Properties

Label 192.3.l.a.175.3
Level $192$
Weight $3$
Character 192.175
Analytic conductor $5.232$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 192.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.23162107572\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 6 x^{14} - 4 x^{13} + 10 x^{12} + 56 x^{11} + 88 x^{10} - 128 x^{9} - 496 x^{8} - 512 x^{7} + 1408 x^{6} + 3584 x^{5} + 2560 x^{4} - 4096 x^{3} - 24576 x^{2} + 65536\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{24} \)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 175.3
Root \(1.78012 + 0.911682i\) of defining polynomial
Character \(\chi\) \(=\) 192.175
Dual form 192.3.l.a.79.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.22474 + 1.22474i) q^{3} +(1.00772 - 1.00772i) q^{5} -10.0236 q^{7} -3.00000i q^{9} +O(q^{10})\) \(q+(-1.22474 + 1.22474i) q^{3} +(1.00772 - 1.00772i) q^{5} -10.0236 q^{7} -3.00000i q^{9} +(-2.26517 - 2.26517i) q^{11} +(-6.88229 - 6.88229i) q^{13} +2.46840i q^{15} -22.3801 q^{17} +(16.8918 - 16.8918i) q^{19} +(12.2763 - 12.2763i) q^{21} -33.2007 q^{23} +22.9690i q^{25} +(3.67423 + 3.67423i) q^{27} +(-24.6412 - 24.6412i) q^{29} -41.3761i q^{31} +5.54852 q^{33} +(-10.1010 + 10.1010i) q^{35} +(-6.60031 + 6.60031i) q^{37} +16.8581 q^{39} +47.1477i q^{41} +(48.8218 + 48.8218i) q^{43} +(-3.02316 - 3.02316i) q^{45} +45.6048i q^{47} +51.4717 q^{49} +(27.4100 - 27.4100i) q^{51} +(25.1401 - 25.1401i) q^{53} -4.56532 q^{55} +41.3762i q^{57} +(-6.23974 - 6.23974i) q^{59} +(35.9513 + 35.9513i) q^{61} +30.0707i q^{63} -13.8709 q^{65} +(-10.2045 + 10.2045i) q^{67} +(40.6624 - 40.6624i) q^{69} -11.9529 q^{71} -111.332i q^{73} +(-28.1312 - 28.1312i) q^{75} +(22.7051 + 22.7051i) q^{77} +4.46031i q^{79} -9.00000 q^{81} +(-10.1751 + 10.1751i) q^{83} +(-22.5530 + 22.5530i) q^{85} +60.3583 q^{87} +21.9364i q^{89} +(68.9850 + 68.9850i) q^{91} +(50.6752 + 50.6752i) q^{93} -34.0444i q^{95} +107.309 q^{97} +(-6.79552 + 6.79552i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + O(q^{10}) \) \( 16q - 32q^{11} + 32q^{19} + 128q^{23} + 32q^{29} - 96q^{35} - 96q^{37} - 160q^{43} + 112q^{49} + 96q^{51} - 160q^{53} + 256q^{55} + 128q^{59} - 32q^{61} - 32q^{65} - 320q^{67} + 96q^{69} - 512q^{71} - 192q^{75} + 224q^{77} - 144q^{81} + 160q^{83} + 160q^{85} + 480q^{91} - 96q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.22474 + 1.22474i −0.408248 + 0.408248i
\(4\) 0 0
\(5\) 1.00772 1.00772i 0.201544 0.201544i −0.599117 0.800661i \(-0.704482\pi\)
0.800661 + 0.599117i \(0.204482\pi\)
\(6\) 0 0
\(7\) −10.0236 −1.43194 −0.715969 0.698133i \(-0.754015\pi\)
−0.715969 + 0.698133i \(0.754015\pi\)
\(8\) 0 0
\(9\) 3.00000i 0.333333i
\(10\) 0 0
\(11\) −2.26517 2.26517i −0.205925 0.205925i 0.596608 0.802533i \(-0.296515\pi\)
−0.802533 + 0.596608i \(0.796515\pi\)
\(12\) 0 0
\(13\) −6.88229 6.88229i −0.529407 0.529407i 0.390989 0.920395i \(-0.372133\pi\)
−0.920395 + 0.390989i \(0.872133\pi\)
\(14\) 0 0
\(15\) 2.46840i 0.164560i
\(16\) 0 0
\(17\) −22.3801 −1.31648 −0.658240 0.752809i \(-0.728699\pi\)
−0.658240 + 0.752809i \(0.728699\pi\)
\(18\) 0 0
\(19\) 16.8918 16.8918i 0.889041 0.889041i −0.105390 0.994431i \(-0.533609\pi\)
0.994431 + 0.105390i \(0.0336092\pi\)
\(20\) 0 0
\(21\) 12.2763 12.2763i 0.584586 0.584586i
\(22\) 0 0
\(23\) −33.2007 −1.44351 −0.721755 0.692149i \(-0.756664\pi\)
−0.721755 + 0.692149i \(0.756664\pi\)
\(24\) 0 0
\(25\) 22.9690i 0.918760i
\(26\) 0 0
\(27\) 3.67423 + 3.67423i 0.136083 + 0.136083i
\(28\) 0 0
\(29\) −24.6412 24.6412i −0.849696 0.849696i 0.140399 0.990095i \(-0.455161\pi\)
−0.990095 + 0.140399i \(0.955161\pi\)
\(30\) 0 0
\(31\) 41.3761i 1.33471i −0.744738 0.667357i \(-0.767426\pi\)
0.744738 0.667357i \(-0.232574\pi\)
\(32\) 0 0
\(33\) 5.54852 0.168137
\(34\) 0 0
\(35\) −10.1010 + 10.1010i −0.288599 + 0.288599i
\(36\) 0 0
\(37\) −6.60031 + 6.60031i −0.178387 + 0.178387i −0.790652 0.612266i \(-0.790258\pi\)
0.612266 + 0.790652i \(0.290258\pi\)
\(38\) 0 0
\(39\) 16.8581 0.432259
