Properties

Label 192.4.c.d.191.11
Level $192$
Weight $4$
Character 192.191
Analytic conductor $11.328$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [192,4,Mod(191,192)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("192.191"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(192, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 192.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.3283667211\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.26525057735983104.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 16x^{10} + 103x^{8} - 260x^{6} + 259x^{4} + 356x^{2} + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{44}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 96)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.11
Root \(2.59708 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 192.191
Dual form 192.4.c.d.191.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(5.19416 - 0.143987i) q^{3} -7.96714i q^{5} -25.6706i q^{7} +(26.9585 - 1.49578i) q^{9} -23.3310 q^{11} -55.6133 q^{13} +(-1.14716 - 41.3826i) q^{15} -115.419i q^{17} +82.4772i q^{19} +(-3.69622 - 133.337i) q^{21} +28.1798 q^{23} +61.5246 q^{25} +(139.811 - 11.6510i) q^{27} -105.588i q^{29} +226.081i q^{31} +(-121.185 + 3.35936i) q^{33} -204.521 q^{35} +295.889 q^{37} +(-288.864 + 8.00756i) q^{39} -446.806i q^{41} -90.6582i q^{43} +(-11.9171 - 214.782i) q^{45} +446.007 q^{47} -315.978 q^{49} +(-16.6187 - 599.502i) q^{51} +332.395i q^{53} +185.882i q^{55} +(11.8756 + 428.400i) q^{57} +261.090 q^{59} -232.663 q^{61} +(-38.3974 - 692.041i) q^{63} +443.079i q^{65} +636.950i q^{67} +(146.370 - 4.05751i) q^{69} -449.162 q^{71} +354.630 q^{73} +(319.569 - 8.85872i) q^{75} +598.921i q^{77} +368.362i q^{79} +(724.525 - 80.6479i) q^{81} -913.178 q^{83} -919.557 q^{85} +(-15.2032 - 548.440i) q^{87} +1069.69i q^{89} +1427.62i q^{91} +(32.5526 + 1174.30i) q^{93} +657.108 q^{95} +521.111 q^{97} +(-628.971 + 34.8980i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 20 q^{9} - 72 q^{13} - 136 q^{21} - 132 q^{25} + 80 q^{33} + 24 q^{37} + 544 q^{45} - 540 q^{49} - 888 q^{57} - 456 q^{61} - 1312 q^{69} + 2424 q^{73} + 2924 q^{81} + 3072 q^{85} + 2360 q^{93} - 2952 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.19416 0.143987i 0.999616 0.0277102i
\(4\) 0 0
\(5\) 7.96714i 0.712603i −0.934371 0.356301i \(-0.884038\pi\)
0.934371 0.356301i \(-0.115962\pi\)
\(6\) 0 0
\(7\) 25.6706i 1.38608i −0.720899 0.693040i \(-0.756271\pi\)
0.720899 0.693040i \(-0.243729\pi\)
\(8\) 0 0
\(9\) 26.9585 1.49578i 0.998464 0.0553992i
\(10\) 0 0
\(11\) −23.3310 −0.639507 −0.319753 0.947501i \(-0.603600\pi\)
−0.319753 + 0.947501i \(0.603600\pi\)
\(12\) 0 0
\(13\) −55.6133 −1.18649 −0.593244 0.805023i \(-0.702153\pi\)
−0.593244 + 0.805023i \(0.702153\pi\)
\(14\) 0 0
\(15\) −1.14716 41.3826i −0.0197464 0.712329i
\(16\) 0 0
\(17\) 115.419i 1.64665i −0.567567 0.823327i \(-0.692115\pi\)
0.567567 0.823327i \(-0.307885\pi\)
\(18\) 0 0
\(19\) 82.4772i 0.995872i 0.867214 + 0.497936i \(0.165909\pi\)
−0.867214 + 0.497936i \(0.834091\pi\)
\(20\) 0 0
\(21\) −3.69622 133.337i −0.0384086 1.38555i
\(22\) 0 0
\(23\) 28.1798 0.255474 0.127737 0.991808i \(-0.459229\pi\)
0.127737 + 0.991808i \(0.459229\pi\)
\(24\) 0 0
\(25\) 61.5246 0.492197
\(26\) 0 0
\(27\) 139.811 11.6510i 0.996546 0.0830456i
\(28\) 0 0
\(29\) 105.588i 0.676110i −0.941126 0.338055i \(-0.890231\pi\)
0.941126 0.338055i \(-0.109769\pi\)
\(30\) 0 0
\(31\) 226.081i 1.30985i 0.755695 + 0.654924i \(0.227299\pi\)
−0.755695 + 0.654924i \(0.772701\pi\)
\(32\) 0 0
\(33\) −121.185 + 3.35936i −0.639261 + 0.0177209i
\(34\) 0 0
\(35\) −204.521 −0.987725
\(36\) 0 0
\(37\) 295.889 1.31470 0.657350 0.753586i \(-0.271677\pi\)
0.657350 + 0.753586i \(0.271677\pi\)
\(38\) 0 0
\(39\) −288.864 + 8.00756i −1.18603 + 0.0328779i
\(40\) 0 0
\(41\) 446.806i 1.70194i −0.525217 0.850968i \(-0.676016\pi\)
0.525217 0.850968i \(-0.323984\pi\)
\(42\) 0 0
\(43\) 90.6582i 0.321517i −0.986994 0.160759i \(-0.948606\pi\)
0.986994 0.160759i \(-0.0513941\pi\)
\(44\) 0 0
\(45\) −11.9171 214.782i −0.0394776 0.711509i
\(46\) 0 0
\(47\) 446.007 1.38419 0.692093 0.721808i \(-0.256689\pi\)
0.692093 + 0.721808i \(0.256689\pi\)
\(48\) 0 0
\(49\) −315.978 −0.921218
\(50\) 0 0
\(51\) −16.6187 599.502i −0.0456292 1.64602i
\(52\) 0 0
\(53\) 332.395i 0.861471i 0.902478 + 0.430736i \(0.141746\pi\)
−0.902478 + 0.430736i \(0.858254\pi\)
\(54\) 0 0
\(55\) 185.882i 0.455714i
\(56\) 0 0
\(57\) 11.8756 + 428.400i 0.0275958 + 0.995490i
\(58\) 0 0
\(59\) 261.090 0.576118 0.288059 0.957613i \(-0.406990\pi\)
0.288059 + 0.957613i \(0.406990\pi\)
\(60\) 0 0
\(61\) −232.663 −0.488351 −0.244175 0.969731i \(-0.578517\pi\)
−0.244175 + 0.969731i \(0.578517\pi\)
\(62\) 0 0
\(63\) −38.3974 692.041i −0.0767877 1.38395i
\(64\) 0 0
\(65\) 443.079i 0.845495i
