\) 0 0
\(139\) −112.824 + 112.824i −0.0688461 + 0.0688461i −0.740691 0.671845i \(-0.765502\pi\)
0.671845 + 0.740691i \(0.265502\pi\)
\(140\) 0 0
\(141\) 670.318 + 743.988i 0.400362 + 0.444362i
\(142\) 0 0
\(143\) 1507.99 0.881852
\(144\) 0 0
\(145\) 625.244 0.358094
\(146\) 0 0
\(147\) −161.696 179.467i −0.0907244 0.100695i
\(148\) 0 0
\(149\) −597.206 + 597.206i −0.328356 + 0.328356i −0.851961 0.523605i \(-0.824587\pi\)
0.523605 + 0.851961i \(0.324587\pi\)
\(150\) 0 0
\(151\) 2256.11 1.21589 0.607946 0.793978i \(-0.291994\pi\)
0.607946 + 0.793978i \(0.291994\pi\)
\(152\) 0 0
\(153\) −112.840 11.7874i −0.0596248 0.00622845i
\(154\) 0 0
\(155\) −2987.24 2987.24i −1.54801 1.54801i
\(156\) 0 0
\(157\) 2287.02 2287.02i 1.16258 1.16258i 0.178666 0.983910i \(-0.442822\pi\)
0.983910 0.178666i \(-0.0571782\pi\)
\(158\) 0 0
\(159\) 3390.16 + 176.589i 1.69093 + 0.0880782i
\(160\) 0 0
\(161\) 1370.28i 0.670765i
\(162\) 0 0
\(163\) −2602.79 2602.79i −1.25071 1.25071i −0.955400 0.295313i \(-0.904576\pi\)
−0.295313 0.955400i \(-0.595424\pi\)
\(164\) 0 0
\(165\) −1939.99 2153.19i −0.915320 1.01592i
\(166\) 0 0
\(167\) 1654.83i 0.766795i 0.923583 + 0.383397i \(0.125246\pi\)
−0.923583 + 0.383397i \(0.874754\pi\)
\(168\) 0 0
\(169\) 498.785i 0.227030i
\(170\) 0 0
\(171\) 1146.71 929.794i 0.512812 0.415808i
\(172\) 0 0
\(173\) −2534.53 2534.53i −1.11385 1.11385i −0.992625 0.121229i \(-0.961317\pi\)
−0.121229 0.992625i \(-0.538683\pi\)
\(174\) 0 0
\(175\) 4811.50i 2.07837i
\(176\) 0 0
\(177\) −0.373839 + 7.17697i −0.000158754 + 0.00304777i
\(178\) 0 0
\(179\) −3012.01 + 3012.01i −1.25770 + 1.25770i −0.305508 + 0.952190i \(0.598826\pi\)
−0.952190 + 0.305508i \(0.901174\pi\)
\(180\) 0 0
\(181\) 432.978 + 432.978i 0.177807 + 0.177807i 0.790399 0.612592i \(-0.209873\pi\)
−0.612592 + 0.790399i \(0.709873\pi\)
\(182\) 0 0
\(183\) −1588.77 82.7570i −0.641778 0.0334294i
\(184\) 0 0
\(185\) 1846.87 0.733969
\(186\) 0 0
\(187\) −86.2977 + 86.2977i −0.0337471 + 0.0337471i
\(188\) 0 0
\(189\) 2238.46 1629.60i 0.861503 0.627176i
\(190\) 0 0
\(191\) 888.400 0.336557 0.168278 0.985740i \(-0.446179\pi\)
0.168278 + 0.985740i \(0.446179\pi\)
\(192\) 0 0
\(193\) −2530.09 −0.943627 −0.471813 0.881698i \(-0.656400\pi\)
−0.471813 + 0.881698i \(0.656400\pi\)
\(194\) 0 0
\(195\) −3849.18 + 3468.04i −1.41357 + 1.27360i
\(196\) 0 0
\(197\) −1032.98 + 1032.98i −0.373587 + 0.373587i −0.868782 0.495195i \(-0.835097\pi\)
0.495195 + 0.868782i \(0.335097\pi\)
\(198\) 0 0
\(199\) −641.440 −0.228495 −0.114247 0.993452i \(-0.536446\pi\)
−0.114247 + 0.993452i \(0.536446\pi\)
\(200\) 0 0
\(201\) 10.6384 204.236i 0.00373320 0.0716702i
\(202\) 0 0
\(203\) 454.346 + 454.346i 0.157088 + 0.157088i
\(204\) 0 0
\(205\) −4424.02 + 4424.02i −1.50725 + 1.50725i
\(206\) 0 0
\(207\) −1864.53 194.770i −0.626056 0.0653983i
\(208\) 0 0
\(209\) 1588.06i 0.525591i
\(210\) 0 0
\(211\) 2040.63 + 2040.63i 0.665796 + 0.665796i 0.956740 0.290944i \(-0.0939695\pi\)
−0.290944 + 0.956740i \(0.593969\pi\)
\(212\) 0 0
\(213\) 3036.58 2735.90i 0.976822 0.880098i
\(214\) 0 0
\(215\) 1003.28i 0.318246i
\(216\) 0 0
\(217\) 4341.48i 1.35815i
\(218\) 0 0
\(219\) 1971.72 1776.48i 0.608386 0.548144i
\(220\) 0 0
\(221\) 154.271 + 154.271i 0.0469566 + 0.0469566i
\(222\) 0 0
\(223\) 4220.28i 1.26731i 0.773614 + 0.633657i \(0.218447\pi\)
−0.773614 + 0.633657i \(0.781553\pi\)
\(224\) 0 0
\(225\) 6546.97 + 683.901i 1.93984 + 0.202637i
\(226\) 0 0
\(227\) 4171.11 4171.11i 1.21959 1.21959i 0.251810 0.967777i \(-0.418974\pi\)
0.967777 0.251810i \(-0.0810257\pi\)
\(228\) 0 0
\(229\) 2178.48 + 2178.48i 0.628638 + 0.628638i 0.947725 0.319087i \(-0.103376\pi\)
−0.319087 + 0.947725i \(0.603376\pi\)
\(230\) 0 0
\(231\) 154.932 2974.39i 0.0441290 0.847190i
\(232\) 0 0
\(233\) 3707.90 1.04254 0.521272 0.853391i \(-0.325458\pi\)
0.521272 + 0.853391i \(0.325458\pi\)
\(234\) 0 0
\(235\) −2617.07 + 2617.07i −0.726463 + 0.726463i
\(236\) 0 0
\(237\) 890.613 802.425i 0.244099 0.219929i
\(238\) 0 0
\(239\) 1721.72 0.465979 0.232990 0.972479i \(-0.425149\pi\)
0.232990 + 0.972479i \(0.425149\pi\)
\(240\) 0 0
\(241\) −3133.35 −0.837497 −0.418748 0.908102i \(-0.637531\pi\)
−0.418748 + 0.908102i \(0.637531\pi\)
\(242\) 0 0
\(243\) 1899.22 + 3277.48i 0.501377 + 0.865229i
