# Properties

 Label 192.3.h.a Level $192$ Weight $3$ Character orbit 192.h Analytic conductor $5.232$ Analytic rank $0$ Dimension $4$ CM discriminant -3 Inner twists $8$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$192 = 2^{6} \cdot 3$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 192.h (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$5.23162107572$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(\zeta_{12})$$ Defining polynomial: $$x^{4} - x^{2} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{19}]$$ Coefficient ring index: $$2^{8}$$ Twist minimal: yes Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{12}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + 3 \zeta_{12}^{3} q^{3} + ( -16 \zeta_{12} + 8 \zeta_{12}^{3} ) q^{7} -9 q^{9} +O(q^{10})$$ $$q + 3 \zeta_{12}^{3} q^{3} + ( -16 \zeta_{12} + 8 \zeta_{12}^{3} ) q^{7} -9 q^{9} + ( 8 - 16 \zeta_{12}^{2} ) q^{13} + 26 \zeta_{12}^{3} q^{19} + ( 24 - 48 \zeta_{12}^{2} ) q^{21} -25 q^{25} -27 \zeta_{12}^{3} q^{27} + ( -48 \zeta_{12} + 24 \zeta_{12}^{3} ) q^{31} + ( -40 + 80 \zeta_{12}^{2} ) q^{37} + ( 48 \zeta_{12} - 24 \zeta_{12}^{3} ) q^{39} + 22 \zeta_{12}^{3} q^{43} + 143 q^{49} -78 q^{57} + ( -56 + 112 \zeta_{12}^{2} ) q^{61} + ( 144 \zeta_{12} - 72 \zeta_{12}^{3} ) q^{63} -122 \zeta_{12}^{3} q^{67} -46 q^{73} -75 \zeta_{12}^{3} q^{75} + ( 80 \zeta_{12} - 40 \zeta_{12}^{3} ) q^{79} + 81 q^{81} + 192 \zeta_{12}^{3} q^{91} + ( 72 - 144 \zeta_{12}^{2} ) q^{93} -2 q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q - 36q^{9} + O(q^{10})$$ $$4q - 36q^{9} - 100q^{25} + 572q^{49} - 312q^{57} - 184q^{73} + 324q^{81} - 8q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/192\mathbb{Z}\right)^\times$$.

 $$n$$ $$65$$ $$127$$ $$133$$ $$\chi(n)$$ $$-1$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
161.1
 0.866025 − 0.500000i −0.866025 − 0.500000i 0.866025 + 0.500000i −0.866025 + 0.500000i
0 3.00000i 0 0 0 −13.8564 0 −9.00000 0
161.2 0 3.00000i 0 0 0 13.8564 0 −9.00000 0
161.3 0 3.00000i 0 0 0 −13.8564 0 −9.00000 0
161.4 0 3.00000i 0 0 0 13.8564 0 −9.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by $$\Q(\sqrt{-3})$$
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner
12.b even 2 1 inner
24.f even 2 1 inner
24.h odd 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 192.3.h.a 4
3.b odd 2 1 CM 192.3.h.a 4
4.b odd 2 1 inner 192.3.h.a 4
8.b even 2 1 inner 192.3.h.a 4
8.d odd 2 1 inner 192.3.h.a 4
12.b even 2 1 inner 192.3.h.a 4
16.e even 4 1 768.3.e.a 2
16.e even 4 1 768.3.e.f 2
16.f odd 4 1 768.3.e.a 2
16.f odd 4 1 768.3.e.f 2
24.f even 2 1 inner 192.3.h.a 4
24.h odd 2 1 inner 192.3.h.a 4
48.i odd 4 1 768.3.e.a 2
48.i odd 4 1 768.3.e.f 2
48.k even 4 1 768.3.e.a 2
48.k even 4 1 768.3.e.f 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
192.3.h.a 4 1.a even 1 1 trivial
192.3.h.a 4 3.b odd 2 1 CM
192.3.h.a 4 4.b odd 2 1 inner
192.3.h.a 4 8.b even 2 1 inner
192.3.h.a 4 8.d odd 2 1 inner
192.3.h.a 4 12.b even 2 1 inner
192.3.h.a 4 24.f even 2 1 inner
192.3.h.a 4 24.h odd 2 1 inner
768.3.e.a 2 16.e even 4 1
768.3.e.a 2 16.f odd 4 1
768.3.e.a 2 48.i odd 4 1
768.3.e.a 2 48.k even 4 1
768.3.e.f 2 16.e even 4 1
768.3.e.f 2 16.f odd 4 1
768.3.e.f 2 48.i odd 4 1
768.3.e.f 2 48.k even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{3}^{\mathrm{new}}(192, [\chi])$$:

 $$T_{5}$$ $$T_{7}^{2} - 192$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4}$$
$3$ $$( 9 + T^{2} )^{2}$$
$5$ $$T^{4}$$
$7$ $$( -192 + T^{2} )^{2}$$
$11$ $$T^{4}$$
$13$ $$( 192 + T^{2} )^{2}$$
$17$ $$T^{4}$$
$19$ $$( 676 + T^{2} )^{2}$$
$23$ $$T^{4}$$
$29$ $$T^{4}$$
$31$ $$( -1728 + T^{2} )^{2}$$
$37$ $$( 4800 + T^{2} )^{2}$$
$41$ $$T^{4}$$
$43$ $$( 484 + T^{2} )^{2}$$
$47$ $$T^{4}$$
$53$ $$T^{4}$$
$59$ $$T^{4}$$
$61$ $$( 9408 + T^{2} )^{2}$$
$67$ $$( 14884 + T^{2} )^{2}$$
$71$ $$T^{4}$$
$73$ $$( 46 + T )^{4}$$
$79$ $$( -4800 + T^{2} )^{2}$$
$83$ $$T^{4}$$
$89$ $$T^{4}$$
$97$ $$( 2 + T )^{4}$$