\(40\) 0 0
\(41\) 47.1477i 1.14994i 0.818173 + 0.574972i \(0.194987\pi\)
−0.818173 + 0.574972i \(0.805013\pi\)
\(42\) 0 0
\(43\) 48.8218 + 48.8218i 1.13539 + 1.13539i 0.989266 + 0.146124i \(0.0466799\pi\)
0.146124 + 0.989266i \(0.453320\pi\)
\(44\) 0 0
\(45\) −3.02316 3.02316i −0.0671814 0.0671814i
\(46\) 0 0
\(47\) 45.6048i 0.970315i 0.874427 + 0.485157i \(0.161238\pi\)
−0.874427 + 0.485157i \(0.838762\pi\)
\(48\) 0 0
\(49\) 51.4717 1.05044
\(50\) 0 0
\(51\) 27.4100 27.4100i 0.537450 0.537450i
\(52\) 0 0
\(53\) 25.1401 25.1401i 0.474341 0.474341i −0.428975 0.903316i \(-0.641125\pi\)
0.903316 + 0.428975i \(0.141125\pi\)
\(54\) 0 0
\(55\) −4.56532 −0.0830059
\(56\) 0 0
\(57\) 41.3762i 0.725899i
\(58\) 0 0
\(59\) −6.23974 6.23974i −0.105758 0.105758i 0.652248 0.758006i \(-0.273826\pi\)
−0.758006 + 0.652248i \(0.773826\pi\)
\(60\) 0 0
\(61\) 35.9513 + 35.9513i 0.589366 + 0.589366i 0.937460 0.348093i \(-0.113171\pi\)
−0.348093 + 0.937460i \(0.613171\pi\)
\(62\) 0 0
\(63\) 30.0707i 0.477312i
\(64\) 0 0
\(65\) −13.8709 −0.213398
\(66\) 0 0
\(67\) −10.2045 + 10.2045i −0.152307 + 0.152307i −0.779147 0.626841i \(-0.784348\pi\)
0.626841 + 0.779147i \(0.284348\pi\)
\(68\) 0 0
\(69\) 40.6624 40.6624i 0.589310 0.589310i
\(70\) 0 0
\(71\) −11.9529 −0.168350 −0.0841752 0.996451i \(-0.526826\pi\)
−0.0841752 + 0.996451i \(0.526826\pi\)
\(72\) 0 0
\(73\) 111.332i 1.52510i −0.646929 0.762550i \(-0.723947\pi\)
0.646929 0.762550i \(-0.276053\pi\)
\(74\) 0 0
\(75\) −28.1312 28.1312i −0.375082 0.375082i
\(76\) 0 0
\(77\) 22.7051 + 22.7051i 0.294871 + 0.294871i
\(78\) 0 0
\(79\) 4.46031i 0.0564596i 0.999601 + 0.0282298i \(0.00898702\pi\)
−0.999601 + 0.0282298i \(0.991013\pi\)
\(80\) 0 0
\(81\) −9.00000 −0.111111
\(82\) 0 0
\(83\) −10.1751 + 10.1751i −0.122592 + 0.122592i −0.765741 0.643149i \(-0.777627\pi\)
0.643149 + 0.765741i \(0.277627\pi\)
\(84\) 0 0
\(85\) −22.5530 + 22.5530i −0.265329 + 0.265329i
\(86\) 0 0
\(87\) 60.3583 0.693774
\(88\) 0 0
\(89\) 21.9364i 0.246476i 0.992377 + 0.123238i \(0.0393279\pi\)
−0.992377 + 0.123238i \(0.960672\pi\)
\(90\) 0 0
\(91\) 68.9850 + 68.9850i 0.758077 + 0.758077i
\(92\) 0 0
\(93\) 50.6752 + 50.6752i 0.544895 + 0.544895i
\(94\) 0 0
\(95\) 34.0444i 0.358362i
\(96\) 0 0
\(97\) 107.309 1.10628 0.553140 0.833088i \(-0.313429\pi\)
0.553140 + 0.833088i \(0.313429\pi\)
\(98\) 0 0
\(99\) −6.79552 + 6.79552i −0.0686416 + 0.0686416i
\(100\) 0 0
\(101\) −100.780 + 100.780i −0.997824 + 0.997824i −0.999998 0.00217389i \(-0.999308\pi\)
0.00217389 + 0.999998i \(0.499308\pi\)
\(102\) 0 0
\(103\) −58.0562 −0.563653 −0.281826 0.959465i \(-0.590940\pi\)
−0.281826 + 0.959465i \(0.590940\pi\)
\(104\) 0 0
\(105\) 24.7422i 0.235640i
\(106\) 0 0
\(107\) −112.747 112.747i −1.05371 1.05371i −0.998473 0.0552381i \(-0.982408\pi\)
−0.0552381 0.998473i \(-0.517592\pi\)
\(108\) 0 0
\(109\) −81.1384 81.1384i −0.744389 0.744389i 0.229030 0.973419i \(-0.426445\pi\)
−0.973419 + 0.229030i \(0.926445\pi\)
\(110\) 0 0
\(111\) 16.1674i 0.145652i
\(112\) 0 0
\(113\) −171.844 −1.52074 −0.760371 0.649489i \(-0.774983\pi\)
−0.760371 + 0.649489i \(0.774983\pi\)
\(114\) 0 0
\(115\) −33.4571 + 33.4571i −0.290931 + 0.290931i
\(116\) 0 0
\(117\) −20.6469 + 20.6469i −0.176469 + 0.176469i
\(118\) 0 0
\(119\) 224.329 1.88512
\(120\) 0 0
\(121\) 110.738i 0.915190i
\(122\) 0 0
\(123\) −57.7439 57.7439i −0.469463 0.469463i
\(124\) 0 0
\(125\) 48.3394 + 48.3394i 0.386715 + 0.386715i
\(126\) 0 0
\(127\) 36.8333i 0.290026i −0.989430 0.145013i \(-0.953678\pi\)
0.989430 0.145013i \(-0.0463224\pi\)
\(128\) 0 0
\(129\) −119.588 −0.927042
\(130\) 0 0
\(131\) 12.3686 12.3686i 0.0944170 0.0944170i −0.658321 0.752738i \(-0.728733\pi\)
0.752738 + 0.658321i \(0.228733\pi\)
\(132\) 0 0
\(133\) −169.316 + 169.316i −1.27305 + 1.27305i
\(134\) 0 0
\(135\) 7.40521 0.0548534
\(136\) 0 0
\(137\) 145.679i 1.06335i −0.846949 0.531674i \(-0.821563\pi\)
0.846949 0.531674i \(-0.178437\pi\)
\(138\) 0 0
\(139\) −82.5709 82.5709i −0.594035 0.594035i 0.344684 0.938719i \(-0.387986\pi\)
