Properties

Label 1911.4.a.w.1.8
Level $1911$
Weight $4$
Character 1911.1
Self dual yes
Analytic conductor $112.753$
Analytic rank $1$
Dimension $11$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1911,4,Mod(1,1911)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1911, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1911.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1911 = 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1911.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [11,-1,33,31,-17] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(112.752650021\)
Analytic rank: \(1\)
Dimension: \(11\)
Coefficient field: \(\mathbb{Q}[x]/(x^{11} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{11} - x^{10} - 59 x^{9} + 36 x^{8} + 1220 x^{7} - 339 x^{6} - 10807 x^{5} + 58 x^{4} + 40509 x^{3} + \cdots - 27208 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 273)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-1.96658\) of defining polynomial
Character \(\chi\) \(=\) 1911.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.96658 q^{2} +3.00000 q^{3} -4.13255 q^{4} -10.3068 q^{5} +5.89975 q^{6} -23.8597 q^{8} +9.00000 q^{9} -20.2692 q^{10} +65.9110 q^{11} -12.3977 q^{12} +13.0000 q^{13} -30.9205 q^{15} -13.8616 q^{16} -108.032 q^{17} +17.6992 q^{18} -11.0814 q^{19} +42.5935 q^{20} +129.619 q^{22} +68.6342 q^{23} -71.5790 q^{24} -18.7694 q^{25} +25.5656 q^{26} +27.0000 q^{27} -20.9819 q^{29} -60.8077 q^{30} +80.2525 q^{31} +163.617 q^{32} +197.733 q^{33} -212.455 q^{34} -37.1930 q^{36} +155.964 q^{37} -21.7924 q^{38} +39.0000 q^{39} +245.917 q^{40} +216.970 q^{41} -194.723 q^{43} -272.380 q^{44} -92.7614 q^{45} +134.975 q^{46} +253.170 q^{47} -41.5849 q^{48} -36.9115 q^{50} -324.097 q^{51} -53.7232 q^{52} -707.877 q^{53} +53.0977 q^{54} -679.333 q^{55} -33.2441 q^{57} -41.2626 q^{58} -768.060 q^{59} +127.780 q^{60} -392.039 q^{61} +157.823 q^{62} +432.660 q^{64} -133.989 q^{65} +388.858 q^{66} +830.212 q^{67} +446.449 q^{68} +205.903 q^{69} +647.743 q^{71} -214.737 q^{72} +127.715 q^{73} +306.716 q^{74} -56.3081 q^{75} +45.7943 q^{76} +76.6967 q^{78} -1185.68 q^{79} +142.869 q^{80} +81.0000 q^{81} +426.690 q^{82} +785.987 q^{83} +1113.47 q^{85} -382.939 q^{86} -62.9457 q^{87} -1572.61 q^{88} -1529.76 q^{89} -182.423 q^{90} -283.634 q^{92} +240.757 q^{93} +497.880 q^{94} +114.214 q^{95} +490.852 q^{96} -631.573 q^{97} +593.199 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 11 q - q^{2} + 33 q^{3} + 31 q^{4} - 17 q^{5} - 3 q^{6} - 54 q^{8} + 99 q^{9} - 75 q^{10} + 7 q^{11} + 93 q^{12} + 143 q^{13} - 51 q^{15} + 23 q^{16} + 20 q^{17} - 9 q^{18} - 242 q^{19} - 254 q^{20} - 290 q^{22}+ \cdots + 63 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.96658 0.695292 0.347646 0.937626i \(-0.386981\pi\)
0.347646 + 0.937626i \(0.386981\pi\)
\(3\) 3.00000 0.577350
\(4\) −4.13255 −0.516569
\(5\) −10.3068 −0.921870 −0.460935 0.887434i \(-0.652486\pi\)
−0.460935 + 0.887434i \(0.652486\pi\)
\(6\) 5.89975 0.401427
\(7\) 0 0
\(8\) −23.8597 −1.05446
\(9\) 9.00000 0.333333
\(10\) −20.2692 −0.640969
\(11\) 65.9110 1.80663 0.903314 0.428980i \(-0.141127\pi\)
0.903314 + 0.428980i \(0.141127\pi\)
\(12\) −12.3977 −0.298241