\(66\) 0 0
\(67\) 636.950i 1.16143i 0.814107 + 0.580715i \(0.197227\pi\)
−0.814107 + 0.580715i \(0.802773\pi\)
\(68\) 0 0
\(69\) 146.370 4.05751i 0.255375 0.00707923i
\(70\) 0 0
\(71\) −449.162 −0.750786 −0.375393 0.926866i \(-0.622492\pi\)
−0.375393 + 0.926866i \(0.622492\pi\)
\(72\) 0 0
\(73\) 354.630 0.568580 0.284290 0.958738i \(-0.408242\pi\)
0.284290 + 0.958738i \(0.408242\pi\)
\(74\) 0 0
\(75\) 319.569 8.85872i 0.492008 0.0136389i
\(76\) 0 0
\(77\) 598.921i 0.886408i
\(78\) 0 0
\(79\) 368.362i 0.524607i 0.964985 + 0.262303i \(0.0844821\pi\)
−0.964985 + 0.262303i \(0.915518\pi\)
\(80\) 0 0
\(81\) 724.525 80.6479i 0.993862 0.110628i
\(82\) 0 0
\(83\) −913.178 −1.20764 −0.603821 0.797120i \(-0.706356\pi\)
−0.603821 + 0.797120i \(0.706356\pi\)
\(84\) 0 0
\(85\) −919.557 −1.17341
\(86\) 0 0
\(87\) −15.2032 548.440i −0.0187351 0.675850i
\(88\) 0 0
\(89\) 1069.69i 1.27401i 0.770861 + 0.637003i \(0.219826\pi\)
−0.770861 + 0.637003i \(0.780174\pi\)
\(90\) 0 0
\(91\) 1427.62i 1.64457i
\(92\) 0 0
\(93\) 32.5526 + 1174.30i 0.0362962 + 1.30934i
\(94\) 0 0
\(95\) 657.108 0.709661
\(96\) 0 0
\(97\) 521.111 0.545472 0.272736 0.962089i \(-0.412071\pi\)
0.272736 + 0.962089i \(0.412071\pi\)
\(98\) 0 0
\(99\) −628.971 + 34.8980i −0.638525 + 0.0354281i
\(100\) 0 0
\(101\) 215.416i 0.212224i 0.994354 + 0.106112i \(0.0338403\pi\)
−0.994354 + 0.106112i \(0.966160\pi\)
\(102\) 0 0
\(103\) 564.822i 0.540326i 0.962815 + 0.270163i \(0.0870776\pi\)
−0.962815 + 0.270163i \(0.912922\pi\)
\(104\) 0 0
\(105\) −1062.31 + 29.4483i −0.987345 + 0.0273701i
\(106\) 0 0
\(107\) 1824.55 1.64846 0.824232 0.566252i \(-0.191607\pi\)
0.824232 + 0.566252i \(0.191607\pi\)
\(108\) 0 0
\(109\) 875.800 0.769600 0.384800 0.923000i \(-0.374270\pi\)
0.384800 + 0.923000i \(0.374270\pi\)
\(110\) 0 0
\(111\) 1536.89 42.6041i 1.31419 0.0364306i
\(112\) 0 0
\(113\) 415.887i 0.346224i 0.984902 + 0.173112i \(0.0553823\pi\)
−0.984902 + 0.173112i \(0.944618\pi\)
\(114\) 0 0
\(115\) 224.512i 0.182051i
\(116\) 0 0
\(117\) −1499.25 + 83.1851i −1.18467 + 0.0657305i
\(118\) 0 0
\(119\) −2962.86 −2.28240
\(120\) 0 0
\(121\) −786.662 −0.591031
\(122\) 0 0
\(123\) −64.3341 2320.78i −0.0471610 1.70128i
\(124\) 0 0
\(125\) 1486.07i 1.06334i
\(126\) 0 0
\(127\) 625.490i 0.437033i 0.975833 + 0.218517i \(0.0701218\pi\)
−0.975833 + 0.218517i \(0.929878\pi\)
\(128\) 0 0
\(129\) −13.0536 470.893i −0.00890932 0.321394i
\(130\) 0 0
\(131\) −777.904 −0.518823 −0.259412 0.965767i \(-0.583529\pi\)
−0.259412 + 0.965767i \(0.583529\pi\)
\(132\) 0 0
\(133\) 2117.24 1.38036
\(134\) 0 0
\(135\) −92.8249 1113.90i −0.0591785 0.710141i
\(136\) 0 0
\(137\) 201.060i 0.125385i −0.998033 0.0626925i \(-0.980031\pi\)
0.998033 0.0626925i \(-0.0199687\pi\)
\(138\) 0 0
\(139\) 1317.85i 0.804165i −0.915603 0.402083i \(-0.868286\pi\)
0.915603 0.402083i \(-0.131714\pi\)
\(140\) 0 0
\(141\) 2316.63 64.2190i 1.38365 0.0383561i
\(142\) 0 0
\(143\) 1297.52 0.758767
\(144\) 0 0
\(145\) −841.234 −0.481798
\(146\) 0 0
\(147\) −1641.24 + 45.4965i −0.920864 + 0.0255272i
\(148\) 0 0
\(149\) 1489.20i 0.818793i −0.912357 0.409397i \(-0.865739\pi\)
0.912357 0.409397i \(-0.134261\pi\)
\(150\) 0 0
\(151\) 838.137i 0.451699i 0.974162 + 0.225850i \(0.0725158\pi\)
−0.974162 + 0.225850i \(0.927484\pi\)
\(152\) 0 0
\(153\) −172.641 3111.52i −0.0912233 1.64413i
\(154\) 0 0
\(155\) 1801.22 0.933401
\(156\) 0 0
\(157\) −1934.33 −0.983290 −0.491645 0.870796i \(-0.663604\pi\)
−0.491645 + 0.870796i \(0.663604\pi\)
\(158\) 0 0
\(159\) 47.8604 + 1726.51i 0.0238716 + 0.861140i
\(160\) 0 0
\(161\) 723.391i 0.354107i
\(162\) 0 0
\(163\) 822.129i 0.395056i −0.980297 0.197528i \(-0.936709\pi\)
0.980297 0.197528i \(-0.0632913\pi\)
\(164\) 0 0
\(165\) 26.7645 + 965.499i 0.0126279 + 0.455539i
\(166\) 0 0
\(167\) 1671.73 0.774626 0.387313 0.921948i \(-0.373403\pi\)
0.387313 + 0.921948i \(0.373403\pi\)
\(168\) 0 0
\(169\) 895.838 0.407755
\(170\) 0 0
\(171\) 123.368 + 2223.46i 0.0551705 + 0.994343i
\(172\) 0 0
\(173\) 1617.78i 0.710970i −0.934682 0.355485i \(-0.884316\pi\)
0.934682 0.355485i \(-0.115684\pi\)
\(174\) 0 0
\(175\) 1579.37i 0.682225i
\(176\) 0 0
\(177\) 1356.14 37.5934i 0.575897 0.0159644i
\(178\) 0 0
\(179\) 785.554 0.328017 0.164009 0.986459i \(-0.447558\pi\)
0.164009 + 0.986459i \(0.447558\pi\)
\(180\) 0 0
\(181\) −869.337 −0.357002 −0.178501 0.983940i \(-0.557125\pi\)
−0.178501 + 0.983940i \(0.557125\pi\)
\(182\) 0 0
\(183\) −1208.49 + 33.5003i −0.488163 + 0.0135323i
\(184\) 0 0
\(185\) 2357.39i 0.936859i
\(186\) 0 0
\(187\) 2692.84i 1.05305i
\(188\) 0 0
\(189\) −299.087 3589.04i −0.115108 1.38129i
\(190\) 0 0
\(191\) −2376.75 −0.900395 −0.450198 0.892929i \(-0.648647\pi\)
−0.450198 + 0.892929i \(0.648647\pi\)
\(192\) 0 0
\(193\) −1410.28 −0.525979 −0.262989 0.964799i \(-0.584708\pi\)
−0.262989 + 0.964799i \(0.584708\pi\)