\(244\) 0 0
\(245\) 631.297 631.297i 0.164621 0.164621i
\(246\) 0 0
\(247\) −2838.92 −0.731319
\(248\) 0 0
\(249\) −4357.87 226.996i −1.10911 0.0577721i
\(250\) 0 0
\(251\) 2709.36 + 2709.36i 0.681327 + 0.681327i 0.960299 0.278972i \(-0.0899938\pi\)
−0.278972 + 0.960299i \(0.589994\pi\)
\(252\) 0 0
\(253\) −1425.95 + 1425.95i −0.354342 + 0.354342i
\(254\) 0 0
\(255\) 21.8117 418.741i 0.00535647 0.102834i
\(256\) 0 0
\(257\) 4861.83i 1.18005i 0.807385 + 0.590025i \(0.200882\pi\)
−0.807385 + 0.590025i \(0.799118\pi\)
\(258\) 0 0
\(259\) 1342.06 + 1342.06i 0.321976 + 0.321976i
\(260\) 0 0
\(261\) −682.805 + 553.644i −0.161933 + 0.131302i
\(262\) 0 0
\(263\) 5128.25i 1.20236i 0.799113 + 0.601181i \(0.205303\pi\)
−0.799113 + 0.601181i \(0.794697\pi\)
\(264\) 0 0
\(265\) 12546.5i 2.90840i
\(266\) 0 0
\(267\) −3530.34 3918.33i −0.809189 0.898120i
\(268\) 0 0
\(269\) −2562.79 2562.79i −0.580877 0.580877i 0.354267 0.935144i \(-0.384730\pi\)
−0.935144 + 0.354267i \(0.884730\pi\)
\(270\) 0 0
\(271\) 4786.88i 1.07300i 0.843901 + 0.536499i \(0.180253\pi\)
−0.843901 + 0.536499i \(0.819747\pi\)
\(272\) 0 0
\(273\) −5317.21 276.966i −1.17880 0.0614021i
\(274\) 0 0
\(275\) 5006.97 5006.97i 1.09793 1.09793i
\(276\) 0 0
\(277\) 288.977 + 288.977i 0.0626821 + 0.0626821i 0.737753 0.675071i \(-0.235887\pi\)
−0.675071 + 0.737753i \(0.735887\pi\)
\(278\) 0 0
\(279\) 5907.41 + 617.092i 1.26762 + 0.132417i
\(280\) 0 0
\(281\) −6854.61 −1.45520 −0.727601 0.686001i \(-0.759365\pi\)
−0.727601 + 0.686001i \(0.759365\pi\)
\(282\) 0 0
\(283\) −3730.40 + 3730.40i −0.783566 + 0.783566i −0.980431 0.196865i \(-0.936924\pi\)
0.196865 + 0.980431i \(0.436924\pi\)
\(284\) 0 0
\(285\) 3652.17 + 4053.55i 0.759074 + 0.842498i
\(286\) 0 0
\(287\) −6429.61 −1.32240
\(288\) 0 0
\(289\) 4895.34 0.996406
\(290\) 0 0
\(291\) −2801.06 3108.90i −0.564265 0.626278i
\(292\) 0 0
\(293\) −4295.66 + 4295.66i −0.856502 + 0.856502i −0.990924 0.134422i \(-0.957082\pi\)
0.134422 + 0.990924i \(0.457082\pi\)
\(294\) 0 0
\(295\) −26.5609 −0.00524216
\(296\) 0 0
\(297\) 4025.21 + 633.591i 0.786418 + 0.123787i
\(298\) 0 0
\(299\) 2549.11 + 2549.11i 0.493040 + 0.493040i
\(300\) 0 0
\(301\) 729.051 729.051i 0.139607 0.139607i
\(302\) 0 0
\(303\) −4485.53 233.645i −0.850452 0.0442989i
\(304\) 0 0
\(305\) 5879.81i 1.10386i
\(306\) 0 0
\(307\) −5854.72 5854.72i −1.08843 1.08843i −0.995691 0.0927348i \(-0.970439\pi\)
−0.0927348 0.995691i \(-0.529561\pi\)
\(308\) 0 0
\(309\) 4411.59 + 4896.44i 0.812190 + 0.901451i
\(310\) 0 0
\(311\) 4251.57i 0.775190i −0.921830 0.387595i \(-0.873306\pi\)
0.921830 0.387595i \(-0.126694\pi\)
\(312\) 0 0
\(313\) 468.690i 0.0846388i −0.999104 0.0423194i \(-0.986525\pi\)
0.999104 0.0423194i \(-0.0134747\pi\)
\(314\) 0 0
\(315\) 6444.95 + 7948.50i 1.15280 + 1.42174i
\(316\) 0 0
\(317\) 4956.33 + 4956.33i 0.878155 + 0.878155i 0.993344 0.115188i \(-0.0367472\pi\)
−0.115188 + 0.993344i \(0.536747\pi\)
\(318\) 0 0
\(319\) 945.608i 0.165968i
\(320\) 0 0
\(321\) 58.5118 1123.31i 0.0101739 0.195318i
\(322\) 0 0
\(323\) 162.462 162.462i 0.0279865 0.0279865i
\(324\) 0 0
\(325\) −8950.78 8950.78i −1.52769 1.52769i
\(326\) 0 0
\(327\) 877.607 + 45.7134i 0.148415 + 0.00773075i
\(328\) 0 0
\(329\) −3803.49 −0.637366
\(330\) 0 0
\(331\) 3112.74 3112.74i 0.516894 0.516894i −0.399736 0.916630i \(-0.630898\pi\)
0.916630 + 0.399736i \(0.130898\pi\)
\(332\) 0 0
\(333\) −2016.89 + 1635.37i −0.331907 + 0.269123i
\(334\) 0 0
\(335\) 755.848 0.123273
\(336\) 0 0
\(337\) −6448.09 −1.04228 −0.521142 0.853470i \(-0.674494\pi\)
−0.521142 + 0.853470i \(0.674494\pi\)
\(338\) 0 0
\(339\) 8096.92 7295.17i 1.29724 1.16879i
\(340\) 0 0
\(341\) 4517.85 4517.85i 0.717464 0.717464i
\(342\) 0 0
\(343\) −5851.78 −0.921185
\(344\) 0 0
\(345\) 360.407 6919.11i 0.0562425 1.07975i
\(346\) 0 0
\(347\) −9064.25 9064.25i −1.40229 1.40229i −0.792774 0.609516i \(-0.791364\pi\)
−0.609516 0.792774i \(-0.708636\pi\)
\(348\) 0 0
\(349\) 4033.73 4033.73i 0.618684 0.618684i −0.326510 0.945194i \(-0.605873\pi\)
0.945194 + 0.326510i \(0.105873\pi\)
\(350\) 0 0
\(351\) 1132.65 7195.71i 0.172240 1.09424i
\(352\) 0 0
\(353\) 7626.45i 1.14990i −0.818188 0.574950i \(-0.805021\pi\)
0.818188 0.574950i \(-0.194979\pi\)
