Newspace parameters
Level: | \( N \) | \(=\) | \( 192 = 2^{6} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 192.c (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(11.3283667211\) |
Analytic rank: | \(0\) |
Dimension: | \(12\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{12} - 16x^{10} + 103x^{8} - 260x^{6} + 259x^{4} + 356x^{2} + 169 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2^{44}\cdot 3^{2} \) |
Twist minimal: | no (minimal twist has level 96) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{12} - 16x^{10} + 103x^{8} - 260x^{6} + 259x^{4} + 356x^{2} + 169 \)
:
\(\beta_{1}\) | \(=\) |
\( ( -16388\nu^{10} + 259515\nu^{8} - 1685594\nu^{6} + 4399856\nu^{4} - 5980224\nu^{2} - 2762095 ) / 217953 \)
|
\(\beta_{2}\) | \(=\) |
\( ( 5904\nu^{10} - 97064\nu^{8} + 571840\nu^{6} - 896416\nu^{4} - 1055120\nu^{2} + 1560520 ) / 72651 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -544\nu^{10} + 8496\nu^{8} - 53344\nu^{6} + 135616\nu^{4} - 180960\nu^{2} - 83504 ) / 3573 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 2707 \nu^{11} + 10504 \nu^{10} - 41518 \nu^{9} - 183781 \nu^{8} + 254446 \nu^{7} + 1315990 \nu^{6} - 571012 \nu^{5} - 4058808 \nu^{4} + 500393 \nu^{3} + \cdots + 2381353 ) / 629642 \)
|
\(\beta_{5}\) | \(=\) |
\( ( - 2631 \nu^{11} - 7176 \nu^{10} + 57332 \nu^{9} + 97500 \nu^{8} - 464316 \nu^{7} - 531232 \nu^{6} + 1492582 \nu^{5} + 802880 \nu^{4} - 515419 \nu^{3} + \cdots - 7299877 ) / 314821 \)
|
\(\beta_{6}\) | \(=\) |
\( ( - 8121 \nu^{11} + 31512 \nu^{10} + 124554 \nu^{9} - 551343 \nu^{8} - 763338 \nu^{7} + 3947970 \nu^{6} + 1713036 \nu^{5} - 12176424 \nu^{4} - 1501179 \nu^{3} + \cdots + 7144059 ) / 629642 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 18023 \nu^{11} + 43056 \nu^{10} - 102208 \nu^{9} - 585000 \nu^{8} - 549788 \nu^{7} + 3187392 \nu^{6} + 5801042 \nu^{5} - 4817280 \nu^{4} + 2774507 \nu^{3} + \cdots + 44743725 ) / 944463 \)
|
\(\beta_{8}\) | \(=\) |
\( ( 3815\nu^{11} - 60784\nu^{9} + 386308\nu^{7} - 931534\nu^{5} + 689195\nu^{3} + 2016192\nu ) / 72651 \)
|
\(\beta_{9}\) | \(=\) |
\( ( 168575 \nu^{11} + 21528 \nu^{10} - 2577340 \nu^{9} - 292500 \nu^{8} + 15775756 \nu^{7} + 1593696 \nu^{6} - 35075014 \nu^{5} - 2408640 \nu^{4} + \cdots + 21899631 ) / 944463 \)
|
\(\beta_{10}\) | \(=\) |
\( ( - 525547 \nu^{11} + 8893158 \nu^{9} - 62629246 \nu^{7} + 194548900 \nu^{5} - 288501633 \nu^{3} - 73378376 \nu ) / 2833389 \)
|
\(\beta_{11}\) | \(=\) |
\( ( 1307467 \nu^{11} - 336856 \nu^{10} - 21563934 \nu^{9} + 5083299 \nu^{8} + 143863390 \nu^{7} - 30457882 \nu^{6} - 397870564 \nu^{5} + 71014216 \nu^{4} + \cdots - 44786495 ) / 5666778 \)
|
\(\nu\) | \(=\) |
\( ( 3\beta_{9} + 6\beta_{8} + 32\beta_{6} + 3\beta_{5} - 96\beta_{4} ) / 384 \)
|
\(\nu^{2}\) | \(=\) |
\( ( 4\beta_{8} - 4\beta_{7} - 8\beta_{6} + 16\beta_{5} - 24\beta_{4} + 3\beta_{3} - 24\beta _1 + 508 ) / 192 \)
|
\(\nu^{3}\) | \(=\) |
\( ( 24 \beta_{11} + 12 \beta_{10} + 39 \beta_{9} - 126 \beta_{8} - 12 \beta_{7} + 124 \beta_{6} + 15 \beta_{5} - 396 \beta_{4} - 12 \beta_{3} + 12 ) / 384 \)
|
\(\nu^{4}\) | \(=\) |
\( ( 7\beta_{8} - 7\beta_{7} - 24\beta_{6} + 28\beta_{5} - 72\beta_{4} + 42\beta_{3} + 9\beta_{2} - 120\beta _1 + 793 ) / 96 \)
|
\(\nu^{5}\) | \(=\) |
