Properties

Label 192.3
Level 192
Weight 3
Dimension 842
Nonzero newspaces 8
Newform subspaces 19
Sturm bound 6144
Trace bound 11

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 19 \)
Sturm bound: \(6144\)
Trace bound: \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(192))\).

Total New Old
Modular forms 2192 886 1306
Cusp forms 1904 842 1062
Eisenstein series 288 44 244

Trace form

\( 842 q - 6 q^{3} - 16 q^{4} - 8 q^{6} - 16 q^{7} - 10 q^{9} - 16 q^{10} - 32 q^{11} - 8 q^{12} - 48 q^{13} - 4 q^{15} - 16 q^{16} + 32 q^{17} - 8 q^{18} + 52 q^{19} + 76 q^{21} + 128 q^{22} + 128 q^{23}+ \cdots + 188 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(192))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
192.3.b \(\chi_{192}(31, \cdot)\) 192.3.b.a 4 1
192.3.b.b 4
192.3.e \(\chi_{192}(65, \cdot)\) 192.3.e.a 1 1
192.3.e.b 1
192.3.e.c 2
192.3.e.d 2
192.3.e.e 4
192.3.e.f 4
192.3.g \(\chi_{192}(127, \cdot)\) 192.3.g.a 2 1
192.3.g.b 2
192.3.g.c 4
192.3.h \(\chi_{192}(161, \cdot)\) 192.3.h.a 4 1
192.3.h.b 4
192.3.h.c 8
192.3.i \(\chi_{192}(17, \cdot)\) 192.3.i.a 8 2
192.3.i.b 20
192.3.l \(\chi_{192}(79, \cdot)\) 192.3.l.a 16 2
192.3.m \(\chi_{192}(7, \cdot)\) None 0 4
192.3.p \(\chi_{192}(41, \cdot)\) None 0 4
192.3.q \(\chi_{192}(5, \cdot)\) 192.3.q.a 496 8
192.3.t \(\chi_{192}(19, \cdot)\) 192.3.t.a 256 8

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(192))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(192)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 14}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 7}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(96))\)\(^{\oplus 2}\)