\(354\) 0 0
\(355\) 10681.6 + 10681.6i 1.59695 + 1.59695i
\(356\) 0 0
\(357\) 320.137 288.437i 0.0474606 0.0427611i
\(358\) 0 0
\(359\) 5750.40i 0.845389i 0.906272 + 0.422694i \(0.138916\pi\)
−0.906272 + 0.422694i \(0.861084\pi\)
\(360\) 0 0
\(361\) 3869.35i 0.564128i
\(362\) 0 0
\(363\) −1881.72 + 1695.39i −0.272079 + 0.245138i
\(364\) 0 0
\(365\) 6935.77 + 6935.77i 0.994616 + 0.994616i
\(366\) 0 0
\(367\) 1897.35i 0.269866i 0.990855 + 0.134933i \(0.0430820\pi\)
−0.990855 + 0.134933i \(0.956918\pi\)
\(368\) 0 0
\(369\) 913.897 8748.71i 0.128931 1.23425i
\(370\) 0 0
\(371\) −9117.17 + 9117.17i −1.27585 + 1.27585i
\(372\) 0 0
\(373\) 7007.64 + 7007.64i 0.972766 + 0.972766i 0.999639 0.0268725i \(-0.00855481\pi\)
−0.0268725 + 0.999639i \(0.508555\pi\)
\(374\) 0 0
\(375\) −616.662 + 11838.7i −0.0849181 + 1.63026i
\(376\) 0 0
\(377\) 1690.43 0.230932
\(378\) 0 0
\(379\) 6022.88 6022.88i 0.816292 0.816292i −0.169277 0.985569i \(-0.554143\pi\)
0.985569 + 0.169277i \(0.0541432\pi\)
\(380\) 0 0
\(381\) 3016.98 2718.24i 0.405681 0.365511i
\(382\) 0 0
\(383\) −5812.46 −0.775464 −0.387732 0.921772i \(-0.626741\pi\)
−0.387732 + 0.921772i \(0.626741\pi\)
\(384\) 0 0
\(385\) 11007.8 1.45717
\(386\) 0 0
\(387\) 888.386 + 1095.64i 0.116690 + 0.143913i
\(388\) 0 0
\(389\) −1335.20 + 1335.20i −0.174030 + 0.174030i −0.788747 0.614718i \(-0.789270\pi\)
0.614718 + 0.788747i \(0.289270\pi\)
\(390\) 0 0
\(391\) −291.755 −0.0377358
\(392\) 0 0
\(393\) −1104.19 57.5158i −0.141728 0.00738242i
\(394\) 0 0
\(395\) 3132.84 + 3132.84i 0.399064 + 0.399064i
\(396\) 0 0
\(397\) −7841.95 + 7841.95i −0.991375 + 0.991375i −0.999963 0.00858791i \(-0.997266\pi\)
0.00858791 + 0.999963i \(0.497266\pi\)
\(398\) 0 0
\(399\) −291.672 + 5599.53i −0.0365961 + 0.702574i
\(400\) 0 0
\(401\) 1006.91i 0.125393i −0.998033 0.0626965i \(-0.980030\pi\)
0.998033 0.0626965i \(-0.0199700\pi\)
\(402\) 0 0
\(403\) −8076.39 8076.39i −0.998297 0.998297i
\(404\) 0 0
\(405\) −11731.5 + 7639.79i −1.43937 + 0.937344i
\(406\) 0 0
\(407\) 2793.17i 0.340178i
\(408\) 0 0
\(409\) 7577.54i 0.916100i −0.888926 0.458050i \(-0.848548\pi\)
0.888926 0.458050i \(-0.151452\pi\)
\(410\) 0 0
\(411\) −6652.22 7383.31i −0.798369 0.886111i
\(412\) 0 0
\(413\) −19.3010 19.3010i −0.00229962 0.00229962i
\(414\) 0 0
\(415\) 16127.8i 1.90767i
\(416\) 0 0
\(417\) 827.961 + 43.1274i 0.0972313 + 0.00506465i
\(418\) 0 0
\(419\) 5402.94 5402.94i 0.629954 0.629954i −0.318102 0.948056i \(-0.603045\pi\)
0.948056 + 0.318102i \(0.103045\pi\)
\(420\) 0 0
\(421\) −1089.62 1089.62i −0.126139 0.126139i 0.641219 0.767358i \(-0.278429\pi\)
−0.767358 + 0.641219i \(0.778429\pi\)
\(422\) 0 0
\(423\) 540.624 5175.38i 0.0621419 0.594883i
\(424\) 0 0
\(425\) 1024.45 0.116925
\(426\) 0 0
\(427\) 4272.68 4272.68i 0.484238 0.484238i
\(428\) 0 0
\(429\) −5245.01 5821.44i −0.590283 0.655156i
\(430\) 0 0
\(431\) 2457.25 0.274621 0.137310 0.990528i \(-0.456154\pi\)
0.137310 + 0.990528i \(0.456154\pi\)
\(432\) 0 0
\(433\) −10663.1 −1.18346 −0.591728 0.806138i \(-0.701554\pi\)
−0.591728 + 0.806138i \(0.701554\pi\)
\(434\) 0 0
\(435\) −2174.68 2413.68i −0.239696 0.266040i
\(436\) 0 0
\(437\) 2684.46 2684.46i 0.293856 0.293856i
\(438\) 0 0
\(439\) 12250.0 1.33180 0.665900 0.746041i \(-0.268048\pi\)
0.665900 + 0.746041i \(0.268048\pi\)
\(440\) 0 0
\(441\) −130.411 + 1248.42i −0.0140817 + 0.134804i
\(442\) 0 0
\(443\) 7482.50 + 7482.50i 0.802492 + 0.802492i 0.983485 0.180992i \(-0.0579308\pi\)
−0.180992 + 0.983485i \(0.557931\pi\)
\(444\) 0 0
\(445\) 13783.2 13783.2i 1.46829 1.46829i
\(446\) 0 0
\(447\) 4382.61 + 228.284i 0.463737 + 0.0241554i
\(448\) 0 0
\(449\) 461.956i 0.0485547i 0.999705 + 0.0242773i \(0.00772848\pi\)
−0.999705 + 0.0242773i \(0.992272\pi\)
\(450\) 0 0
\(451\) −6690.82 6690.82i −0.698577 0.698577i
\(452\) 0 0
\(453\) −7847.05 8709.46i −0.813878 0.903325i
\(454\) 0 0
\(455\) 19678.2i 2.02754i
\(456\) 0 0
\(457\) 4766.75i 0.487919i 0.969785 + 0.243960i \(0.0784464\pi\)
−0.969785 + 0.243960i \(0.921554\pi\)
\(458\) 0 0
\(459\) 346.970 + 476.605i 0.0352836 + 0.0484663i
\(460\) 0 0
\(461\) 6786.71 + 6786.71i 0.685658 + 0.685658i 0.961269 0.275611i \(-0.0888801\pi\)
−0.275611 + 0.961269i \(0.588880\pi\)
\(462\) 0 0