\( ( 90 \beta_{11} + 72 \beta_{10} + 372 \beta_{9} - 1216 \beta_{8} - 200 \beta_{7} + 232 \beta_{6} - 28 \beta_{5} - 786 \beta_{4} - 45 \beta_{3} + 200 ) / 384 \)
|
\(\nu^{6}\) | \(=\) |
\( ( - 4 \beta_{8} + 4 \beta_{7} - 80 \beta_{6} - 16 \beta_{5} - 240 \beta_{4} + 411 \beta_{3} + 18 \beta_{2} - 912 \beta _1 - 1084 ) / 96 \)
|
\(\nu^{7}\) | \(=\) |
\( ( - 450 \beta_{11} - 252 \beta_{10} + 2622 \beta_{9} - 8728 \beta_{8} - 1652 \beta_{7} - 2764 \beta_{6} - 682 \beta_{5} + 8742 \beta_{4} + 225 \beta_{3} + 1652 ) / 384 \)
|
\(\nu^{8}\) | \(=\) |
\( ( - 34 \beta_{8} + 34 \beta_{7} - 20 \beta_{6} - 136 \beta_{5} - 60 \beta_{4} + 223 \beta_{3} - 33 \beta_{2} - 452 \beta _1 - 4118 ) / 8 \)
|
\(\nu^{9}\) | \(=\) |
\( ( - 10680 \beta_{11} - 7176 \beta_{10} + 13431 \beta_{9} - 45018 \beta_{8} - 8904 \beta_{7} - 46024 \beta_{6} - 4377 \beta_{5} + 148752 \beta_{4} + 5340 \beta_{3} + 8904 ) / 384 \)
|
\(\nu^{10}\) | \(=\) |
\( ( - 9800 \beta_{8} + 9800 \beta_{7} - 1112 \beta_{6} - 39200 \beta_{5} - 3336 \beta_{4} + 21663 \beta_{3} - 11412 \beta_{2} - 42408 \beta _1 - 1134008 ) / 192 \)
|
\(\nu^{11}\) | \(=\) |
\( ( - 106956 \beta_{11} - 73404 \beta_{10} + 30693 \beta_{9} - 103482 \beta_{8} - 21252 \beta_{7} - 436076 \beta_{6} - 11811 \beta_{5} + 1415184 \beta_{4} + 53478 \beta_{3} + 21252 ) / 384 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).
\(n\) | \(65\) | \(127\) | \(133\) |
\(\chi(n)\) | \(-1\) | \(-1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
191.1 |
|
0 | −5.19416 | − | 0.143987i | 0 | 7.96714i | 0 | − | 25.6706i | 0 | 26.9585 | + | 1.49578i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||
191.2 | 0 | −5.19416 | + | 0.143987i | 0 | − | 7.96714i | 0 | 25.6706i | 0 | 26.9585 | − | 1.49578i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||
191.3 | 0 | −3.28223 | − | 4.02827i | 0 | − | 2.00080i | 0 | 14.5105i | 0 | −5.45398 | + | 26.4434i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||
191.4 | 0 | −3.28223 | + | 4.02827i | 0 | 2.00080i | 0 | − | 14.5105i | 0 | −5.45398 | − | 26.4434i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||
191.5 | 0 | −0.497717 | − | 5.17226i | 0 | − | 18.4532i | 0 | − | 17.1600i | 0 | −26.5046 | + | 5.14865i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||
191.6 | 0 | −0.497717 | + | 5.17226i | 0 | 18.4532i | 0 | 17.1600i | 0 | −26.5046 | − | 5.14865i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||
191.7 | 0 | 0.497717 | − | 5.17226i | 0 | 18.4532i | 0 | − | 17.1600i | 0 | −26.5046 | − | 5.14865i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||
191.8 | 0 | 0.497717 | + | 5.17226i | 0 | − | 18.4532i | 0 | 17.1600i | 0 | −26.5046 | + | 5.14865i | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||
191.9 | 0 | 3.28223 | − | 4.02827i | 0 | 2.00080i | 0 | 14.5105i | 0 | −5.45398 | − | 26.4434i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||
191.10 | 0 | 3.28223 | + | 4.02827i | 0 | − | 2.00080i | 0 | − | 14.5105i | 0 | −5.45398 | + | 26.4434i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||
191.11 | 0 | 5.19416 | − | 0.143987i | 0 | − | 7.96714i | 0 | − | 25.6706i | 0 | 26.9585 | − | 1.49578i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||