−0.938719 + 0.344684i \(0.887986\pi\)
\(140\) 0 0
\(141\) −55.8542 55.8542i −0.396129 0.396129i
\(142\) 0 0
\(143\) 31.1791i 0.218036i
\(144\) 0 0
\(145\) −49.6629 −0.342503
\(146\) 0 0
\(147\) −63.0398 + 63.0398i −0.428842 + 0.428842i
\(148\) 0 0
\(149\) 196.248 196.248i 1.31710 1.31710i 0.401043 0.916059i \(-0.368648\pi\)
0.916059 0.401043i \(-0.131352\pi\)
\(150\) 0 0
\(151\) −64.5007 −0.427157 −0.213578 0.976926i \(-0.568512\pi\)
−0.213578 + 0.976926i \(0.568512\pi\)
\(152\) 0 0
\(153\) 67.1404i 0.438826i
\(154\) 0 0
\(155\) −41.6956 41.6956i −0.269004 0.269004i
\(156\) 0 0
\(157\) 54.4202 + 54.4202i 0.346625 + 0.346625i 0.858851 0.512226i \(-0.171179\pi\)
−0.512226 + 0.858851i \(0.671179\pi\)
\(158\) 0 0
\(159\) 61.5803i 0.387298i
\(160\) 0 0
\(161\) 332.789 2.06701
\(162\) 0 0
\(163\) −104.803 + 104.803i −0.642961 + 0.642961i −0.951282 0.308321i \(-0.900233\pi\)
0.308321 + 0.951282i \(0.400233\pi\)
\(164\) 0 0
\(165\) 5.59136 5.59136i 0.0338870 0.0338870i
\(166\) 0 0
\(167\) −53.3110 −0.319228 −0.159614 0.987180i \(-0.551025\pi\)
−0.159614 + 0.987180i \(0.551025\pi\)
\(168\) 0 0
\(169\) 74.2683i 0.439457i
\(170\) 0 0
\(171\) −50.6753 50.6753i −0.296347 0.296347i
\(172\) 0 0
\(173\) −41.5780 41.5780i −0.240335 0.240335i 0.576654 0.816989i \(-0.304358\pi\)
−0.816989 + 0.576654i \(0.804358\pi\)
\(174\) 0 0
\(175\) 230.231i 1.31561i
\(176\) 0 0
\(177\) 15.2842 0.0863513
\(178\) 0 0
\(179\) −53.0709 + 53.0709i −0.296486 + 0.296486i −0.839636 0.543150i \(-0.817231\pi\)
0.543150 + 0.839636i \(0.317231\pi\)
\(180\) 0 0
\(181\) −66.6042 + 66.6042i −0.367979 + 0.367979i −0.866740 0.498761i \(-0.833789\pi\)
0.498761 + 0.866740i \(0.333789\pi\)
\(182\) 0 0
\(183\) −88.0625 −0.481216
\(184\) 0 0
\(185\) 13.3025i 0.0719056i
\(186\) 0 0
\(187\) 50.6949 + 50.6949i 0.271096 + 0.271096i
\(188\) 0 0
\(189\) −36.8289 36.8289i −0.194862 0.194862i
\(190\) 0 0
\(191\) 113.753i 0.595567i 0.954633 + 0.297784i \(0.0962474\pi\)
−0.954633 + 0.297784i \(0.903753\pi\)
\(192\) 0 0
\(193\) −26.5596 −0.137615 −0.0688073 0.997630i \(-0.521919\pi\)
−0.0688073 + 0.997630i \(0.521919\pi\)
\(194\) 0 0
\(195\) 16.9883 16.9883i 0.0871193 0.0871193i
\(196\) 0 0
\(197\) 51.8935 51.8935i 0.263419 0.263419i −0.563023 0.826442i \(-0.690362\pi\)
0.826442 + 0.563023i \(0.190362\pi\)
\(198\) 0 0
\(199\) 136.741 0.687140 0.343570 0.939127i \(-0.388364\pi\)
0.343570 + 0.939127i \(0.388364\pi\)
\(200\) 0 0
\(201\) 24.9959i 0.124358i
\(202\) 0 0
\(203\) 246.992 + 246.992i 1.21671 + 1.21671i
\(204\) 0 0
\(205\) 47.5118 + 47.5118i 0.231765 + 0.231765i
\(206\) 0 0
\(207\) 99.6022i 0.481170i
\(208\) 0 0
\(209\) −76.5255 −0.366151
\(210\) 0 0
\(211\) 141.171 141.171i 0.669057 0.669057i −0.288441 0.957498i \(-0.593137\pi\)
0.957498 + 0.288441i \(0.0931368\pi\)
\(212\) 0 0
\(213\) 14.6392 14.6392i 0.0687288 0.0687288i
\(214\) 0 0
\(215\) 98.3975 0.457663
\(216\) 0 0
\(217\) 414.736i 1.91123i
\(218\) 0 0
\(219\) 136.354 + 136.354i 0.622620 + 0.622620i
\(220\) 0 0
\(221\) 154.027 + 154.027i 0.696953 + 0.696953i
\(222\) 0 0
\(223\) 122.607i 0.549806i 0.961472 + 0.274903i \(0.0886457\pi\)
−0.961472 + 0.274903i \(0.911354\pi\)
\(224\) 0 0
\(225\) 68.9070 0.306253
\(226\) 0 0
\(227\) 295.844 295.844i 1.30328 1.30328i 0.377112 0.926168i \(-0.376917\pi\)
0.926168 0.377112i \(-0.123083\pi\)
\(228\) 0 0
\(229\) 73.3817 73.3817i 0.320444 0.320444i −0.528493 0.848937i \(-0.677243\pi\)
0.848937 + 0.528493i \(0.177243\pi\)
\(230\) 0 0
\(231\) −55.6159 −0.240761
\(232\) 0 0
\(233\) 156.229i 0.670509i 0.942128 + 0.335255i \(0.108822\pi\)
−0.942128 + 0.335255i \(0.891178\pi\)
\(234\) 0 0
\(235\) 45.9569 + 45.9569i 0.195561 + 0.195561i
\(236\) 0 0
\(237\) −5.46274 5.46274i −0.0230495 0.0230495i
\(238\) 0 0
\(239\) 13.1716i 0.0551113i 0.999620 + 0.0275557i \(0.00877235\pi\)
−0.999620 + 0.0275557i \(0.991228\pi\)
\(240\) 0 0
\(241\) −189.519 −0.786386 −0.393193 0.919456i \(-0.628630\pi\)
−0.393193 + 0.919456i \(0.628630\pi\)