\(463\) 4659.31i 0.467681i −0.972275 0.233841i \(-0.924871\pi\)
0.972275 0.233841i \(-0.0751294\pi\)
\(464\) 0 0
\(465\) −1141.88 + 21921.9i −0.113879 + 2.18625i
\(466\) 0 0
\(467\) 77.7107 77.7107i 0.00770026 0.00770026i −0.703246 0.710946i \(-0.748267\pi\)
0.710946 + 0.703246i \(0.248267\pi\)
\(468\) 0 0
\(469\) 549.252 + 549.252i 0.0540770 + 0.0540770i
\(470\) 0 0
\(471\) −16783.4 874.224i −1.64190 0.0855246i
\(472\) 0 0
\(473\) 1517.34 0.147500
\(474\) 0 0
\(475\) −9426.01 + 9426.01i −0.910516 + 0.910516i
\(476\) 0 0
\(477\) −11109.7 13701.5i −1.06642 1.31520i
\(478\) 0 0
\(479\) 4315.85 0.411683 0.205842 0.978585i \(-0.434007\pi\)
0.205842 + 0.978585i \(0.434007\pi\)
\(480\) 0 0
\(481\) 4993.24 0.473331
\(482\) 0 0
\(483\) 5289.81 4766.02i 0.498333 0.448988i
\(484\) 0 0
\(485\) 10935.9 10935.9i 1.02387 1.02387i
\(486\) 0 0
\(487\) 11571.8 1.07673 0.538367 0.842711i \(-0.319042\pi\)
0.538367 + 0.842711i \(0.319042\pi\)
\(488\) 0 0
\(489\) −994.927 + 19100.6i −0.0920085 + 1.76638i
\(490\) 0 0
\(491\) 3134.09 + 3134.09i 0.288064 + 0.288064i 0.836314 0.548250i \(-0.184706\pi\)
−0.548250 + 0.836314i \(0.684706\pi\)
\(492\) 0 0
\(493\) −96.7378 + 96.7378i −0.00883743 + 0.00883743i
\(494\) 0 0
\(495\) −1564.63 + 14978.2i −0.142071 + 1.36004i
\(496\) 0 0
\(497\) 15523.9i 1.40109i
\(498\) 0 0
\(499\) 4382.81 + 4382.81i 0.393190 + 0.393190i 0.875823 0.482633i \(-0.160320\pi\)
−0.482633 + 0.875823i \(0.660320\pi\)
\(500\) 0 0
\(501\) 6388.29 5755.73i 0.569676 0.513267i
\(502\) 0 0
\(503\) 11741.7i 1.04082i −0.853915 0.520412i \(-0.825778\pi\)
0.853915 0.520412i \(-0.174222\pi\)
\(504\) 0 0
\(505\) 16600.3i 1.46278i
\(506\) 0 0
\(507\) −1925.50 + 1734.84i −0.168668 + 0.151966i
\(508\) 0 0
\(509\) −9177.29 9177.29i −0.799167 0.799167i 0.183797 0.982964i \(-0.441161\pi\)
−0.982964 + 0.183797i \(0.941161\pi\)
\(510\) 0 0
\(511\) 10080.0i 0.872631i
\(512\) 0 0
\(513\) −7577.76 1192.78i −0.652176 0.102656i
\(514\) 0 0
\(515\) −17223.8 + 17223.8i −1.47373 + 1.47373i
\(516\) 0 0
\(517\) −3958.01 3958.01i −0.336699 0.336699i
\(518\) 0 0
\(519\) −968.833 + 18599.7i −0.0819404 + 1.57309i
\(520\) 0 0
\(521\) −21786.3 −1.83200 −0.916001 0.401176i \(-0.868602\pi\)
−0.916001 + 0.401176i \(0.868602\pi\)
\(522\) 0 0
\(523\) 3381.21 3381.21i 0.282696 0.282696i −0.551487 0.834183i \(-0.685939\pi\)
0.834183 + 0.551487i \(0.185939\pi\)
\(524\) 0 0
\(525\) −18574.3 + 16735.1i −1.54409 + 1.39120i
\(526\) 0 0
\(527\) 924.372 0.0764066
\(528\) 0 0
\(529\) 7346.16 0.603777
\(530\) 0 0
\(531\) 29.0062 23.5193i 0.00237055 0.00192213i
\(532\) 0 0
\(533\) −11960.9 + 11960.9i −0.972017 + 0.972017i
\(534\) 0 0
\(535\) 4157.21 0.335948
\(536\) 0 0
\(537\) 22103.7 + 1151.35i 1.77624 + 0.0925222i
\(538\) 0 0
\(539\) 954.764 + 954.764i 0.0762979 + 0.0762979i
\(540\) 0 0
\(541\) −2531.45 + 2531.45i −0.201175 + 0.201175i −0.800503 0.599328i \(-0.795434\pi\)
0.599328 + 0.800503i \(0.295434\pi\)
\(542\) 0 0
\(543\) 165.508 3177.42i 0.0130803 0.251116i
\(544\) 0 0
\(545\) 3247.89i 0.255274i
\(546\) 0 0
\(547\) 13220.9 + 13220.9i 1.03343 + 1.03343i 0.999422 + 0.0340067i \(0.0108267\pi\)
0.0340067 + 0.999422i \(0.489173\pi\)
\(548\) 0 0
\(549\) 5206.49 + 6421.11i 0.404749 + 0.499174i
\(550\) 0 0
\(551\) 1780.18i 0.137637i
\(552\) 0 0
\(553\) 4553.09i 0.350121i
\(554\) 0 0
\(555\) −6423.64 7129.62i −0.491295 0.545289i
\(556\) 0 0
\(557\) −1799.67 1799.67i −0.136902 0.136902i 0.635335 0.772237i \(-0.280862\pi\)
−0.772237 + 0.635335i \(0.780862\pi\)
\(558\) 0 0
\(559\) 2712.49i 0.205234i
\(560\) 0 0
\(561\) 633.298 + 32.9876i 0.0476611 + 0.00248260i
\(562\) 0 0
\(563\) −9770.30 + 9770.30i −0.731384 + 0.731384i −0.970894 0.239510i \(-0.923013\pi\)
0.239510 + 0.970894i \(0.423013\pi\)
\(564\) 0 0
\(565\) 28481.9 + 28481.9i 2.12079 + 2.12079i
\(566\) 0 0
\(567\) −14076.6 2973.34i −1.04261 0.220227i
\(568\) 0 0
\(569\) 10828.4 0.797804 0.398902 0.916994i \(-0.369391\pi\)
0.398902 + 0.916994i \(0.369391\pi\)
\(570\) 0 0
\(571\) −7393.50 + 7393.50i −0.541871 + 0.541871i −0.924077 0.382206i \(-0.875164\pi\)
0.382206 + 0.924077i \(0.375164\pi\)
\(572\) 0 0
\(573\) −3089.97 3429.57i −0.225280 0.250039i
\(574\) 0 0
\(575\) 16927.6 1.22770
\(576\) 0 0
\(577\) 9184.00 0.662625 0.331313 0.943521i \(-0.392508\pi\)
