Properties

Label 192.3.l
Level $192$
Weight $3$
Character orbit 192.l
Rep. character $\chi_{192}(79,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $16$
Newform subspaces $1$
Sturm bound $96$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 192.l (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 16 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(96\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(192, [\chi])\).

Total New Old
Modular forms 144 16 128
Cusp forms 112 16 96
Eisenstein series 32 0 32

Trace form

\( 16q + O(q^{10}) \) \( 16q - 32q^{11} + 32q^{19} + 128q^{23} + 32q^{29} - 96q^{35} - 96q^{37} - 160q^{43} + 112q^{49} + 96q^{51} - 160q^{53} + 256q^{55} + 128q^{59} - 32q^{61} - 32q^{65} - 320q^{67} + 96q^{69} - 512q^{71} - 192q^{75} + 224q^{77} - 144q^{81} + 160q^{83} + 160q^{85} + 480q^{91} - 96q^{99} + O(q^{100}) \)

Decomposition of \(S_{3}^{\mathrm{new}}(192, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
192.3.l.a \(16\) \(5.232\) \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None \(0\) \(0\) \(0\) \(0\) \(q-\beta _{2}q^{3}-\beta _{9}q^{5}+\beta _{5}q^{7}-3\beta _{4}q^{9}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(192, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(192, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 2}\)