\(242\) 0 0
\(243\) 11.0227 11.0227i 0.0453609 0.0453609i
\(244\) 0 0
\(245\) 51.8692 51.8692i 0.211711 0.211711i
\(246\) 0 0
\(247\) −232.508 −0.941328
\(248\) 0 0
\(249\) 24.9238i 0.100096i
\(250\) 0 0
\(251\) 27.4434 + 27.4434i 0.109336 + 0.109336i 0.759658 0.650322i \(-0.225366\pi\)
−0.650322 + 0.759658i \(0.725366\pi\)
\(252\) 0 0
\(253\) 75.2053 + 75.2053i 0.297254 + 0.297254i
\(254\) 0 0
\(255\) 55.2432i 0.216640i
\(256\) 0 0
\(257\) 135.375 0.526752 0.263376 0.964693i \(-0.415164\pi\)
0.263376 + 0.964693i \(0.415164\pi\)
\(258\) 0 0
\(259\) 66.1586 66.1586i 0.255438 0.255438i
\(260\) 0 0
\(261\) −73.9236 + 73.9236i −0.283232 + 0.283232i
\(262\) 0 0
\(263\) −31.6123 −0.120199 −0.0600994 0.998192i \(-0.519142\pi\)
−0.0600994 + 0.998192i \(0.519142\pi\)
\(264\) 0 0
\(265\) 50.6684i 0.191201i
\(266\) 0 0
\(267\) −26.8665 26.8665i −0.100624 0.100624i
\(268\) 0 0
\(269\) −194.213 194.213i −0.721981 0.721981i 0.247028 0.969008i \(-0.420546\pi\)
−0.969008 + 0.247028i \(0.920546\pi\)
\(270\) 0 0
\(271\) 291.647i 1.07619i 0.842884 + 0.538095i \(0.180856\pi\)
−0.842884 + 0.538095i \(0.819144\pi\)
\(272\) 0 0
\(273\) −168.978 −0.618967
\(274\) 0 0
\(275\) 52.0287 52.0287i 0.189195 0.189195i
\(276\) 0 0
\(277\) 305.166 305.166i 1.10168 1.10168i 0.107475 0.994208i \(-0.465723\pi\)
0.994208 0.107475i \(-0.0342765\pi\)
\(278\) 0 0
\(279\) −124.128 −0.444905
\(280\) 0 0
\(281\) 211.861i 0.753955i 0.926222 + 0.376978i \(0.123037\pi\)
−0.926222 + 0.376978i \(0.876963\pi\)
\(282\) 0 0
\(283\) −105.325 105.325i −0.372175 0.372175i 0.496094 0.868269i \(-0.334767\pi\)
−0.868269 + 0.496094i \(0.834767\pi\)
\(284\) 0 0
\(285\) 41.6957 + 41.6957i 0.146301 + 0.146301i
\(286\) 0 0
\(287\) 472.588i 1.64665i
\(288\) 0 0
\(289\) 211.871 0.733117
\(290\) 0 0
\(291\) −131.426 + 131.426i −0.451637 + 0.451637i
\(292\) 0 0
\(293\) −171.289 + 171.289i −0.584603 + 0.584603i −0.936165 0.351562i \(-0.885651\pi\)
0.351562 + 0.936165i \(0.385651\pi\)
\(294\) 0 0
\(295\) −12.5758 −0.0426300
\(296\) 0 0
\(297\) 16.6455i 0.0560456i
\(298\) 0 0
\(299\) 228.497 + 228.497i 0.764204 + 0.764204i
\(300\) 0 0
\(301\) −489.368 489.368i −1.62581 1.62581i
\(302\) 0 0
\(303\) 246.860i 0.814720i
\(304\) 0 0
\(305\) 72.4579 0.237567
\(306\) 0 0
\(307\) 27.1124 27.1124i 0.0883140 0.0883140i −0.661570 0.749884i \(-0.730109\pi\)
0.749884 + 0.661570i \(0.230109\pi\)
\(308\) 0 0
\(309\) 71.1041 71.1041i 0.230110 0.230110i
\(310\) 0 0
\(311\) −371.124 −1.19333 −0.596663 0.802492i \(-0.703507\pi\)
−0.596663 + 0.802492i \(0.703507\pi\)
\(312\) 0 0
\(313\) 374.501i 1.19649i 0.801313 + 0.598245i \(0.204135\pi\)
−0.801313 + 0.598245i \(0.795865\pi\)
\(314\) 0 0
\(315\) 30.3029 + 30.3029i 0.0961996 + 0.0961996i
\(316\) 0 0
\(317\) −48.5840 48.5840i −0.153262 0.153262i 0.626311 0.779573i \(-0.284564\pi\)
−0.779573 + 0.626311i \(0.784564\pi\)
\(318\) 0 0
\(319\) 111.633i 0.349947i
\(320\) 0 0
\(321\) 276.173 0.860352
\(322\) 0 0
\(323\) −378.040 + 378.040i −1.17040 + 1.17040i
\(324\) 0 0
\(325\) 158.079 158.079i 0.486398 0.486398i
\(326\) 0 0
\(327\) 198.748 0.607791
\(328\) 0 0
\(329\) 457.122i 1.38943i
\(330\) 0 0
\(331\) 1.88883 + 1.88883i 0.00570644 + 0.00570644i 0.709954 0.704248i \(-0.248716\pi\)
−0.704248 + 0.709954i \(0.748716\pi\)
\(332\) 0 0
\(333\) 19.8009 + 19.8009i 0.0594622 + 0.0594622i
\(334\) 0 0
\(335\) 20.5667i 0.0613931i
\(336\) 0 0
\(337\) −386.980 −1.14831 −0.574154 0.818747i \(-0.694669\pi\)
−0.574154 + 0.818747i \(0.694669\pi\)
\(338\) 0 0
\(339\) 210.465 210.465i 0.620840 0.620840i
\(340\) 0 0
\(341\) −93.7240 + 93.7240i −0.274851 + 0.274851i
\(342\) 0 0
\(343\) −24.7757 −0.0722325
\(344\) 0 0
\(345\) 81.9528i 0.237544i
\(346\) 0 0
\(347\) −441.887 441.887i −1.27345 1.27345i −0.944266 0.329183i \(-0.893227\pi\)
−0.329183 0.944266i \(-0.606773\pi\)
\(348\) 0 0
\(349\) 119.382 + 119.382i 0.342068 + 0.342068i 0.857144 0.515076i \(-0.172236\pi\)
−0.515076 + 0.857144i \(0.672236\pi\)
\(350\) 0 0
\(351\) 50.5743i 0.144086i