0.331313 + 0.943521i \(0.392508\pi\)
\(578\) 0 0
\(579\) 8799.99 + 9767.13i 0.631633 + 0.701050i
\(580\) 0 0
\(581\) 11719.6 11719.6i 0.836853 0.836853i
\(582\) 0 0
\(583\) −18975.1 −1.34797
\(584\) 0 0
\(585\) 26776.0 + 2797.04i 1.89239 + 0.197681i
\(586\) 0 0
\(587\) −13196.5 13196.5i −0.927903 0.927903i 0.0696672 0.997570i \(-0.477806\pi\)
−0.997570 + 0.0696672i \(0.977806\pi\)
\(588\) 0 0
\(589\) −8505.20 + 8505.20i −0.594993 + 0.594993i
\(590\) 0 0
\(591\) 7580.53 + 394.860i 0.527617 + 0.0274828i
\(592\) 0 0
\(593\) 6984.22i 0.483655i −0.970319 0.241828i \(-0.922253\pi\)
0.970319 0.241828i \(-0.0777469\pi\)
\(594\) 0 0
\(595\) 1126.12 + 1126.12i 0.0775907 + 0.0775907i
\(596\) 0 0
\(597\) 2231.01 + 2476.21i 0.152947 + 0.169756i
\(598\) 0 0
\(599\) 6684.31i 0.455949i −0.973667 0.227975i \(-0.926790\pi\)
0.973667 0.227975i \(-0.0732104\pi\)
\(600\) 0 0
\(601\) 14533.0i 0.986377i 0.869923 + 0.493188i \(0.164169\pi\)
−0.869923 + 0.493188i \(0.835831\pi\)
\(602\) 0 0
\(603\) −825.432 + 669.292i −0.0557449 + 0.0452001i
\(604\) 0 0
\(605\) −6619.18 6619.18i −0.444806 0.444806i
\(606\) 0 0
\(607\) 12378.6i 0.827733i 0.910338 + 0.413866i \(0.135822\pi\)
−0.910338 + 0.413866i \(0.864178\pi\)
\(608\) 0 0
\(609\) 173.676 3334.23i 0.0115561 0.221855i
\(610\) 0 0
\(611\) −7075.59 + 7075.59i −0.468490 + 0.468490i
\(612\) 0 0
\(613\) −18856.7 18856.7i −1.24244 1.24244i −0.958986 0.283455i \(-0.908519\pi\)
−0.283455 0.958986i \(-0.591481\pi\)
\(614\) 0 0
\(615\) 32465.8 + 1691.10i 2.12869 + 0.110881i
\(616\) 0 0
\(617\) −4117.09 −0.268635 −0.134317 0.990938i \(-0.542884\pi\)
−0.134317 + 0.990938i \(0.542884\pi\)
\(618\) 0 0
\(619\) 11488.2 11488.2i 0.745958 0.745958i −0.227759 0.973717i \(-0.573140\pi\)
0.973717 + 0.227759i \(0.0731399\pi\)
\(620\) 0 0
\(621\) 5733.19 + 7875.23i 0.370475 + 0.508892i
\(622\) 0 0
\(623\) 20031.7 1.28821
\(624\) 0 0
\(625\) −13338.3 −0.853652
\(626\) 0 0
\(627\) −6130.53 + 5523.49i −0.390478 + 0.351813i
\(628\) 0 0
\(629\) −285.747 + 285.747i −0.0181137 + 0.0181137i
\(630\) 0 0
\(631\) −12047.6 −0.760077 −0.380039 0.924971i \(-0.624089\pi\)
−0.380039 + 0.924971i \(0.624089\pi\)
\(632\) 0 0
\(633\) 780.039 14975.2i 0.0489791 0.940302i
\(634\) 0 0
\(635\) 10612.6 + 10612.6i 0.663225 + 0.663225i
\(636\) 0 0
\(637\) 1706.80 1706.80i 0.106163 0.106163i
\(638\) 0 0
\(639\) −21123.3 2206.55i −1.30771 0.136604i
\(640\) 0 0
\(641\) 15280.3i 0.941550i −0.882253 0.470775i \(-0.843974\pi\)
0.882253 0.470775i \(-0.156026\pi\)
\(642\) 0 0
\(643\) −10573.2 10573.2i −0.648468 0.648468i 0.304155 0.952623i \(-0.401626\pi\)
−0.952623 + 0.304155i \(0.901626\pi\)
\(644\) 0 0
\(645\) −3873.03 + 3489.53i −0.236435 + 0.213023i
\(646\) 0 0
\(647\) 4804.62i 0.291946i 0.989289 + 0.145973i \(0.0466312\pi\)
−0.989289 + 0.145973i \(0.953369\pi\)
\(648\) 0 0
\(649\) 40.1703i 0.00242962i
\(650\) 0 0
\(651\) −16759.8 + 15100.2i −1.00901 + 0.909101i
\(652\) 0 0
\(653\) 1034.28 + 1034.28i 0.0619823 + 0.0619823i 0.737418 0.675436i \(-0.236045\pi\)
−0.675436 + 0.737418i \(0.736045\pi\)
\(654\) 0 0
\(655\) 4086.45i 0.243772i
\(656\) 0 0
\(657\) −13715.8 1432.76i −0.814467 0.0850798i
\(658\) 0 0
\(659\) 3161.81 3161.81i 0.186899 0.186899i −0.607455 0.794354i \(-0.707809\pi\)
0.794354 + 0.607455i \(0.207809\pi\)
\(660\) 0 0
\(661\) −17535.7 17535.7i −1.03186 1.03186i −0.999475 0.0323858i \(-0.989689\pi\)
−0.0323858 0.999475i \(-0.510311\pi\)
\(662\) 0 0
\(663\) 58.9707 1132.12i 0.00345435 0.0663167i
\(664\) 0 0
\(665\) −20723.0 −1.20843
\(666\) 0 0
\(667\) −1598.46 + 1598.46i −0.0927923 + 0.0927923i
\(668\) 0 0
\(669\) 16291.9 14678.7i 0.941528 0.848298i
\(670\) 0 0
\(671\) 8892.53 0.511613
\(672\) 0 0
\(673\) 10046.4 0.575426 0.287713 0.957717i \(-0.407105\pi\)
0.287713 + 0.957717i \(0.407105\pi\)
\(674\) 0 0
\(675\) −20131.1 27652.5i −1.14792 1.57681i
\(676\) 0 0
\(677\) −7587.41 + 7587.41i −0.430735 + 0.430735i −0.888878 0.458143i \(-0.848515\pi\)
0.458143 + 0.888878i \(0.348515\pi\)
\(678\) 0 0
\(679\) 15893.7 0.898295
\(680\) 0 0
\(681\) −30609.8 1594.42i −1.72242 0.0897186i
\(682\) 0 0
\(683\) 2298.94 + 2298.94i 0.128795 + 0.128795i 0.768566 0.639771i \(-0.220971\pi\)
−0.639771 + 0.768566i \(0.720971\pi\)
\(684\) 0 0