\(194\) 0 0
\(195\) 63.7974 + 2301.42i 0.0234289 + 0.845170i
\(196\) 0 0
\(197\) 2259.53i 0.817184i −0.912717 0.408592i \(-0.866020\pi\)
0.912717 0.408592i \(-0.133980\pi\)
\(198\) 0 0
\(199\) 516.478i 0.183981i −0.995760 0.0919904i \(-0.970677\pi\)
0.995760 0.0919904i \(-0.0293229\pi\)
\(200\) 0 0
\(201\) 91.7122 + 3308.42i 0.0321835 + 1.16098i
\(202\) 0 0
\(203\) −2710.50 −0.937142
\(204\) 0 0
\(205\) −3559.77 −1.21280
\(206\) 0 0
\(207\) 759.686 42.1507i 0.255081 0.0141530i
\(208\) 0 0
\(209\) 1924.28i 0.636867i
\(210\) 0 0
\(211\) 513.467i 0.167529i 0.996486 + 0.0837643i \(0.0266943\pi\)
−0.996486 + 0.0837643i \(0.973306\pi\)
\(212\) 0 0
\(213\) −2333.02 + 64.6734i −0.750497 + 0.0208044i
\(214\) 0 0
\(215\) −722.287 −0.229114
\(216\) 0 0
\(217\) 5803.62 1.81555
\(218\) 0 0
\(219\) 1842.01 51.0620i 0.568362 0.0157555i
\(220\) 0 0
\(221\) 6418.81i 1.95374i
\(222\) 0 0
\(223\) 4633.52i 1.39140i −0.718330 0.695702i \(-0.755093\pi\)
0.718330 0.695702i \(-0.244907\pi\)
\(224\) 0 0
\(225\) 1658.61 92.0272i 0.491441 0.0272673i
\(226\) 0 0
\(227\) −1245.64 −0.364211 −0.182105 0.983279i \(-0.558291\pi\)
−0.182105 + 0.983279i \(0.558291\pi\)
\(228\) 0 0
\(229\) 6053.22 1.74676 0.873381 0.487038i \(-0.161923\pi\)
0.873381 + 0.487038i \(0.161923\pi\)
\(230\) 0 0
\(231\) 86.2366 + 3110.89i 0.0245626 + 0.886067i
\(232\) 0 0
\(233\) 2938.67i 0.826260i 0.910672 + 0.413130i \(0.135564\pi\)
−0.910672 + 0.413130i \(0.864436\pi\)
\(234\) 0 0
\(235\) 3553.40i 0.986375i
\(236\) 0 0
\(237\) 53.0391 + 1913.33i 0.0145370 + 0.524405i
\(238\) 0 0
\(239\) 6245.16 1.69023 0.845117 0.534582i \(-0.179531\pi\)
0.845117 + 0.534582i \(0.179531\pi\)
\(240\) 0 0
\(241\) −3913.67 −1.04607 −0.523033 0.852312i \(-0.675200\pi\)
−0.523033 + 0.852312i \(0.675200\pi\)
\(242\) 0 0
\(243\) 3751.69 523.220i 0.990415 0.138126i
\(244\) 0 0
\(245\) 2517.44i 0.656463i
\(246\) 0 0
\(247\) 4586.83i 1.18159i
\(248\) 0 0
\(249\) −4743.19 + 131.485i −1.20718 + 0.0334640i
\(250\) 0 0
\(251\) −2382.51 −0.599134 −0.299567 0.954075i \(-0.596842\pi\)
−0.299567 + 0.954075i \(0.596842\pi\)
\(252\) 0 0
\(253\) −657.464 −0.163377
\(254\) 0 0
\(255\) −4776.32 + 132.404i −1.17296 + 0.0325155i
\(256\) 0 0
\(257\) 956.287i 0.232107i −0.993243 0.116054i \(-0.962976\pi\)
0.993243 0.116054i \(-0.0370245\pi\)
\(258\) 0 0
\(259\) 7595.64i 1.82228i
\(260\) 0 0
\(261\) −157.936 2846.50i −0.0374559 0.675071i
\(262\) 0 0
\(263\) 3154.32 0.739558 0.369779 0.929120i \(-0.379433\pi\)
0.369779 + 0.929120i \(0.379433\pi\)
\(264\) 0 0
\(265\) 2648.24 0.613887
\(266\) 0 0
\(267\) 154.021 + 5556.12i 0.0353030 + 1.27352i
\(268\) 0 0
\(269\) 1303.93i 0.295547i 0.989021 + 0.147774i \(0.0472107\pi\)
−0.989021 + 0.147774i \(0.952789\pi\)
\(270\) 0 0
\(271\) 5921.03i 1.32722i 0.748078 + 0.663611i \(0.230977\pi\)
−0.748078 + 0.663611i \(0.769023\pi\)
\(272\) 0 0
\(273\) 205.559 + 7415.31i 0.0455713 + 1.64394i
\(274\) 0 0
\(275\) −1435.43 −0.314763
\(276\) 0 0
\(277\) 2409.31 0.522604 0.261302 0.965257i \(-0.415848\pi\)
0.261302 + 0.965257i \(0.415848\pi\)
\(278\) 0 0
\(279\) 338.166 + 6094.80i 0.0725645 + 1.30784i
\(280\) 0 0
\(281\) 5183.15i 1.10036i 0.835046 + 0.550180i \(0.185441\pi\)
−0.835046 + 0.550180i \(0.814559\pi\)
\(282\) 0 0
\(283\) 6710.86i 1.40961i −0.709402 0.704804i \(-0.751035\pi\)
0.709402 0.704804i \(-0.248965\pi\)
\(284\) 0 0
\(285\) 3413.12 94.6147i 0.709389 0.0196649i
\(286\) 0 0
\(287\) −11469.8 −2.35902
\(288\) 0 0
\(289\) −8408.46 −1.71147
\(290\) 0 0
\(291\) 2706.73 75.0329i 0.545262 0.0151151i
\(292\) 0 0
\(293\) 9713.30i 1.93671i 0.249570 + 0.968357i \(0.419711\pi\)
−0.249570 + 0.968357i \(0.580289\pi\)
\(294\) 0 0
\(295\) 2080.14i 0.410543i
\(296\) 0 0
\(297\) −3261.95 + 271.829i −0.637298 + 0.0531082i
\(298\) 0 0
\(299\) −1567.17 −0.303116
\(300\) 0 0
\(301\) −2327.25 −0.445649
\(302\) 0 0
\(303\) 31.0170 + 1118.90i 0.00588079 + 0.212143i
\(304\) 0 0
\(305\) 1853.66i 0.348000i
\(306\) 0 0
\(307\) 9022.51i 1.67734i 0.544644 + 0.838668i \(0.316665\pi\)
−0.544644 + 0.838668i \(0.683335\pi\)
\(308\) 0 0
\(309\) 81.3268 + 2933.77i 0.0149725 + 0.540118i
\(310\) 0 0
\(311\) 7350.41 1.34020 0.670102 0.742269i \(-0.266250\pi\)
0.670102 + 0.742269i \(0.266250\pi\)
\(312\) 0 0
\(313\) −1810.71 −0.326988 −0.163494 0.986544i \(-0.552276\pi\)
−0.163494 + 0.986544i \(0.552276\pi\)
\(314\) 0 0
\(315\) −5513.59 + 305.918i −0.986208 + 0.0547191i
\(316\) 0 0
\(317\) 3825.09i 0.677724i −0.940836 0.338862i \(-0.889958\pi\)
0.940836 0.338862i \(-0.110042\pi\)
\(318\) 0 0
\(319\) 2463.48i 0.432377i
\(320\) 0 0
\(321\) 9476.99 262.710i 1.64783 0.0456793i
\(322\) 0 0
\(323\) 9519.41 1.63986
\(324\) 0 0
\(325\) −3421.59 −0.583986
\(326\) 0 0
\(327\) 4549.04 126.103i 0.769305 0.0213258i
\(328\) 0 0
\(329\) 11449.2i 1.91859i
\(330\) 0 0
\(331\) 1632.70i 0.271122i −0.990769 0.135561i \(-0.956716\pi\)