\(352\) 0 0
\(353\) −515.642 −1.46074 −0.730371 0.683050i \(-0.760653\pi\)
−0.730371 + 0.683050i \(0.760653\pi\)
\(354\) 0 0
\(355\) −12.0452 + 12.0452i −0.0339301 + 0.0339301i
\(356\) 0 0
\(357\) −274.745 + 274.745i −0.769595 + 0.769595i
\(358\) 0 0
\(359\) −428.264 −1.19294 −0.596468 0.802637i \(-0.703430\pi\)
−0.596468 + 0.802637i \(0.703430\pi\)
\(360\) 0 0
\(361\) 209.664i 0.580786i
\(362\) 0 0
\(363\) 135.626 + 135.626i 0.373625 + 0.373625i
\(364\) 0 0
\(365\) −112.192 112.192i −0.307375 0.307375i
\(366\) 0 0
\(367\) 219.482i 0.598043i 0.954246 + 0.299021i \(0.0966602\pi\)
−0.954246 + 0.299021i \(0.903340\pi\)
\(368\) 0 0
\(369\) 141.443 0.383315
\(370\) 0 0
\(371\) −251.993 + 251.993i −0.679226 + 0.679226i
\(372\) 0 0
\(373\) 425.005 425.005i 1.13942 1.13942i 0.150870 0.988554i \(-0.451793\pi\)
0.988554 0.150870i \(-0.0482075\pi\)
\(374\) 0 0
\(375\) −118.407 −0.315752
\(376\) 0 0
\(377\) 339.175i 0.899669i
\(378\) 0 0
\(379\) −365.916 365.916i −0.965476 0.965476i 0.0339473 0.999424i \(-0.489192\pi\)
−0.999424 + 0.0339473i \(0.989192\pi\)
\(380\) 0 0
\(381\) 45.1114 + 45.1114i 0.118403 + 0.118403i
\(382\) 0 0
\(383\) 213.276i 0.556857i 0.960457 + 0.278428i \(0.0898135\pi\)
−0.960457 + 0.278428i \(0.910187\pi\)
\(384\) 0 0
\(385\) 45.7608 0.118859
\(386\) 0 0
\(387\) 146.465 146.465i 0.378464 0.378464i
\(388\) 0 0
\(389\) −210.798 + 210.798i −0.541898 + 0.541898i −0.924085 0.382187i \(-0.875171\pi\)
0.382187 + 0.924085i \(0.375171\pi\)
\(390\) 0 0
\(391\) 743.037 1.90035
\(392\) 0 0
\(393\) 30.2968i 0.0770912i
\(394\) 0 0
\(395\) 4.49475 + 4.49475i 0.0113791 + 0.0113791i
\(396\) 0 0
\(397\) 392.907 + 392.907i 0.989690 + 0.989690i 0.999947 0.0102579i \(-0.00326524\pi\)
−0.0102579 + 0.999947i \(0.503265\pi\)
\(398\) 0 0
\(399\) 414.737i 1.03944i
\(400\) 0 0
\(401\) 29.3290 0.0731396 0.0365698 0.999331i \(-0.488357\pi\)
0.0365698 + 0.999331i \(0.488357\pi\)
\(402\) 0 0
\(403\) −284.762 + 284.762i −0.706606 + 0.706606i
\(404\) 0 0
\(405\) −9.06949 + 9.06949i −0.0223938 + 0.0223938i
\(406\) 0 0
\(407\) 29.9017 0.0734684
\(408\) 0 0
\(409\) 601.115i 1.46972i −0.678219 0.734860i \(-0.737248\pi\)
0.678219 0.734860i \(-0.262752\pi\)
\(410\) 0 0
\(411\) 178.419 + 178.419i 0.434110 + 0.434110i
\(412\) 0 0
\(413\) 62.5444 + 62.5444i 0.151439 + 0.151439i
\(414\) 0 0
\(415\) 20.5073i 0.0494153i
\(416\) 0 0
\(417\) 202.257 0.485028
\(418\) 0 0
\(419\) 518.885 518.885i 1.23839 1.23839i 0.277729 0.960659i \(-0.410418\pi\)
0.960659 0.277729i \(-0.0895819\pi\)
\(420\) 0 0
\(421\) −411.213 + 411.213i −0.976754 + 0.976754i −0.999736 0.0229817i \(-0.992684\pi\)
0.0229817 + 0.999736i \(0.492684\pi\)
\(422\) 0 0
\(423\) 136.814 0.323438
\(424\) 0 0
\(425\) 514.049i 1.20953i
\(426\) 0 0
\(427\) −360.360 360.360i −0.843936 0.843936i
\(428\) 0 0
\(429\) −38.1865 38.1865i −0.0890128 0.0890128i
\(430\) 0 0
\(431\) 41.1083i 0.0953789i 0.998862 + 0.0476895i \(0.0151858\pi\)
−0.998862 + 0.0476895i \(0.984814\pi\)
\(432\) 0 0
\(433\) −351.682 −0.812199 −0.406100 0.913829i \(-0.633111\pi\)
−0.406100 + 0.913829i \(0.633111\pi\)
\(434\) 0 0
\(435\) 60.8244 60.8244i 0.139826 0.139826i
\(436\) 0 0
\(437\) −560.819 + 560.819i −1.28334 + 1.28334i
\(438\) 0 0
\(439\) 775.613 1.76677 0.883386 0.468646i \(-0.155258\pi\)
0.883386 + 0.468646i \(0.155258\pi\)
\(440\) 0 0
\(441\) 154.415i 0.350148i
\(442\) 0 0
\(443\) 241.372 + 241.372i 0.544858 + 0.544858i 0.924949 0.380091i \(-0.124107\pi\)
−0.380091 + 0.924949i \(0.624107\pi\)
\(444\) 0 0
\(445\) 22.1058 + 22.1058i 0.0496759 + 0.0496759i
\(446\) 0 0
\(447\) 480.708i 1.07541i
\(448\) 0 0
\(449\) 266.360 0.593228 0.296614 0.954997i \(-0.404142\pi\)
0.296614 + 0.954997i \(0.404142\pi\)
\(450\) 0 0
\(451\) 106.798 106.798i 0.236802 0.236802i
\(452\) 0 0
\(453\) 78.9969 78.9969i 0.174386 0.174386i
\(454\) 0 0
\(455\) 139.035 0.305572
\(456\) 0 0
\(457\) 515.244i 1.12745i 0.825963 + 0.563725i \(0.190632\pi\)
−0.825963 + 0.563725i \(0.809368\pi\)
\(458\) 0 0