\(685\) 25971.7 25971.7i 1.44865 1.44865i
\(686\) 0 0
\(687\) 832.733 15986.8i 0.0462456 0.887825i
\(688\) 0 0
\(689\) 33921.1i 1.87560i
\(690\) 0 0
\(691\) −1119.72 1119.72i −0.0616442 0.0616442i 0.675613 0.737257i \(-0.263879\pi\)
−0.737257 + 0.675613i \(0.763879\pi\)
\(692\) 0 0
\(693\) −12021.2 + 9747.24i −0.658943 + 0.534296i
\(694\) 0 0
\(695\) 3064.16i 0.167238i
\(696\) 0 0
\(697\) 1368.97i 0.0743952i
\(698\) 0 0
\(699\) −12896.6 14313.9i −0.697845 0.774539i
\(700\) 0 0
\(701\) 15121.9 + 15121.9i 0.814760 + 0.814760i 0.985343 0.170583i \(-0.0545652\pi\)
−0.170583 + 0.985343i \(0.554565\pi\)
\(702\) 0 0
\(703\) 5258.35i 0.282109i
\(704\) 0 0
\(705\) 19205.4 + 1000.38i 1.02598 + 0.0534421i
\(706\) 0 0
\(707\) 12062.9 12062.9i 0.641688 0.641688i
\(708\) 0 0
\(709\) −2222.19 2222.19i −0.117710 0.117710i 0.645798 0.763508i \(-0.276525\pi\)
−0.763508 + 0.645798i \(0.776525\pi\)
\(710\) 0 0
\(711\) −6195.34 647.170i −0.326784 0.0341361i
\(712\) 0 0
\(713\) 15273.9 0.802263
\(714\) 0 0
\(715\) 20477.6 20477.6i 1.07108 1.07108i
\(716\) 0 0
\(717\) −5988.38 6646.52i −0.311911 0.346191i
\(718\) 0 0
\(719\) −27781.8 −1.44101 −0.720505 0.693450i \(-0.756090\pi\)
−0.720505 + 0.693450i \(0.756090\pi\)
\(720\) 0 0
\(721\) −25032.1 −1.29299
\(722\) 0 0
\(723\) 10898.2 + 12095.9i 0.560593 + 0.622203i
\(724\) 0 0
\(725\) 5612.70 5612.70i 0.287518 0.287518i
\(726\) 0 0
\(727\) 16679.8 0.850921 0.425460 0.904977i \(-0.360112\pi\)
0.425460 + 0.904977i \(0.360112\pi\)
\(728\) 0 0
\(729\) 6046.63 18731.2i 0.307200 0.951645i
\(730\) 0 0
\(731\) 155.227 + 155.227i 0.00785401 + 0.00785401i
\(732\) 0 0
\(733\) −17838.8 + 17838.8i −0.898898 + 0.898898i −0.995339 0.0964409i \(-0.969254\pi\)
0.0964409 + 0.995339i \(0.469254\pi\)
\(734\) 0 0
\(735\) −4632.79 241.316i −0.232494 0.0121103i
\(736\) 0 0
\(737\) 1143.13i 0.0571340i
\(738\) 0 0
\(739\) −3174.87 3174.87i −0.158037 0.158037i 0.623659 0.781696i \(-0.285645\pi\)
−0.781696 + 0.623659i \(0.785645\pi\)
\(740\) 0 0
\(741\) 9874.13 + 10959.3i 0.489521 + 0.543320i
\(742\) 0 0
\(743\) 20203.2i 0.997555i −0.866730 0.498777i \(-0.833782\pi\)
0.866730 0.498777i \(-0.166218\pi\)
\(744\) 0 0
\(745\) 16219.4i 0.797628i
\(746\) 0 0
\(747\) 14281.0 + 17612.6i 0.699482 + 0.862665i
\(748\) 0 0
\(749\) 3020.92 + 3020.92i 0.147373 + 0.147373i
\(750\) 0 0
\(751\) 7584.16i 0.368508i −0.982879 0.184254i \(-0.941013\pi\)
0.982879 0.184254i \(-0.0589870\pi\)
\(752\) 0 0
\(753\) 1035.66 19882.7i 0.0501216 0.962237i
\(754\) 0 0
\(755\) 30636.6 30636.6i 1.47680 1.47680i
\(756\) 0 0
\(757\) −1287.51 1287.51i −0.0618169 0.0618169i 0.675522 0.737339i \(-0.263918\pi\)
−0.737339 + 0.675522i \(0.763918\pi\)
\(758\) 0 0
\(759\) 10464.4 + 545.074i 0.500437 + 0.0260671i
\(760\) 0 0
\(761\) −8175.32 −0.389428 −0.194714 0.980860i \(-0.562378\pi\)
−0.194714 + 0.980860i \(0.562378\pi\)
\(762\) 0 0
\(763\) −2360.15 + 2360.15i −0.111983 + 0.111983i
\(764\) 0 0
\(765\) −1692.37 + 1372.24i −0.0799839 + 0.0648540i
\(766\) 0 0
\(767\) −71.8109 −0.00338063
\(768\) 0 0
\(769\) 30704.5 1.43984 0.719918 0.694060i \(-0.244180\pi\)
0.719918 + 0.694060i \(0.244180\pi\)
\(770\) 0 0
\(771\) 18768.6 16910.1i 0.876697 0.789887i
\(772\) 0 0
\(773\) −9803.75 + 9803.75i −0.456166 + 0.456166i −0.897395 0.441229i \(-0.854543\pi\)
0.441229 + 0.897395i \(0.354543\pi\)
\(774\) 0 0
\(775\) −53631.9 −2.48582
\(776\) 0 0
\(777\) 513.009 9848.75i 0.0236861 0.454726i
\(778\) 0 0
\(779\) 12596.0 + 12596.0i 0.579329 + 0.579329i
\(780\) 0 0
\(781\) −16154.6 + 16154.6i −0.740150 + 0.740150i
\(782\) 0 0
\(783\) 4512.17 + 710.242i 0.205941 + 0.0324163i
\(784\) 0 0
\(785\) 62112.8i 2.82408i
\(786\) 0 0
\(787\) −6207.55 6207.55i −0.281163 0.281163i 0.552410 0.833573i \(-0.313708\pi\)
−0.833573 + 0.552410i \(0.813708\pi\)
\(788\) 0 0
\(789\) 19797.0 17836.7i 0.893274 0.804822i
\(790\) 0 0
\(791\) 41394.0i 1.86068i
\(792\) 0 0
\(793\) 15896.8i 0.711870i
\(794\) 0 0
\(795\) 48434.3 43638.4i 2.16074 1.94678i
\(796\) 0 0
\(797\) 16268.2 + 16268.2i 0.723025 + 0.723025i 0.969220 0.246196i \(-0.0791805\pi\)
−0.246196 + 0.969220i \(0.579181\pi\)
\(798\) 0 0
\(799\) 809.827i 0.0358568i
\(800\) 0 0
\(801\) −2847.28 + 27257.0i −0.125598 + 1.20234i
\(802\) 0 0
\(803\) −10489.5 + 10489.5i −0.460981 + 0.460981i