0.990769 0.135561i \(-0.0432837\pi\)
\(332\) 0 0
\(333\) 7976.74 442.584i 1.31268 0.0728332i
\(334\) 0 0
\(335\) 5074.67 0.827639
\(336\) 0 0
\(337\) 7685.23 1.24226 0.621129 0.783708i \(-0.286674\pi\)
0.621129 + 0.783708i \(0.286674\pi\)
\(338\) 0 0
\(339\) 59.8821 + 2160.18i 0.00959395 + 0.346091i
\(340\) 0 0
\(341\) 5274.70i 0.837657i
\(342\) 0 0
\(343\) 693.675i 0.109198i
\(344\) 0 0
\(345\) −32.3268 1166.15i −0.00504468 0.181981i
\(346\) 0 0
\(347\) −8052.38 −1.24575 −0.622874 0.782322i \(-0.714035\pi\)
−0.622874 + 0.782322i \(0.714035\pi\)
\(348\) 0 0
\(349\) −639.800 −0.0981309 −0.0490655 0.998796i \(-0.515624\pi\)
−0.0490655 + 0.998796i \(0.515624\pi\)
\(350\) 0 0
\(351\) −7775.38 + 647.949i −1.18239 + 0.0985326i
\(352\) 0 0
\(353\) 7770.76i 1.17166i 0.810434 + 0.585829i \(0.199231\pi\)
−0.810434 + 0.585829i \(0.800769\pi\)
\(354\) 0 0
\(355\) 3578.54i 0.535012i
\(356\) 0 0
\(357\) −15389.6 + 426.612i −2.28152 + 0.0632457i
\(358\) 0 0
\(359\) 1804.28 0.265255 0.132627 0.991166i \(-0.457659\pi\)
0.132627 + 0.991166i \(0.457659\pi\)
\(360\) 0 0
\(361\) 56.5105 0.00823888
\(362\) 0 0
\(363\) −4086.05 + 113.269i −0.590804 + 0.0163776i
\(364\) 0 0
\(365\) 2825.39i 0.405172i
\(366\) 0 0
\(367\) 13240.2i 1.88319i −0.336746 0.941596i \(-0.609326\pi\)
0.336746 0.941596i \(-0.390674\pi\)
\(368\) 0 0
\(369\) −668.323 12045.2i −0.0942859 1.69932i
\(370\) 0 0
\(371\) 8532.77 1.19407
\(372\) 0 0
\(373\) 4963.96 0.689073 0.344537 0.938773i \(-0.388036\pi\)
0.344537 + 0.938773i \(0.388036\pi\)
\(374\) 0 0
\(375\) −213.974 7718.87i −0.0294655 1.06294i
\(376\) 0 0
\(377\) 5872.09i 0.802196i
\(378\) 0 0
\(379\) 5469.16i 0.741245i 0.928784 + 0.370622i \(0.120856\pi\)
−0.928784 + 0.370622i \(0.879144\pi\)
\(380\) 0 0
\(381\) 90.0621 + 3248.89i 0.0121103 + 0.436865i
\(382\) 0 0
\(383\) −14696.1 −1.96067 −0.980333 0.197349i \(-0.936767\pi\)
−0.980333 + 0.197349i \(0.936767\pi\)
\(384\) 0 0
\(385\) 4771.69 0.631657
\(386\) 0 0
\(387\) −135.604 2444.01i −0.0178118 0.321024i
\(388\) 0 0
\(389\) 13333.2i 1.73785i −0.494947 0.868923i \(-0.664813\pi\)
0.494947 0.868923i \(-0.335187\pi\)
\(390\) 0 0
\(391\) 3252.47i 0.420677i
\(392\) 0 0
\(393\) −4040.56 + 112.008i −0.518624 + 0.0143767i
\(394\) 0 0
\(395\) 2934.79 0.373836
\(396\) 0 0
\(397\) −8605.86 −1.08795 −0.543975 0.839102i \(-0.683081\pi\)
−0.543975 + 0.839102i \(0.683081\pi\)
\(398\) 0 0
\(399\) 10997.3 304.854i 1.37983 0.0382500i
\(400\) 0 0
\(401\) 8801.23i 1.09604i −0.836465 0.548020i \(-0.815382\pi\)
0.836465 0.548020i \(-0.184618\pi\)
\(402\) 0 0
\(403\) 12573.1i 1.55412i
\(404\) 0 0
\(405\) −642.534 5772.40i −0.0788340 0.708229i
\(406\) 0 0
\(407\) −6903.40 −0.840759
\(408\) 0 0
\(409\) 5221.12 0.631218 0.315609 0.948889i \(-0.397791\pi\)
0.315609 + 0.948889i \(0.397791\pi\)
\(410\) 0 0
\(411\) −28.9500 1044.34i −0.00347444 0.125337i
\(412\) 0 0
\(413\) 6702.32i 0.798546i
\(414\) 0 0
\(415\) 7275.42i 0.860569i
\(416\) 0 0
\(417\) −189.753 6845.15i −0.0222836 0.803857i
\(418\) 0 0
\(419\) −3566.56 −0.415842 −0.207921 0.978146i \(-0.566670\pi\)
−0.207921 + 0.978146i \(0.566670\pi\)
\(420\) 0 0
\(421\) 209.057 0.0242015 0.0121007 0.999927i \(-0.496148\pi\)
0.0121007 + 0.999927i \(0.496148\pi\)
\(422\) 0 0
\(423\) 12023.7 667.127i 1.38206 0.0766828i
\(424\) 0 0
\(425\) 7101.09i 0.810479i
\(426\) 0 0
\(427\) 5972.58i 0.676893i
\(428\) 0 0
\(429\) 6739.50 186.825i 0.758476 0.0210256i
\(430\) 0 0
\(431\) 1783.54 0.199328 0.0996639 0.995021i \(-0.468223\pi\)
0.0996639 + 0.995021i \(0.468223\pi\)
\(432\) 0 0
\(433\) −8790.64 −0.975638 −0.487819 0.872945i \(-0.662207\pi\)
−0.487819 + 0.872945i \(0.662207\pi\)
\(434\) 0 0
\(435\) −4369.50 + 121.126i −0.481613 + 0.0133507i
\(436\) 0 0
\(437\) 2324.19i 0.254419i
\(438\) 0 0
\(439\) 15961.9i 1.73535i 0.497129 + 0.867677i \(0.334388\pi\)
−0.497129 + 0.867677i \(0.665612\pi\)
\(440\) 0 0
\(441\) −8518.30 + 472.632i −0.919803 + 0.0510347i
\(442\) 0 0
\(443\) 4876.45 0.522996 0.261498 0.965204i \(-0.415784\pi\)
0.261498 + 0.965204i \(0.415784\pi\)
\(444\) 0 0
\(445\) 8522.35 0.907861
\(446\) 0 0
\(447\) −214.425 7735.15i −0.0226889 0.818479i
\(448\) 0 0
\(449\) 520.654i 0.0547242i 0.999626 + 0.0273621i \(0.00871072\pi\)
−0.999626 + 0.0273621i \(0.991289\pi\)
\(450\) 0 0
\(451\) 10424.5i 1.08840i
\(452\) 0 0
\(453\) 120.680 + 4353.42i 0.0125167 + 0.451526i
\(454\) 0 0
\(455\) 11374.1 1.17192
\(456\) 0 0
\(457\) 3684.65 0.377157 0.188578 0.982058i \(-0.439612\pi\)
0.188578 + 0.982058i \(0.439612\pi\)
\(458\) 0 0
\(459\) −1344.74 16136.8i −0.136747 1.64097i
\(460\) 0 0
\(461\) 110.224i 0.0111359i −0.999984 0.00556794i \(-0.998228\pi\)
0.999984 0.00556794i \(-0.00177234\pi\)
\(462\) 0 0
\(463\) 10287.0i 1.03256i 0.856418 + 0.516282i \(0.172685\pi\)
−0.856418 + 0.516282i \(0.827315\pi\)
\(464\) 0 0
