Defining parameters
| Level: | \( N \) | \(=\) | \( 192 = 2^{6} \cdot 3 \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 192.h (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 24 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(96\) | ||
| Trace bound: | \(9\) | ||
| Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(192, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 76 | 16 | 60 |
| Cusp forms | 52 | 16 | 36 |
| Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(192, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 192.3.h.a | $4$ | $5.232$ | \(\Q(\zeta_{12})\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+3\beta_1 q^{3}-\beta_{3} q^{7}-9 q^{9}-\beta_{2} q^{13}+\cdots\) |
| 192.3.h.b | $4$ | $5.232$ | \(\Q(\zeta_{8})\) | \(\Q(\sqrt{-2}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta_{2} q^{3}+(-\beta_{3}+7)q^{9}+(-6\beta_{2}-3\beta_1)q^{11}+\cdots\) |
| 192.3.h.c | $8$ | $5.232$ | 8.0.12960000.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{2}q^{3}-\beta _{4}q^{5}-\beta _{1}q^{7}+(1-\beta _{5}+\cdots)q^{9}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(192, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(192, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 2}\)