\(804\) 0 0
\(805\) 18607.6 + 18607.6i 0.814696 + 0.814696i
\(806\) 0 0
\(807\) −979.635 + 18807.1i −0.0427321 + 0.820372i
\(808\) 0 0
\(809\) 22495.3 0.977616 0.488808 0.872391i \(-0.337432\pi\)
0.488808 + 0.872391i \(0.337432\pi\)
\(810\) 0 0
\(811\) −24289.2 + 24289.2i −1.05168 + 1.05168i −0.0530865 + 0.998590i \(0.516906\pi\)
−0.998590 + 0.0530865i \(0.983094\pi\)
\(812\) 0 0
\(813\) 18479.2 16649.4i 0.797164 0.718229i
\(814\) 0 0
\(815\) −70688.6 −3.03818
\(816\) 0 0
\(817\) −2856.51 −0.122321
\(818\) 0 0
\(819\) 17424.8 + 21489.8i 0.743432 + 0.916868i
\(820\) 0 0
\(821\) 8033.40 8033.40i 0.341495 0.341495i −0.515434 0.856929i \(-0.672369\pi\)
0.856929 + 0.515434i \(0.172369\pi\)
\(822\) 0 0
\(823\) 14074.4 0.596114 0.298057 0.954548i \(-0.403661\pi\)
0.298057 + 0.954548i \(0.403661\pi\)
\(824\) 0 0
\(825\) −36743.8 1913.93i −1.55061 0.0807693i
\(826\) 0 0
\(827\) −6382.42 6382.42i −0.268366 0.268366i 0.560076 0.828441i \(-0.310772\pi\)
−0.828441 + 0.560076i \(0.810772\pi\)
\(828\) 0 0
\(829\) 8468.39 8468.39i 0.354788 0.354788i −0.507099 0.861888i \(-0.669282\pi\)
0.861888 + 0.507099i \(0.169282\pi\)
\(830\) 0 0
\(831\) 110.462 2120.66i 0.00461119 0.0885258i
\(832\) 0 0
\(833\) 195.349i 0.00812538i
\(834\) 0 0
\(835\) 22471.6 + 22471.6i 0.931332 + 0.931332i
\(836\) 0 0
\(837\) −18164.5 24951.2i −0.750129 1.03039i
\(838\) 0 0
\(839\) 4878.66i 0.200751i −0.994950 0.100375i \(-0.967996\pi\)
0.994950 0.100375i \(-0.0320044\pi\)
\(840\) 0 0
\(841\) 23329.0i 0.956538i
\(842\) 0 0
\(843\) 23841.2 + 26461.4i 0.974064 + 1.08112i
\(844\) 0 0
\(845\) −6773.19 6773.19i −0.275745 0.275745i
\(846\) 0 0
\(847\) 9619.92i 0.390253i
\(848\) 0 0
\(849\) 27375.6 + 1425.96i 1.10663 + 0.0576429i
\(850\) 0 0
\(851\) −4721.57 + 4721.57i −0.190192 + 0.190192i
\(852\) 0 0
\(853\) −3062.44 3062.44i −0.122926 0.122926i 0.642967 0.765894i \(-0.277703\pi\)
−0.765894 + 0.642967i \(0.777703\pi\)
\(854\) 0 0
\(855\) 2945.54 28197.6i 0.117819 1.12788i
\(856\) 0 0
\(857\) −22998.9 −0.916716 −0.458358 0.888768i \(-0.651562\pi\)
−0.458358 + 0.888768i \(0.651562\pi\)
\(858\) 0 0
\(859\) −20152.0 + 20152.0i −0.800441 + 0.800441i −0.983164 0.182723i \(-0.941509\pi\)
0.182723 + 0.983164i \(0.441509\pi\)
\(860\) 0 0
\(861\) 22363.0 + 24820.8i 0.885169 + 0.982451i
\(862\) 0 0
\(863\) −39922.6 −1.57472 −0.787359 0.616495i \(-0.788552\pi\)
−0.787359 + 0.616495i \(0.788552\pi\)
\(864\) 0 0
\(865\) −68834.7 −2.70572
\(866\) 0 0
\(867\) −17026.7 18897.9i −0.666961 0.740262i
\(868\) 0 0
\(869\) −4738.06 + 4738.06i −0.184957 + 0.184957i
\(870\) 0 0
\(871\) 2043.53 0.0794977
\(872\) 0 0
\(873\) −2259.10 + 21626.3i −0.0875820 + 0.838420i
\(874\) 0 0
\(875\) −31837.8 31837.8i −1.23007 1.23007i
\(876\) 0 0
\(877\) −24622.0 + 24622.0i −0.948035 + 0.948035i −0.998715 0.0506799i \(-0.983861\pi\)
0.0506799 + 0.998715i \(0.483861\pi\)
\(878\) 0 0
\(879\) 31523.8 + 1642.03i 1.20964 + 0.0630084i
\(880\) 0 0
\(881\) 10455.7i 0.399843i 0.979812 + 0.199921i \(0.0640686\pi\)
−0.979812 + 0.199921i \(0.935931\pi\)
\(882\) 0 0
\(883\) −25017.7 25017.7i −0.953468 0.953468i 0.0454970 0.998964i \(-0.485513\pi\)
−0.998964 + 0.0454970i \(0.985513\pi\)
\(884\) 0 0
\(885\) 92.3824 + 102.535i 0.00350893 + 0.00389457i
\(886\) 0 0
\(887\) 47236.6i 1.78811i 0.447960 + 0.894054i \(0.352151\pi\)
−0.447960 + 0.894054i \(0.647849\pi\)
\(888\) 0 0
\(889\) 15423.7i 0.581884i
\(890\) 0 0
\(891\) −11554.3 17742.6i −0.434437 0.667114i
\(892\) 0 0
\(893\) 7451.26 + 7451.26i 0.279224 + 0.279224i
\(894\) 0 0
\(895\) 81802.4i 3.05514i
\(896\) 0 0
\(897\) 974.408 18706.7i 0.0362704 0.696320i
\(898\) 0 0
\(899\) 5064.41 5064.41i 0.187884 0.187884i
\(900\) 0 0
\(901\) −1941.20 1941.20i −0.0717765 0.0717765i
\(902\) 0 0
\(903\) −5350.16 278.683i −0.197167 0.0102702i
\(904\) 0 0
\(905\) 11759.2 0.431920
\(906\) 0 0
\(907\) −31025.7 + 31025.7i −1.13582 + 1.13582i −0.146634 + 0.989191i \(0.546844\pi\)
−0.989191 + 0.146634i \(0.953156\pi\)
\(908\) 0 0
\(909\) 14699.3 + 18128.5i 0.536354 + 0.661480i
\(910\) 0 0
\(911\) 37779.4 1.37397 0.686985 0.726672i \(-0.258934\pi\)
0.686985 + 0.726672i \(0.258934\pi\)
\(912\) 0 0
\(913\) 24391.5 0.884162
\(914\) 0 0
\(915\) −22698.3 + 20450.8i −0.820092 + 0.738887i
\(916\) 0 0