\(465\) 9355.80 259.351i 0.933043 0.0258648i
\(466\) 0 0
\(467\) 4811.83 0.476799 0.238399 0.971167i \(-0.423377\pi\)
0.238399 + 0.971167i \(0.423377\pi\)
\(468\) 0 0
\(469\) 16350.9 1.60984
\(470\) 0 0
\(471\) −10047.2 + 278.518i −0.982912 + 0.0272472i
\(472\) 0 0
\(473\) 2115.15i 0.205613i
\(474\) 0 0
\(475\) 5074.38i 0.490165i
\(476\) 0 0
\(477\) 497.189 + 8960.88i 0.0477248 + 0.860148i
\(478\) 0 0
\(479\) −14954.9 −1.42653 −0.713265 0.700894i \(-0.752784\pi\)
−0.713265 + 0.700894i \(0.752784\pi\)
\(480\) 0 0
\(481\) −16455.4 −1.55988
\(482\) 0 0
\(483\) −104.159 3757.41i −0.00981238 0.353971i
\(484\) 0 0
\(485\) 4151.76i 0.388705i
\(486\) 0 0
\(487\) 18724.9i 1.74231i 0.491010 + 0.871154i \(0.336628\pi\)
−0.491010 + 0.871154i \(0.663372\pi\)
\(488\) 0 0
\(489\) −118.375 4270.27i −0.0109471 0.394904i
\(490\) 0 0
\(491\) −14320.6 −1.31625 −0.658127 0.752907i \(-0.728651\pi\)
−0.658127 + 0.752907i \(0.728651\pi\)
\(492\) 0 0
\(493\) −12186.8 −1.11332
\(494\) 0 0
\(495\) 278.038 + 5011.10i 0.0252462 + 0.455015i
\(496\) 0 0
\(497\) 11530.3i 1.04065i
\(498\) 0 0
\(499\) 9558.56i 0.857515i −0.903420 0.428757i \(-0.858951\pi\)
0.903420 0.428757i \(-0.141049\pi\)
\(500\) 0 0
\(501\) 8683.24 240.707i 0.774329 0.0214651i
\(502\) 0 0
\(503\) −11851.2 −1.05053 −0.525266 0.850938i \(-0.676034\pi\)
−0.525266 + 0.850938i \(0.676034\pi\)
\(504\) 0 0
\(505\) 1716.25 0.151232
\(506\) 0 0
\(507\) 4653.12 128.989i 0.407598 0.0112990i
\(508\) 0 0
\(509\) 2421.32i 0.210851i −0.994427 0.105426i \(-0.966380\pi\)
0.994427 0.105426i \(-0.0336205\pi\)
\(510\) 0 0
\(511\) 9103.56i 0.788098i
\(512\) 0 0
\(513\) 960.939 + 11531.3i 0.0827027 + 0.992432i
\(514\) 0 0
\(515\) 4500.02 0.385038
\(516\) 0 0
\(517\) −10405.8 −0.885197
\(518\) 0 0
\(519\) −232.939 8403.02i −0.0197011 0.710697i
\(520\) 0 0
\(521\) 14301.2i 1.20258i 0.799030 + 0.601291i \(0.205347\pi\)
−0.799030 + 0.601291i \(0.794653\pi\)
\(522\) 0 0
\(523\) 17793.9i 1.48771i 0.668340 + 0.743856i \(0.267005\pi\)
−0.668340 + 0.743856i \(0.732995\pi\)
\(524\) 0 0
\(525\) −227.408 8203.51i −0.0189046 0.681963i
\(526\) 0 0
\(527\) 26093.9 2.15687
\(528\) 0 0
\(529\) −11372.9 −0.934733
\(530\) 0 0
\(531\) 7038.59 390.532i 0.575233 0.0319165i
\(532\) 0 0
\(533\) 24848.4i 2.01933i
\(534\) 0 0
\(535\) 14536.4i 1.17470i
\(536\) 0 0
\(537\) 4080.29 113.109i 0.327891 0.00908943i
\(538\) 0 0
\(539\) 7372.09 0.589125
\(540\) 0 0
\(541\) −112.850 −0.00896822 −0.00448411 0.999990i \(-0.501427\pi\)
−0.00448411 + 0.999990i \(0.501427\pi\)
\(542\) 0 0
\(543\) −4515.47 + 125.173i −0.356865 + 0.00989260i
\(544\) 0 0
\(545\) 6977.63i 0.548420i
\(546\) 0 0
\(547\) 4625.21i 0.361535i 0.983526 + 0.180768i \(0.0578582\pi\)
−0.983526 + 0.180768i \(0.942142\pi\)
\(548\) 0 0
\(549\) −6272.24 + 348.011i −0.487601 + 0.0270542i
\(550\) 0 0
\(551\) 8708.59 0.673319
\(552\) 0 0
\(553\) 9456.05 0.727147
\(554\) 0 0
\(555\) −339.433 12244.7i −0.0259606 0.936499i
\(556\) 0 0
\(557\) 13195.7i 1.00381i 0.864923 + 0.501905i \(0.167367\pi\)
−0.864923 + 0.501905i \(0.832633\pi\)
\(558\) 0 0
\(559\) 5041.80i 0.381477i
\(560\) 0 0
\(561\) 387.732 + 13987.0i 0.0291802 + 1.05264i
\(562\) 0 0
\(563\) −17336.0 −1.29773 −0.648867 0.760902i \(-0.724757\pi\)
−0.648867 + 0.760902i \(0.724757\pi\)
\(564\) 0 0
\(565\) 3313.43 0.246720
\(566\) 0 0
\(567\) −2070.28 18599.0i −0.153340 1.37757i
\(568\) 0 0
\(569\) 12853.5i 0.947004i −0.880793 0.473502i \(-0.842990\pi\)
0.880793 0.473502i \(-0.157010\pi\)
\(570\) 0 0
\(571\) 16704.7i 1.22429i −0.790746 0.612144i \(-0.790307\pi\)
0.790746 0.612144i \(-0.209693\pi\)
\(572\) 0 0
\(573\) −12345.2 + 342.220i −0.900050 + 0.0249502i
\(574\) 0 0
\(575\) 1733.75 0.125743
\(576\) 0 0
\(577\) 21248.7 1.53309 0.766547 0.642188i \(-0.221973\pi\)
0.766547 + 0.642188i \(0.221973\pi\)
\(578\) 0 0
\(579\) −7325.19 + 203.061i −0.525777 + 0.0145750i
\(580\) 0 0
\(581\) 23441.8i 1.67389i
\(582\) 0 0
\(583\) 7755.12i 0.550917i
\(584\) 0 0
\(585\) 662.748 + 11944.8i 0.0468397 + 0.844197i
\(586\) 0 0
\(587\) 19358.6 1.36118 0.680592 0.732663i \(-0.261723\pi\)
0.680592 + 0.732663i \(0.261723\pi\)
\(588\) 0 0
\(589\) −18646.5 −1.30444
\(590\) 0 0
\(591\) −325.343 11736.4i −0.0226443 0.816870i
\(592\) 0 0
\(593\) 4834.94i 0.334818i 0.985888 + 0.167409i \(0.0535401\pi\)
−0.985888 + 0.167409i \(0.946460\pi\)
\(594\) 0 0
\(595\) 23605.5i 1.62644i
\(596\) 0 0
\(597\) −74.3659 2682.67i −0.00509815 0.183910i
\(598\) 0 0
\(599\) −11168.9 −0.761848 −0.380924 0.924606i \(-0.624394\pi\)
−0.380924 + 0.924606i \(0.624394\pi\)
\(600\) 0 0
\(601\) 18001.2 1.22177 0.610886 0.791719i \(-0.290813\pi\)
0.610886 + 0.791719i \(0.290813\pi\)
\(602\) 0 0
\(603\) 952.735 + 17171.2i 0.0643423 + 1.15965i
\(604\) 0 0
\(605\) 6267.45i 0.421170i
\(606\) 0 0
\(607\) 1849.50i 0.123672i 0.998086 + 0.0618360i \(0.0196956\pi\)