\(459\) −82.2299 82.2299i −0.179150 0.179150i
\(460\) 0 0
\(461\) 5.67717 + 5.67717i 0.0123149 + 0.0123149i 0.713237 0.700923i \(-0.247228\pi\)
−0.700923 + 0.713237i \(0.747228\pi\)
\(462\) 0 0
\(463\) 464.510i 1.00326i −0.865082 0.501631i \(-0.832733\pi\)
0.865082 0.501631i \(-0.167267\pi\)
\(464\) 0 0
\(465\) 102.133 0.219641
\(466\) 0 0
\(467\) −495.985 + 495.985i −1.06207 + 1.06207i −0.0641248 + 0.997942i \(0.520426\pi\)
−0.997942 + 0.0641248i \(0.979574\pi\)
\(468\) 0 0
\(469\) 102.286 102.286i 0.218094 0.218094i
\(470\) 0 0
\(471\) −133.302 −0.283018
\(472\) 0 0
\(473\) 221.180i 0.467610i
\(474\) 0 0
\(475\) 387.987 + 387.987i 0.816815 + 0.816815i
\(476\) 0 0
\(477\) −75.4202 75.4202i −0.158114 0.158114i
\(478\) 0 0
\(479\) 378.802i 0.790818i −0.918505 0.395409i \(-0.870603\pi\)
0.918505 0.395409i \(-0.129397\pi\)
\(480\) 0 0
\(481\) 90.8504 0.188878
\(482\) 0 0
\(483\) −407.582 + 407.582i −0.843855 + 0.843855i
\(484\) 0 0
\(485\) 108.138 108.138i 0.222964 0.222964i
\(486\) 0 0
\(487\) −147.446 −0.302764 −0.151382 0.988475i \(-0.548372\pi\)
−0.151382 + 0.988475i \(0.548372\pi\)
\(488\) 0 0
\(489\) 256.713i 0.524976i
\(490\) 0 0
\(491\) −109.547 109.547i −0.223110 0.223110i 0.586697 0.809807i \(-0.300428\pi\)
−0.809807 + 0.586697i \(0.800428\pi\)
\(492\) 0 0
\(493\) 551.473 + 551.473i 1.11861 + 1.11861i
\(494\) 0 0
\(495\) 13.6960i 0.0276686i
\(496\) 0 0
\(497\) 119.810 0.241067
\(498\) 0 0
\(499\) 360.523 360.523i 0.722491 0.722491i −0.246621 0.969112i \(-0.579320\pi\)
0.969112 + 0.246621i \(0.0793202\pi\)
\(500\) 0 0
\(501\) 65.2924 65.2924i 0.130324 0.130324i
\(502\) 0 0
\(503\) 927.420 1.84378 0.921889 0.387454i \(-0.126645\pi\)
0.921889 + 0.387454i \(0.126645\pi\)
\(504\) 0 0
\(505\) 203.117i 0.402211i
\(506\) 0 0
\(507\) 90.9597 + 90.9597i 0.179408 + 0.179408i
\(508\) 0 0
\(509\) 677.931 + 677.931i 1.33189 + 1.33189i 0.903680 + 0.428208i \(0.140855\pi\)
0.428208 + 0.903680i \(0.359145\pi\)
\(510\) 0 0
\(511\) 1115.95i 2.18385i
\(512\) 0 0
\(513\) 124.129 0.241966
\(514\) 0 0
\(515\) −58.5045 + 58.5045i −0.113601 + 0.113601i
\(516\) 0 0
\(517\) 103.303 103.303i 0.199812 0.199812i
\(518\) 0 0
\(519\) 101.845 0.196233
\(520\) 0 0
\(521\) 143.173i 0.274804i 0.990515 + 0.137402i \(0.0438753\pi\)
−0.990515 + 0.137402i \(0.956125\pi\)
\(522\) 0 0
\(523\) −226.187 226.187i −0.432481 0.432481i 0.456991 0.889471i \(-0.348927\pi\)
−0.889471 + 0.456991i \(0.848927\pi\)
\(524\) 0 0
\(525\) 281.974 + 281.974i 0.537094 + 0.537094i
\(526\) 0 0
\(527\) 926.004i 1.75712i
\(528\) 0 0
\(529\) 573.288 1.08372
\(530\) 0 0
\(531\) −18.7192 + 18.7192i −0.0352528 + 0.0352528i
\(532\) 0 0
\(533\) 324.484 324.484i 0.608788 0.608788i
\(534\) 0 0
\(535\) −227.235 −0.424739
\(536\) 0 0
\(537\) 129.997i 0.242080i
\(538\) 0 0
\(539\) −116.592 116.592i −0.216312 0.216312i
\(540\) 0 0
\(541\) −156.708 156.708i −0.289663 0.289663i 0.547284 0.836947i \(-0.315662\pi\)
−0.836947 + 0.547284i \(0.815662\pi\)
\(542\) 0 0
\(543\) 163.146i 0.300454i
\(544\) 0 0
\(545\) −163.530 −0.300055
\(546\) 0 0
\(547\) −247.357 + 247.357i −0.452207 + 0.452207i −0.896086 0.443880i \(-0.853602\pi\)
0.443880 + 0.896086i \(0.353602\pi\)
\(548\) 0 0
\(549\) 107.854 107.854i 0.196455 0.196455i
\(550\) 0 0
\(551\) −832.466 −1.51083
\(552\) 0 0
\(553\) 44.7082i 0.0808466i
\(554\) 0 0
\(555\) −16.2922 16.2922i −0.0293553 0.0293553i
\(556\) 0 0
\(557\) −661.193 661.193i −1.18706 1.18706i −0.977876 0.209184i \(-0.932919\pi\)
−0.209184 0.977876i \(-0.567081\pi\)
\(558\) 0 0
\(559\) 672.011i 1.20217i
\(560\) 0 0
\(561\) −124.177 −0.221349
\(562\) 0 0
\(563\) −246.685 + 246.685i −0.438162 + 0.438162i −0.891393 0.453231i \(-0.850271\pi\)
0.453231 + 0.891393i \(0.350271\pi\)
\(564\) 0 0
\(565\) −173.171 + 173.171i −0.306497 + 0.306497i
\(566\) 0 0
\(567\) 90.2120 0.159104
\(568\) 0 0
\(569\) 243.567i 0.428061i 0.976827 + 0.214030i \(0.0686592\pi\)
−0.976827 + 0.214030i \(0.931341\pi\)
\(570\) 0 0
\(571\) −59.9229 59.9229i −0.104944 0.104944i 0.652685 0.757629i \(-0.273642\pi\)