\(917\) 2969.50 2969.50i 0.106937 0.106937i
\(918\) 0 0
\(919\) 29840.1 1.07109 0.535547 0.844505i \(-0.320106\pi\)
0.535547 + 0.844505i \(0.320106\pi\)
\(920\) 0 0
\(921\) −2237.99 + 42965.0i −0.0800698 + 1.53718i
\(922\) 0 0
\(923\) 28879.0 + 28879.0i 1.02986 + 1.02986i
\(924\) 0 0
\(925\) 16579.0 16579.0i 0.589312 0.589312i
\(926\) 0 0
\(927\) 3558.03 34060.9i 0.126064 1.20680i
\(928\) 0 0
\(929\) 5194.44i 0.183449i −0.995784 0.0917244i \(-0.970762\pi\)
0.995784 0.0917244i \(-0.0292379\pi\)
\(930\) 0 0
\(931\) −1797.42 1797.42i −0.0632738 0.0632738i
\(932\) 0 0
\(933\) −16412.7 + 14787.5i −0.575913 + 0.518887i
\(934\) 0 0
\(935\) 2343.74i 0.0819770i
\(936\) 0 0
\(937\) 22506.4i 0.784687i 0.919819 + 0.392344i \(0.128336\pi\)
−0.919819 + 0.392344i \(0.871664\pi\)
\(938\) 0 0
\(939\) −1809.33 + 1630.17i −0.0628808 + 0.0566544i
\(940\) 0 0
\(941\) −32342.6 32342.6i −1.12045 1.12045i −0.991674 0.128771i \(-0.958897\pi\)
−0.128771 0.991674i \(-0.541103\pi\)
\(942\) 0 0
\(943\) 22620.3i 0.781144i
\(944\) 0 0
\(945\) 8267.90 52526.0i 0.284608 1.80812i
\(946\) 0 0
\(947\) 35064.2 35064.2i 1.20320 1.20320i 0.230018 0.973186i \(-0.426122\pi\)
0.973186 0.230018i \(-0.0738783\pi\)
\(948\) 0 0
\(949\) 18751.8 + 18751.8i 0.641420 + 0.641420i
\(950\) 0 0
\(951\) 1894.58 36372.1i 0.0646013 1.24022i
\(952\) 0 0
\(953\) 54026.3 1.83640 0.918198 0.396122i \(-0.129644\pi\)
0.918198 + 0.396122i \(0.129644\pi\)
\(954\) 0 0
\(955\) 12063.9 12063.9i 0.408774 0.408774i
\(956\) 0 0
\(957\) 3650.41 3288.95i 0.123303 0.111094i
\(958\) 0 0
\(959\) 37745.7 1.27098
\(960\) 0 0
\(961\) −18601.7 −0.624405
\(962\) 0 0
\(963\) −4539.93 + 3681.15i −0.151918 + 0.123181i
\(964\) 0 0
\(965\) −34357.1 + 34357.1i −1.14611 + 1.14611i
\(966\) 0 0
\(967\) −20637.1 −0.686291 −0.343145 0.939282i \(-0.611492\pi\)
−0.343145 + 0.939282i \(0.611492\pi\)
\(968\) 0 0
\(969\) −1192.23 62.1018i −0.0395253 0.00205882i
\(970\) 0 0
\(971\) −23101.0 23101.0i −0.763487 0.763487i 0.213464 0.976951i \(-0.431525\pi\)
−0.976951 + 0.213464i \(0.931525\pi\)
\(972\) 0 0
\(973\) −2226.64 + 2226.64i −0.0733635 + 0.0733635i
\(974\) 0 0
\(975\) −3421.47 + 65685.5i −0.112384 + 2.15756i
\(976\) 0 0
\(977\) 2329.22i 0.0762725i −0.999273 0.0381362i \(-0.987858\pi\)
0.999273 0.0381362i \(-0.0121421\pi\)
\(978\) 0 0
\(979\) 20845.5 + 20845.5i 0.680517 + 0.680517i
\(980\) 0 0
\(981\) −2875.96 3546.90i −0.0936008 0.115437i
\(982\) 0 0
\(983\) 32246.0i 1.04628i −0.852248 0.523138i \(-0.824761\pi\)
0.852248 0.523138i \(-0.175239\pi\)
\(984\) 0 0
\(985\) 28054.4i 0.907501i
\(986\) 0 0
\(987\) 13229.1 + 14683.0i 0.426632 + 0.473519i
\(988\) 0 0
\(989\) 2564.91 + 2564.91i 0.0824664 + 0.0824664i
\(990\) 0 0
\(991\) 37641.1i 1.20657i −0.797526 0.603284i \(-0.793858\pi\)
0.797526 0.603284i \(-0.206142\pi\)
\(992\) 0 0
\(993\) −22842.9 1189.86i −0.730009 0.0380252i
\(994\) 0 0
\(995\) −8710.36 + 8710.36i −0.277525 + 0.277525i
\(996\) 0 0
\(997\) 23110.9 + 23110.9i 0.734131 + 0.734131i 0.971435 0.237304i \(-0.0762638\pi\)
−0.237304 + 0.971435i \(0.576264\pi\)
\(998\) 0 0
\(999\) 13328.2 + 2097.94i 0.422107 + 0.0664422i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 192.4.k.a.143.7 44
3.2 odd 2 inner 192.4.k.a.143.5 44
4.3 odd 2 48.4.k.a.11.16 yes 44
8.3 odd 2 384.4.k.b.287.7 44
8.5 even 2 384.4.k.a.287.16 44
12.11 even 2 48.4.k.a.11.7 44
16.3 odd 4 inner 192.4.k.a.47.5 44
16.5 even 4 384.4.k.b.95.5 44
16.11 odd 4 384.4.k.a.95.18 44
16.13 even 4 48.4.k.a.35.7 yes 44
24.5 odd 2 384.4.k.a.287.18 44
24.11 even 2 384.4.k.b.287.5 44
48.5 odd 4 384.4.k.b.95.7 44
48.11 even 4 384.4.k.a.95.16 44
48.29 odd 4 48.4.k.a.35.16 yes 44
48.35 even 4 inner 192.4.k.a.47.7 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.4.k.a.11.7 44 12.11 even 2
48.4.k.a.11.16 yes 44 4.3 odd 2
48.4.k.a.35.7 yes 44 16.13 even 4
48.4.k.a.35.16 yes 44 48.29 odd 4
192.4.k.a.47.5 44 16.3 odd 4 inner
192.4.k.a.47.7 44 48.35 even 4 inner
192.4.k.a.143.5 44 3.2 odd 2 inner
192.4.k.a.143.7 44 1.1 even 1 trivial
384.4.k.a.95.16 44 48.11 even 4
384.4.k.a.95.18 44 16.11 odd 4
384.4.k.a.287.16 44 8.5 even 2
384.4.k.a.287.18 44 24.5 odd 2
384.4.k.b.95.5 44 16.5 even 4
384.4.k.b.95.7 44 48.5 odd 4
384.4.k.b.287.5 44 24.11 even 2
384.4.k.b.287.7 44 8.3 odd 2