−0.998086 + 0.0618360i \(0.980304\pi\)
\(608\) 0 0
\(609\) −14078.8 + 390.276i −0.936782 + 0.0259684i
\(610\) 0 0
\(611\) −24803.9 −1.64232
\(612\) 0 0
\(613\) 14440.9 0.951490 0.475745 0.879583i \(-0.342179\pi\)
0.475745 + 0.879583i \(0.342179\pi\)
\(614\) 0 0
\(615\) −18490.0 + 512.559i −1.21234 + 0.0336071i
\(616\) 0 0
\(617\) 13836.0i 0.902780i 0.892327 + 0.451390i \(0.149072\pi\)
−0.892327 + 0.451390i \(0.850928\pi\)
\(618\) 0 0
\(619\) 317.423i 0.0206112i −0.999947 0.0103056i \(-0.996720\pi\)
0.999947 0.0103056i \(-0.00328043\pi\)
\(620\) 0 0
\(621\) 3939.86 328.322i 0.254591 0.0212159i
\(622\) 0 0
\(623\) 27459.5 1.76588
\(624\) 0 0
\(625\) −4149.14 −0.265545
\(626\) 0 0
\(627\) −277.070 9995.01i −0.0176477 0.636622i
\(628\) 0 0
\(629\) 34151.1i 2.16486i
\(630\) 0 0
\(631\) 12633.5i 0.797036i 0.917160 + 0.398518i \(0.130475\pi\)
−0.917160 + 0.398518i \(0.869525\pi\)
\(632\) 0 0
\(633\) 73.9323 + 2667.03i 0.00464225 + 0.167464i
\(634\) 0 0
\(635\) 4983.36 0.311431
\(636\) 0 0
\(637\) 17572.6 1.09301
\(638\) 0 0
\(639\) −12108.8 + 671.847i −0.749633 + 0.0415929i
\(640\) 0 0
\(641\) 8902.34i 0.548551i −0.961651 0.274276i \(-0.911562\pi\)
0.961651 0.274276i \(-0.0884381\pi\)
\(642\) 0 0
\(643\) 11374.0i 0.697587i 0.937200 + 0.348794i \(0.113409\pi\)
−0.937200 + 0.348794i \(0.886591\pi\)
\(644\) 0 0
\(645\) −3751.67 + 104.000i −0.229026 + 0.00634880i
\(646\) 0 0
\(647\) −12659.4 −0.769229 −0.384614 0.923077i \(-0.625666\pi\)
−0.384614 + 0.923077i \(0.625666\pi\)
\(648\) 0 0
\(649\) −6091.49 −0.368431
\(650\) 0 0
\(651\) 30144.9 835.643i 1.81486 0.0503094i
\(652\) 0 0
\(653\) 11847.4i 0.709992i 0.934868 + 0.354996i \(0.115518\pi\)
−0.934868 + 0.354996i \(0.884482\pi\)
\(654\) 0 0
\(655\) 6197.67i 0.369715i
\(656\) 0 0
\(657\) 9560.32 530.448i 0.567707 0.0314989i
\(658\) 0 0
\(659\) −14621.4 −0.864295 −0.432148 0.901803i \(-0.642244\pi\)
−0.432148 + 0.901803i \(0.642244\pi\)
\(660\) 0 0
\(661\) −16648.8 −0.979673 −0.489836 0.871814i \(-0.662943\pi\)
−0.489836 + 0.871814i \(0.662943\pi\)
\(662\) 0 0
\(663\) 924.222 + 33340.3i 0.0541385 + 1.95299i
\(664\) 0 0
\(665\) 16868.3i 0.983647i
\(666\) 0 0
\(667\) 2975.44i 0.172728i
\(668\) 0 0
\(669\) −667.164 24067.2i −0.0385561 1.39087i
\(670\) 0 0
\(671\) 5428.26 0.312304
\(672\) 0 0
\(673\) −5387.78 −0.308594 −0.154297 0.988025i \(-0.549311\pi\)
−0.154297 + 0.988025i \(0.549311\pi\)
\(674\) 0 0
\(675\) 8601.85 716.822i 0.490497 0.0408748i
\(676\) 0 0
\(677\) 19495.1i 1.10673i −0.832938 0.553366i \(-0.813343\pi\)
0.832938 0.553366i \(-0.186657\pi\)
\(678\) 0 0
\(679\) 13377.2i 0.756068i
\(680\) 0 0
\(681\) −6470.03 + 179.355i −0.364071 + 0.0100924i
\(682\) 0 0
\(683\) 186.998 0.0104763 0.00523814 0.999986i \(-0.498333\pi\)
0.00523814 + 0.999986i \(0.498333\pi\)
\(684\) 0 0
\(685\) −1601.88 −0.0893497
\(686\) 0 0
\(687\) 31441.4 871.583i 1.74609 0.0484031i
\(688\) 0 0
\(689\) 18485.6i 1.02213i
\(690\) 0 0
\(691\) 28857.1i 1.58868i −0.607477 0.794338i \(-0.707818\pi\)
0.607477 0.794338i \(-0.292182\pi\)
\(692\) 0 0
\(693\) 895.853 + 16146.0i 0.0491062 + 0.885046i
\(694\) 0 0
\(695\) −10499.5 −0.573051
\(696\) 0 0
\(697\) −51569.7 −2.80250
\(698\) 0 0
\(699\) 423.129 + 15263.9i 0.0228958 + 0.825942i
\(700\) 0 0
\(701\) 24163.6i 1.30192i 0.759111 + 0.650961i \(0.225634\pi\)
−0.759111 + 0.650961i \(0.774366\pi\)
\(702\) 0 0
\(703\) 24404.1i 1.30927i
\(704\) 0 0
\(705\) −511.642 18456.9i −0.0273327 0.985996i
\(706\) 0 0
\(707\) 5529.84 0.294160
\(708\) 0 0
\(709\) 9401.09 0.497977 0.248988 0.968506i \(-0.419902\pi\)
0.248988 + 0.968506i \(0.419902\pi\)
\(710\) 0 0
\(711\) 550.987 + 9930.49i 0.0290628 + 0.523801i
\(712\) 0 0
\(713\) 6370.90i 0.334631i
\(714\) 0 0
\(715\) 10337.5i 0.540700i
\(716\) 0 0
\(717\) 32438.3 899.219i 1.68958 0.0468367i
\(718\) 0 0
\(719\) 2696.45 0.139862 0.0699309 0.997552i \(-0.477722\pi\)
0.0699309 + 0.997552i \(0.477722\pi\)
\(720\) 0 0
\(721\) 14499.3 0.748935
\(722\) 0 0
\(723\) −20328.2 + 563.517i −1.04566 + 0.0289867i
\(724\) 0 0
\(725\) 6496.26i 0.332779i
\(726\) 0 0
\(727\) 21059.4i 1.07434i −0.843472 0.537172i \(-0.819492\pi\)
0.843472 0.537172i \(-0.180508\pi\)
\(728\) 0 0
\(729\) 19411.5 3257.88i 0.986207 0.165517i
\(730\) 0 0
\(731\) −10463.6 −0.529428
\(732\) 0 0
\(733\) 23866.2 1.20262 0.601309 0.799017i \(-0.294646\pi\)
0.601309 + 0.799017i \(0.294646\pi\)
\(734\) 0 0
\(735\) 362.477 + 13076.0i 0.0181907 + 0.656211i
\(736\) 0 0
\(737\) 14860.7i 0.742743i
\(738\) 0 0
\(739\) 12335.5i 0.614033i −0.951704 0.307016i \(-0.900669\pi\)
0.951704 0.307016i \(-0.0993306\pi\)
\(740\) 0 0
\(741\) −660.442 23824.7i −0.0327421 1.18114i
\(742\) 0 0
\(743\) −12201.5 −0.602461 −0.301231 0.953551i \(-0.597397\pi\)
−0.301231 + 0.953551i \(0.597397\pi\)
\(744\) 0 0
\(745\) −11864.7 −0.583474
\(746\) 0 0
\(747\) −24617.9 + 1365.91i −1.20579 + 0.0669024i