−0.757629 + 0.652685i \(0.773642\pi\)
\(572\) 0 0
\(573\) −139.319 139.319i −0.243139 0.243139i
\(574\) 0 0
\(575\) 762.587i 1.32624i
\(576\) 0 0
\(577\) 136.609 0.236757 0.118378 0.992969i \(-0.462230\pi\)
0.118378 + 0.992969i \(0.462230\pi\)
\(578\) 0 0
\(579\) 32.5287 32.5287i 0.0561809 0.0561809i
\(580\) 0 0
\(581\) 101.991 101.991i 0.175543 0.175543i
\(582\) 0 0
\(583\) −113.893 −0.195357
\(584\) 0 0
\(585\) 41.6126i 0.0711326i
\(586\) 0 0
\(587\) 331.817 + 331.817i 0.565276 + 0.565276i 0.930801 0.365525i \(-0.119111\pi\)
−0.365525 + 0.930801i \(0.619111\pi\)
\(588\) 0 0
\(589\) −698.916 698.916i −1.18661 1.18661i
\(590\) 0 0
\(591\) 127.113i 0.215081i
\(592\) 0 0
\(593\) 131.285 0.221391 0.110695 0.993854i \(-0.464692\pi\)
0.110695 + 0.993854i \(0.464692\pi\)
\(594\) 0 0
\(595\) 226.061 226.061i 0.379934 0.379934i
\(596\) 0 0
\(597\) −167.473 + 167.473i −0.280524 + 0.280524i
\(598\) 0 0
\(599\) 136.119 0.227243 0.113621 0.993524i \(-0.463755\pi\)
0.113621 + 0.993524i \(0.463755\pi\)
\(600\) 0 0
\(601\) 498.566i 0.829561i 0.909922 + 0.414780i \(0.136142\pi\)
−0.909922 + 0.414780i \(0.863858\pi\)
\(602\) 0 0
\(603\) 30.6136 + 30.6136i 0.0507689 + 0.0507689i
\(604\) 0 0
\(605\) −111.593 111.593i −0.184451 0.184451i
\(606\) 0 0
\(607\) 568.740i 0.936969i −0.883472 0.468484i \(-0.844800\pi\)
0.883472 0.468484i \(-0.155200\pi\)
\(608\) 0 0
\(609\) −605.005 −0.993441
\(610\) 0 0
\(611\) 313.865 313.865i 0.513691 0.513691i
\(612\) 0 0
\(613\) −168.441 + 168.441i −0.274782 + 0.274782i −0.831022 0.556240i \(-0.812244\pi\)
0.556240 + 0.831022i \(0.312244\pi\)
\(614\) 0 0
\(615\) −116.380 −0.189235
\(616\) 0 0
\(617\) 599.157i 0.971081i −0.874214 0.485541i \(-0.838623\pi\)
0.874214 0.485541i \(-0.161377\pi\)
\(618\) 0 0
\(619\) −126.719 126.719i −0.204715 0.204715i 0.597301 0.802017i \(-0.296240\pi\)
−0.802017 + 0.597301i \(0.796240\pi\)
\(620\) 0 0
\(621\) −121.987 121.987i −0.196437 0.196437i
\(622\) 0 0
\(623\) 219.881i 0.352939i
\(624\) 0 0
\(625\) −476.800 −0.762879
\(626\) 0 0
\(627\) 93.7242 93.7242i 0.149480 0.149480i
\(628\) 0 0
\(629\) 147.716 147.716i 0.234842 0.234842i
\(630\) 0 0
\(631\) −668.283 −1.05909 −0.529543 0.848283i \(-0.677637\pi\)
−0.529543 + 0.848283i \(0.677637\pi\)
\(632\) 0 0
\(633\) 345.797i 0.546283i
\(634\) 0 0
\(635\) −37.1177 37.1177i −0.0584531 0.0584531i
\(636\) 0 0
\(637\) −354.243 354.243i −0.556112 0.556112i
\(638\) 0 0
\(639\) 35.8586i 0.0561168i
\(640\) 0 0
\(641\) 484.574 0.755966 0.377983 0.925813i \(-0.376618\pi\)
0.377983 + 0.925813i \(0.376618\pi\)
\(642\) 0 0
\(643\) −75.2980 + 75.2980i −0.117104 + 0.117104i −0.763230 0.646126i \(-0.776388\pi\)
0.646126 + 0.763230i \(0.276388\pi\)
\(644\) 0 0
\(645\) −120.512 + 120.512i −0.186840 + 0.186840i
\(646\) 0 0
\(647\) 582.307 0.900011 0.450006 0.893026i \(-0.351422\pi\)
0.450006 + 0.893026i \(0.351422\pi\)
\(648\) 0 0
\(649\) 28.2682i 0.0435565i
\(650\) 0 0
\(651\) −507.946 507.946i −0.780255 0.780255i
\(652\) 0 0
\(653\) 457.453 + 457.453i 0.700541 + 0.700541i 0.964527 0.263986i \(-0.0850371\pi\)
−0.263986 + 0.964527i \(0.585037\pi\)
\(654\) 0 0
\(655\) 24.9283i 0.0380584i
\(656\) 0 0
\(657\) −333.997 −0.508367
\(658\) 0 0
\(659\) 430.079 430.079i 0.652623 0.652623i −0.301001 0.953624i \(-0.597321\pi\)
0.953624 + 0.301001i \(0.0973207\pi\)
\(660\) 0 0
\(661\) −513.622 + 513.622i −0.777038 + 0.777038i −0.979326 0.202288i \(-0.935162\pi\)
0.202288 + 0.979326i \(0.435162\pi\)
\(662\) 0 0
\(663\) −377.287 −0.569060
\(664\) 0 0
\(665\) 341.246i 0.513152i
\(666\) 0 0
\(667\) 818.105 + 818.105i 1.22654 + 1.22654i
\(668\) 0 0
\(669\) −150.162 150.162i −0.224457 0.224457i
\(670\) 0 0
\(671\) 162.872i 0.242730i
\(672\) 0 0
\(673\) −1112.68 −1.65332 −0.826659 0.562703i \(-0.809761\pi\)
−0.826659 + 0.562703i \(0.809761\pi\)
\(674\) 0 0
\(675\) −84.3935 + 84.3935i −0.125027 + 0.125027i
\(676\) 0 0
\(677\) 633.271 633.271i 0.935408 0.935408i −0.0626291 0.998037i \(-0.519949\pi\)