191.12 | 0 | 5.19416 | + | 0.143987i | 0 | 7.96714i | 0 | 25.6706i | 0 | 26.9585 | + | 1.49578i | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
4.b | odd | 2 | 1 | inner |
12.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 192.4.c.d | 12 | |
3.b | odd | 2 | 1 | inner | 192.4.c.d | 12 | |
4.b | odd | 2 | 1 | inner | 192.4.c.d | 12 | |
8.b | even | 2 | 1 | 96.4.c.a | ✓ | 12 | |
8.d | odd | 2 | 1 | 96.4.c.a | ✓ | 12 | |
12.b | even | 2 | 1 | inner | 192.4.c.d | 12 | |
16.e | even | 4 | 1 | 768.4.f.d | 12 | ||
16.e | even | 4 | 1 | 768.4.f.i | 12 | ||
16.f | odd | 4 | 1 | 768.4.f.d | 12 | ||
16.f | odd | 4 | 1 | 768.4.f.i | 12 | ||
24.f | even | 2 | 1 | 96.4.c.a | ✓ | 12 | |
24.h | odd | 2 | 1 | 96.4.c.a | ✓ | 12 | |
48.i | odd | 4 | 1 | 768.4.f.d | 12 | ||
48.i | odd | 4 | 1 | 768.4.f.i | 12 | ||
48.k | even | 4 | 1 | 768.4.f.d | 12 | ||
48.k | even | 4 | 1 | 768.4.f.i | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
96.4.c.a | ✓ | 12 | 8.b | even | 2 | 1 | |
96.4.c.a | ✓ | 12 | 8.d | odd | 2 | 1 | |
96.4.c.a | ✓ | 12 | 24.f | even | 2 | 1 | |
96.4.c.a | ✓ | 12 | 24.h | odd | 2 | 1 | |
192.4.c.d | 12 | 1.a | even | 1 | 1 | trivial | |
192.4.c.d | 12 | 3.b | odd | 2 | 1 | inner | |
192.4.c.d | 12 | 4.b | odd | 2 | 1 | inner | |
192.4.c.d | 12 | 12.b | even | 2 | 1 | inner | |
768.4.f.d | 12 | 16.e | even | 4 | 1 | ||
768.4.f.d | 12 | 16.f | odd | 4 | 1 | ||
768.4.f.d | 12 | 48.i | odd | 4 | 1 | ||
768.4.f.d | 12 | 48.k | even | 4 | 1 | ||
768.4.f.i | 12 | 16.e | even | 4 | 1 | ||
768.4.f.i | 12 | 16.f | odd | 4 | 1 | ||
768.4.f.i | 12 | 48.i | odd | 4 | 1 | ||
768.4.f.i | 12 | 48.k | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{6} + 408T_{5}^{4} + 23232T_{5}^{2} + 86528 \)
acting on \(S_{4}^{\mathrm{new}}(192, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{12} \)
$3$
\( T^{12} + 10 T^{10} + \cdots + 387420489 \)
$5$
\( (T^{6} + 408 T^{4} + 23232 T^{2} + \cdots + 86528)^{2} \)
$7$
\( (T^{6} + 1164 T^{4} + 394800 T^{2} + \cdots + 40857664)^{2} \)
$11$
\( (T^{6} - 5400 T^{4} + \cdots - 3202560512)^{2} \)
$13$
\( (T^{3} + 18 T^{2} - 4500 T - 133928)^{4} \)
$17$
\( (T^{6} + 24576 T^{4} + \cdots + 391378894848)^{2} \)
$19$
\( (T^{6} + 8076 T^{4} + \cdots + 2518433856)^{2} \)
$23$
\( (T^{6} - 26976 T^{4} + \cdots - 124728147968)^{2} \)
$29$
\( (T^{6} + 118296 T^{4} + \cdots + 19385223967232)^{2} \)
$31$
\( (T^{6} + 58956 T^{4} + \cdots + 708600302656)^{2} \)
$37$
\( (T^{3} - 6 T^{2} - 96756 T + 3249144)^{4} \)
$41$
\( (T^{6} + 317280 T^{4} + \cdots + 359281246896128)^{2} \)
$43$
\( (T^{6} + 246252 T^{4} + \cdots + 24182238991936)^{2} \)
$47$
\( (T^{6} - 273792 T^{4} + \cdots - 165630483365888)^{2} \)
$53$
\( (T^{6} + 187224 T^{4} + \cdots + 152455972372992)^{2} \)
$59$
\( (T^{6} - 680472 T^{4} + \cdots - 61\!\cdots\!48)^{2} \)
$61$
\( (T^{3} + 114 T^{2} - 104724 T - 17941928)^{4} \)
$67$
\( (T^{6} + 1232556 T^{4} + \cdots + 53\!\cdots\!56)^{2} \)
$71$
\( (T^{6} - 589152 T^{4} + \cdots - 61\!\cdots\!68)^{2} \)
$73$
\( (T^{3} - 606 T^{2} - 319956 T + 145079064)^{4} \)
$79$
\( (T^{6} + 2122764 T^{4} + \cdots + 76\!\cdots\!44)^{2} \)
$83$
\( (T^{6} - 3104664 T^{4} + \cdots - 22\!\cdots\!92)^{2} \)
$89$
\( (T^{6} + 1258080 T^{4} + \cdots + 761571160915968)^{2} \)
$97$
\( (T^{3} + 738 T^{2} - 581844 T - 38714344)^{4} \)
show more
show less