\(748\) 0 0
\(749\) 46837.2i 2.28490i
\(750\) 0 0
\(751\) 20108.9i 0.977074i −0.872543 0.488537i \(-0.837531\pi\)
0.872543 0.488537i \(-0.162469\pi\)
\(752\) 0 0
\(753\) −12375.1 + 343.049i −0.598904 + 0.0166021i
\(754\) 0 0
\(755\) 6677.56 0.321882
\(756\) 0 0
\(757\) −27880.4 −1.33861 −0.669307 0.742986i \(-0.733409\pi\)
−0.669307 + 0.742986i \(0.733409\pi\)
\(758\) 0 0
\(759\) −3414.97 + 94.6659i −0.163314 + 0.00452721i
\(760\) 0 0
\(761\) 10517.2i 0.500982i −0.968119 0.250491i \(-0.919408\pi\)
0.968119 0.250491i \(-0.0805920\pi\)
\(762\) 0 0
\(763\) 22482.3i 1.06673i
\(764\) 0 0
\(765\) −24789.9 + 1375.45i −1.17161 + 0.0650060i
\(766\) 0 0
\(767\) −14520.0 −0.683557
\(768\) 0 0
\(769\) 27544.2 1.29164 0.645818 0.763491i \(-0.276516\pi\)
0.645818 + 0.763491i \(0.276516\pi\)
\(770\) 0 0
\(771\) −137.693 4967.11i −0.00643174 0.232018i
\(772\) 0 0
\(773\) 5541.74i 0.257856i 0.991654 + 0.128928i \(0.0411536\pi\)
−0.991654 + 0.128928i \(0.958846\pi\)
\(774\) 0 0
\(775\) 13909.5i 0.644703i
\(776\) 0 0
\(777\) −1093.67 39453.0i −0.0504957 1.82158i
\(778\) 0 0
\(779\) 36851.3 1.69491
\(780\) 0 0
\(781\) 10479.4 0.480132
\(782\) 0 0
\(783\) −1230.20 14762.4i −0.0561479 0.673774i
\(784\) 0 0
\(785\) 15411.1i 0.700695i
\(786\) 0 0
\(787\) 5307.17i 0.240381i −0.992751 0.120191i \(-0.961649\pi\)
0.992751 0.120191i \(-0.0383506\pi\)
\(788\) 0 0
\(789\) 16384.0 454.180i 0.739274 0.0204933i
\(790\) 0 0
\(791\) 10676.0 0.479894
\(792\) 0 0
\(793\) 12939.1 0.579422
\(794\) 0 0
\(795\) 13755.4 381.311i 0.613651 0.0170109i
\(796\) 0 0
\(797\) 36068.1i 1.60301i −0.597990 0.801503i \(-0.704034\pi\)
0.597990 0.801503i \(-0.295966\pi\)
\(798\) 0 0
\(799\) 51477.5i 2.27928i
\(800\) 0 0
\(801\) 1600.01 + 28837.2i 0.0705789 + 1.27205i
\(802\) 0 0
\(803\) −8273.90 −0.363611
\(804\) 0 0
\(805\) −5763.36 −0.252337
\(806\) 0 0
\(807\) 187.749 + 6772.84i 0.00818968 + 0.295434i
\(808\) 0 0
\(809\) 2017.07i 0.0876593i −0.999039 0.0438296i \(-0.986044\pi\)
0.999039 0.0438296i \(-0.0139559\pi\)
\(810\) 0 0
\(811\) 21742.6i 0.941413i 0.882290 + 0.470706i \(0.156001\pi\)
−0.882290 + 0.470706i \(0.843999\pi\)
\(812\) 0 0
\(813\) 852.549 + 30754.8i 0.0367776 + 1.32671i
\(814\) 0 0
\(815\) −6550.02 −0.281518
\(816\) 0 0
\(817\) 7477.23 0.320190
\(818\) 0 0
\(819\) 2135.41 + 38486.7i 0.0911077 + 1.64204i
\(820\) 0 0
\(821\) 14525.9i 0.617488i 0.951145 + 0.308744i \(0.0999086\pi\)
−0.951145 + 0.308744i \(0.900091\pi\)
\(822\) 0 0
\(823\) 4606.47i 0.195105i −0.995230 0.0975524i \(-0.968899\pi\)
0.995230 0.0975524i \(-0.0311014\pi\)
\(824\) 0 0
\(825\) −7455.87 + 206.683i −0.314643 + 0.00872216i
\(826\) 0 0
\(827\) 17196.7 0.723079 0.361540 0.932357i \(-0.382251\pi\)
0.361540 + 0.932357i \(0.382251\pi\)
\(828\) 0 0
\(829\) −4939.98 −0.206963 −0.103482 0.994631i \(-0.532998\pi\)
−0.103482 + 0.994631i \(0.532998\pi\)
\(830\) 0 0
\(831\) 12514.3 346.908i 0.522403 0.0144815i
\(832\) 0 0
\(833\) 36469.7i 1.51693i
\(834\) 0 0
\(835\) 13318.9i 0.552001i
\(836\) 0 0
\(837\) 2634.06 + 31608.7i 0.108777 + 1.30532i
\(838\) 0 0
\(839\) −799.731 −0.0329080 −0.0164540 0.999865i \(-0.505238\pi\)
−0.0164540 + 0.999865i \(0.505238\pi\)
\(840\) 0 0
\(841\) 13240.2 0.542876
\(842\) 0 0
\(843\) 746.304 + 26922.1i 0.0304912 + 1.09994i
\(844\) 0 0
\(845\) 7137.27i 0.290567i
\(846\) 0 0
\(847\) 20194.1i 0.819216i
\(848\) 0 0
\(849\) −966.273 34857.2i −0.0390605 1.40907i
\(850\) 0 0
\(851\) 8338.09 0.335871
\(852\) 0 0
\(853\) −44383.8 −1.78156 −0.890781 0.454433i \(-0.849842\pi\)
−0.890781 + 0.454433i \(0.849842\pi\)
\(854\) 0 0
\(855\) 17714.7 982.887i 0.708571 0.0393146i
\(856\) 0 0
\(857\) 17339.6i 0.691143i 0.938393 + 0.345571i \(0.112315\pi\)
−0.938393 + 0.345571i \(0.887685\pi\)
\(858\) 0 0
\(859\) 1410.15i 0.0560113i 0.999608 + 0.0280057i \(0.00891565\pi\)
−0.999608 + 0.0280057i \(0.991084\pi\)
\(860\) 0 0
\(861\) −59575.8 + 1651.49i −2.35811 + 0.0653690i
\(862\) 0 0
\(863\) 20435.8 0.806077 0.403038 0.915183i \(-0.367954\pi\)
0.403038 + 0.915183i \(0.367954\pi\)
\(864\) 0 0
\(865\) −12889.1 −0.506639
\(866\) 0 0
\(867\) −43674.8 + 1210.70i −1.71081 + 0.0474252i
\(868\) 0 0
\(869\) 8594.26i 0.335489i
\(870\) 0 0
\(871\) 35422.9i 1.37802i
\(872\) 0 0
\(873\) 14048.4 779.466i 0.544634 0.0302187i
\(874\) 0 0
\(875\) −38148.2 −1.47388
\(876\) 0 0
\(877\) 17187.5 0.661778 0.330889 0.943670i \(-0.392651\pi\)
0.330889 + 0.943670i \(0.392651\pi\)
\(878\) 0 0
\(879\) 1398.58 + 50452.4i 0.0536668 + 1.93597i
\(880\) 0 0
\(881\) 7846.32i 0.300056i −0.988682 0.150028i \(-0.952064\pi\)
0.988682 0.150028i \(-0.0479364\pi\)
\(882\) 0 0
\(883\) 40114.6i 1.52884i 0.644719 + 0.764420i \(0.276974\pi\)
−0.644719 + 0.764420i \(0.723026\pi\)
\(884\) 0 0
\(885\) −299.512 10804.6i −0.0113762 0.410386i
\(886\) 0 0
\(887\) −27083.6 −1.02523 −0.512615 0.858619i \(-0.671323\pi\)