0.998037 + 0.0626291i \(0.0199485\pi\)
\(678\) 0 0
\(679\) −1075.62 −1.58412
\(680\) 0 0
\(681\) 724.668i 1.06412i
\(682\) 0 0
\(683\) 429.651 + 429.651i 0.629065 + 0.629065i 0.947833 0.318768i \(-0.103269\pi\)
−0.318768 + 0.947833i \(0.603269\pi\)
\(684\) 0 0
\(685\) −146.803 146.803i −0.214312 0.214312i
\(686\) 0 0
\(687\) 179.748i 0.261642i
\(688\) 0 0
\(689\) −346.042 −0.502239
\(690\) 0 0
\(691\) 151.617 151.617i 0.219417 0.219417i −0.588836 0.808253i \(-0.700414\pi\)
0.808253 + 0.588836i \(0.200414\pi\)
\(692\) 0 0
\(693\) 68.1153 68.1153i 0.0982904 0.0982904i
\(694\) 0 0
\(695\) −166.417 −0.239449
\(696\) 0 0
\(697\) 1055.17i 1.51388i
\(698\) 0 0
\(699\) −191.340 191.340i −0.273734 0.273734i
\(700\) 0 0
\(701\) −920.704 920.704i −1.31341 1.31341i −0.918882 0.394533i \(-0.870906\pi\)
−0.394533 0.918882i \(-0.629094\pi\)
\(702\) 0 0
\(703\) 222.982i 0.317186i
\(704\) 0 0
\(705\) −112.571 −0.159675
\(706\) 0 0
\(707\) 1010.18 1010.18i 1.42882 1.42882i
\(708\) 0 0
\(709\) 405.348 405.348i 0.571718 0.571718i −0.360890 0.932608i \(-0.617527\pi\)
0.932608 + 0.360890i \(0.117527\pi\)
\(710\) 0 0
\(711\) 13.3809 0.0188199
\(712\) 0 0
\(713\) 1373.72i 1.92667i
\(714\) 0 0
\(715\) 31.4199 + 31.4199i 0.0439439 + 0.0439439i
\(716\) 0 0
\(717\) −16.1319 16.1319i −0.0224991 0.0224991i
\(718\) 0 0
\(719\) 880.704i 1.22490i 0.790509 + 0.612450i \(0.209816\pi\)
−0.790509 + 0.612450i \(0.790184\pi\)
\(720\) 0 0
\(721\) 581.930 0.807115
\(722\) 0 0
\(723\) 232.112 232.112i 0.321041 0.321041i
\(724\) 0 0
\(725\) 565.983 565.983i 0.780667 0.780667i
\(726\) 0 0
\(727\) −1000.46 −1.37615 −0.688077 0.725637i \(-0.741545\pi\)
−0.688077 + 0.725637i \(0.741545\pi\)
\(728\) 0 0
\(729\) 27.0000i 0.0370370i
\(730\) 0 0
\(731\) −1092.64 1092.64i −1.49472 1.49472i
\(732\) 0 0
\(733\) 540.306 + 540.306i 0.737116 + 0.737116i 0.972019 0.234903i \(-0.0754772\pi\)
−0.234903 + 0.972019i \(0.575477\pi\)
\(734\) 0 0
\(735\) 127.053i 0.172861i
\(736\) 0 0
\(737\) 46.2301 0.0627274
\(738\) 0 0
\(739\) −893.726 + 893.726i −1.20937 + 1.20937i −0.238142 + 0.971230i \(0.576538\pi\)
−0.971230 + 0.238142i \(0.923462\pi\)
\(740\) 0 0
\(741\) 284.763 284.763i 0.384296 0.384296i
\(742\) 0 0
\(743\) −1295.75 −1.74394 −0.871969 0.489561i \(-0.837157\pi\)
−0.871969 + 0.489561i \(0.837157\pi\)
\(744\) 0 0
\(745\) 395.527i 0.530909i
\(746\) 0 0
\(747\) 30.5253 + 30.5253i 0.0408639 + 0.0408639i
\(748\) 0 0
\(749\) 1130.13 + 1130.13i 1.50885 + 1.50885i
\(750\) 0 0
\(751\) 229.818i 0.306016i −0.988225 0.153008i \(-0.951104\pi\)
0.988225 0.153008i \(-0.0488961\pi\)
\(752\) 0 0
\(753\) −67.2223 −0.0892726
\(754\) 0 0
\(755\) −64.9987 + 64.9987i −0.0860910 + 0.0860910i
\(756\) 0 0
\(757\) −373.678 + 373.678i −0.493630 + 0.493630i −0.909448 0.415818i \(-0.863495\pi\)
0.415818 + 0.909448i \(0.363495\pi\)
\(758\) 0 0
\(759\) −184.215 −0.242707
\(760\) 0 0
\(761\) 384.012i 0.504615i −0.967647 0.252307i \(-0.918811\pi\)
0.967647 0.252307i \(-0.0811894\pi\)
\(762\) 0 0
\(763\) 813.296 + 813.296i 1.06592 + 1.06592i
\(764\) 0 0
\(765\) 67.6589 + 67.6589i 0.0884429 + 0.0884429i
\(766\) 0 0
\(767\) 85.8874i 0.111978i
\(768\) 0 0
\(769\) 865.026 1.12487 0.562436 0.826841i \(-0.309864\pi\)
0.562436 + 0.826841i \(0.309864\pi\)
\(770\) 0 0
\(771\) −165.800 + 165.800i −0.215045 + 0.215045i
\(772\) 0 0
\(773\) −1.78859 + 1.78859i −0.00231383 + 0.00231383i −0.708263 0.705949i \(-0.750521\pi\)
0.705949 + 0.708263i \(0.250521\pi\)
\(774\) 0 0
\(775\) 950.368 1.22628
\(776\) 0 0
\(777\) 162.055i 0.208565i
\(778\) 0 0
\(779\) 796.409 + 796.409i 1.02235 + 1.02235i
\(780\) 0 0
\(781\) 27.0753 + 27.0753i 0.0346675 + 0.0346675i
\(782\) 0 0
\(783\) 181.075i 0.231258i
\(784\) 0 0
\(785\) 109.681 0.139721
\(786\) 0 0
\(787\) −143.702 + 143.702i −0.182595 + 0.182595i −0.792485 0.609891i \(-0.791213\pi\)
0.609891 + 0.792485i \(0.291213\pi\)
\(788\) 0 0
\(789\) 38.7170 38.7170i 0.0490710 0.0490710i
\(790\) 0 0
\(791\) 1722.49 2.17761
\(792\) 0 0
\(793\) 494.855i 0.624029i
\(794\) 0 0