−0.512615 + 0.858619i \(0.671323\pi\)
\(888\) 0 0
\(889\) 16056.7 0.605763
\(890\) 0 0
\(891\) −16903.9 + 1881.60i −0.635581 + 0.0707475i
\(892\) 0 0
\(893\) 36785.4i 1.37847i
\(894\) 0 0
\(895\) 6258.62i 0.233746i
\(896\) 0 0
\(897\) −8140.13 + 225.651i −0.303000 + 0.00839942i
\(898\) 0 0
\(899\) 23871.4 0.885601
\(900\) 0 0
\(901\) 38364.6 1.41855
\(902\) 0 0
\(903\) −12088.1 + 335.092i −0.445478 + 0.0123490i
\(904\) 0 0
\(905\) 6926.13i 0.254400i
\(906\) 0 0
\(907\) 26105.1i 0.955686i −0.878445 0.477843i \(-0.841419\pi\)
0.878445 0.477843i \(-0.158581\pi\)
\(908\) 0 0
\(909\) 322.214 + 5807.29i 0.0117571 + 0.211899i
\(910\) 0 0
\(911\) −26451.2 −0.961982 −0.480991 0.876725i \(-0.659723\pi\)
−0.480991 + 0.876725i \(0.659723\pi\)
\(912\) 0 0
\(913\) 21305.4 0.772295
\(914\) 0 0
\(915\) 266.901 + 9628.18i 0.00964316 + 0.347866i
\(916\) 0 0
\(917\) 19969.2i 0.719130i
\(918\) 0 0
\(919\) 2092.33i 0.0751028i 0.999295 + 0.0375514i \(0.0119558\pi\)
−0.999295 + 0.0375514i \(0.988044\pi\)
\(920\) 0 0
\(921\) 1299.12 + 46864.3i 0.0464793 + 1.67669i
\(922\) 0 0
\(923\) 24979.4 0.890799
\(924\) 0 0
\(925\) 18204.5 0.647091
\(926\) 0 0
\(927\) 844.848 + 15226.8i 0.0299336 + 0.539496i
\(928\) 0 0
\(929\) 339.581i 0.0119928i −0.999982 0.00599639i \(-0.998091\pi\)
0.999982 0.00599639i \(-0.00190872\pi\)
\(930\) 0 0
\(931\) 26061.0i 0.917415i
\(932\) 0 0
\(933\) 38179.2 1058.36i 1.33969 0.0371374i
\(934\) 0 0
\(935\) 21454.2 0.750404
\(936\) 0 0
\(937\) −36120.7 −1.25935 −0.629675 0.776858i \(-0.716812\pi\)
−0.629675 + 0.776858i \(0.716812\pi\)
\(938\) 0 0
\(939\) −9405.09 + 260.717i −0.326862 + 0.00906090i
\(940\) 0 0
\(941\) 26179.8i 0.906947i 0.891270 + 0.453473i \(0.149815\pi\)
−0.891270 + 0.453473i \(0.850185\pi\)
\(942\) 0 0
\(943\) 12590.9i 0.434800i
\(944\) 0 0
\(945\) −28594.4 + 2382.87i −0.984313 + 0.0820261i
\(946\) 0 0
\(947\) 19655.3 0.674458 0.337229 0.941423i \(-0.390510\pi\)
0.337229 + 0.941423i \(0.390510\pi\)
\(948\) 0 0
\(949\) −19722.2 −0.674614
\(950\) 0 0
\(951\) −550.761 19868.1i −0.0187799 0.677463i
\(952\) 0 0
\(953\) 47634.4i 1.61913i 0.587031 + 0.809565i \(0.300297\pi\)
−0.587031 + 0.809565i \(0.699703\pi\)
\(954\) 0 0
\(955\) 18935.9i 0.641624i
\(956\) 0 0
\(957\) 354.707 + 12795.7i 0.0119813 + 0.432211i
\(958\) 0 0
\(959\) −5161.33 −0.173794
\(960\) 0 0
\(961\) −21321.5 −0.715701
\(962\) 0 0
\(963\) 49187.1 2729.12i 1.64593 0.0913235i
\(964\) 0 0
\(965\) 11235.9i 0.374814i
\(966\) 0 0
\(967\) 40981.6i 1.36285i 0.731887 + 0.681427i \(0.238640\pi\)
−0.731887 + 0.681427i \(0.761360\pi\)
\(968\) 0 0
\(969\) 49445.3 1370.67i 1.63923 0.0454408i
\(970\) 0 0
\(971\) −22380.5 −0.739675 −0.369837 0.929097i \(-0.620587\pi\)
−0.369837 + 0.929097i \(0.620587\pi\)
\(972\) 0 0
\(973\) −33830.1 −1.11464
\(974\) 0 0
\(975\) −17772.3 + 492.663i −0.583762 + 0.0161824i
\(976\) 0 0
\(977\) 47920.9i 1.56922i 0.619991 + 0.784609i \(0.287136\pi\)
−0.619991 + 0.784609i \(0.712864\pi\)
\(978\) 0 0
\(979\) 24956.9i 0.814736i
\(980\) 0 0
\(981\) 23610.3 1310.00i 0.768419 0.0426352i
\(982\) 0 0
\(983\) 19453.4 0.631197 0.315599 0.948893i \(-0.397795\pi\)
0.315599 + 0.948893i \(0.397795\pi\)
\(984\) 0 0
\(985\) −18002.0 −0.582327
\(986\) 0 0
\(987\) −1648.54 59469.2i −0.0531646 1.91786i
\(988\) 0 0
\(989\) 2554.73i 0.0821392i
\(990\) 0 0
\(991\) 22843.1i 0.732226i 0.930570 + 0.366113i \(0.119312\pi\)
−0.930570 + 0.366113i \(0.880688\pi\)
\(992\) 0 0
\(993\) −235.087 8480.52i −0.00751286 0.271018i
\(994\) 0 0
\(995\) −4114.86 −0.131105
\(996\) 0 0
\(997\) 21789.5 0.692155 0.346078 0.938206i \(-0.387513\pi\)
0.346078 + 0.938206i \(0.387513\pi\)
\(998\) 0 0
\(999\) 41368.7 3447.40i 1.31016 0.109180i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 192.4.c.d.191.11 12
3.2 odd 2 inner 192.4.c.d.191.1 12
4.3 odd 2 inner 192.4.c.d.191.2 12
8.3 odd 2 96.4.c.a.95.11 yes 12
8.5 even 2 96.4.c.a.95.2 yes 12
12.11 even 2 inner 192.4.c.d.191.12 12
16.3 odd 4 768.4.f.i.383.5 12
16.5 even 4 768.4.f.i.383.6 12
16.11 odd 4 768.4.f.d.383.8 12
16.13 even 4 768.4.f.d.383.7 12
24.5 odd 2 96.4.c.a.95.12 yes 12
24.11 even 2 96.4.c.a.95.1 12
48.5 odd 4 768.4.f.i.383.7 12
48.11 even 4 768.4.f.d.383.5 12
48.29 odd 4 768.4.f.d.383.6 12
48.35 even 4 768.4.f.i.383.8 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
96.4.c.a.95.1 12 24.11 even 2
96.4.c.a.95.2 yes 12 8.5 even 2
96.4.c.a.95.11 yes 12 8.3 odd 2
96.4.c.a.95.12 yes 12 24.5 odd 2
192.4.c.d.191.1 12 3.2 odd 2 inner
192.4.c.d.191.2 12 4.3 odd 2 inner
192.4.c.d.191.11 12 1.1 even 1 trivial
192.4.c.d.191.12 12 12.11 even 2 inner
768.4.f.d.383.5 12 48.11 even 4
768.4.f.d.383.6 12 48.29 odd 4
768.4.f.d.383.7 12 16.13 even 4
768.4.f.d.383.8 12 16.11 odd 4
768.4.f.i.383.5 12 16.3 odd 4
768.4.f.i.383.6 12 16.5 even 4
768.4.f.i.383.7 12 48.5 odd 4
768.4.f.i.383.8 12 48.35 even 4