\(13\) 13.0000 0.277350
\(14\) 0 0
\(15\) −30.9205 −0.532242
\(16\) −13.8616 −0.216588
\(17\) −108.032 −1.54128 −0.770638 0.637273i \(-0.780062\pi\)
−0.770638 + 0.637273i \(0.780062\pi\)
\(18\) 17.6992 0.231764
\(19\) −11.0814 −0.133802 −0.0669011 0.997760i \(-0.521311\pi\)
−0.0669011 + 0.997760i \(0.521311\pi\)
\(20\) 42.5935 0.476210
\(21\) 0 0
\(22\) 129.619 1.25613
\(23\) 68.6342 0.622227 0.311114 0.950373i \(-0.399298\pi\)
0.311114 + 0.950373i \(0.399298\pi\)
\(24\) −71.5790 −0.608792
\(25\) −18.7694 −0.150155
\(26\) 25.5656 0.192839
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) −20.9819 −0.134353 −0.0671765 0.997741i \(-0.521399\pi\)
−0.0671765 + 0.997741i \(0.521399\pi\)
\(30\) −60.8077 −0.370064
\(31\) 80.2525 0.464960 0.232480 0.972601i \(-0.425316\pi\)
0.232480 + 0.972601i \(0.425316\pi\)
\(32\) 163.617 0.903867
\(33\) 197.733 1.04306
\(34\) −212.455 −1.07164
\(35\) 0 0
\(36\) −37.1930 −0.172190
\(37\) 155.964 0.692980 0.346490 0.938054i \(-0.387373\pi\)
0.346490 + 0.938054i \(0.387373\pi\)
\(38\) −21.7924 −0.0930316
\(39\) 39.0000 0.160128
\(40\) 245.917 0.972074
\(41\) 216.970 0.826465 0.413232 0.910626i \(-0.364400\pi\)
0.413232 + 0.910626i \(0.364400\pi\)
\(42\) 0 0
\(43\) −194.723 −0.690582 −0.345291 0.938496i \(-0.612220\pi\)
−0.345291 + 0.938496i \(0.612220\pi\)
\(44\) −272.380 −0.933248
\(45\) −92.7614 −0.307290
\(46\) 134.975 0.432630
\(47\) 253.170 0.785715 0.392858 0.919599i \(-0.371486\pi\)
0.392858 + 0.919599i \(0.371486\pi\)
\(48\) −41.5849 −0.125047
\(49\) 0 0
\(50\) −36.9115 −0.104402
\(51\) −324.097 −0.889856
\(52\) −53.7232 −0.143270
\(53\) −707.877 −1.83461 −0.917305 0.398185i \(-0.869640\pi\)
−0.917305 + 0.398185i \(0.869640\pi\)
\(54\) 53.0977 0.133809
\(55\) −679.333 −1.66548
\(56\) 0 0
\(57\) −33.2441 −0.0772507
\(58\) −41.2626 −0.0934146
\(59\) −768.060 −1.69479 −0.847397 0.530960i \(-0.821832\pi\)
−0.847397 + 0.530960i \(0.821832\pi\)
\(60\) 127.780 0.274940
\(61\) −392.039 −0.822875 −0.411438 0.911438i \(-0.634973\pi\)
−0.411438 + 0.911438i \(0.634973\pi\)
\(62\) 157.823 0.323283
\(63\) 0 0
\(64\) 432.660 0.845039
\(65\) −133.989 −0.255681
\(66\) 388.858 0.725229
\(67\) 830.212 1.51383 0.756914 0.653514i \(-0.226706\pi\)
0.756914 + 0.653514i \(0.226706\pi\)
\(68\) 446.449 0.796175
\(69\) 205.903 0.359243
\(70\) 0 0
\(71\) 647.743 1.08272 0.541359 0.840792i \(-0.317910\pi\)
0.541359 + 0.840792i \(0.317910\pi\)
\(72\) −214.737 −0.351486
\(73\) 127.715 0.204767 0.102383 0.994745i \(-0.467353\pi\)
0.102383 + 0.994745i \(0.467353\pi\)
\(74\) 306.716 0.481824
\(75\) −56.3081 −0.0866920
\(76\) 45.7943 0.0691180
\(77\) 0 0
\(78\) 76.6967 0.111336
\(79\) −1185.68 −1.68860 −0.844298 0.535873i \(-0.819982\pi\)
−0.844298 + 0.535873i \(0.819982\pi\)
\(80\) 142.869 0.199666
\(81\) 81.0000 0.111111
\(82\) 426.690 0.574634
\(83\) 785.987 1.03944 0.519719 0.854337i \(-0.326037\pi\)
0.519719 + 0.854337i \(0.326037\pi\)
\(84\) 0 0
\(85\) 1113.47 1.42086
\(86\) −382.939 −0.480156
\(87\) −62.9457 −0.0775688
\(88\) −1572.61 −1.90501
\(89\) −1529.76 −1.82196 −0.910980 0.412451i \(-0.864673\pi\)
−0.910980 + 0.412451i \(0.864673\pi\)
\(90\) −182.423 −0.213656
\(91\) 0 0
\(92\) −283.634 −0.321423
\(93\) 240.757 0.268445
\(94\) 497.880 0.546302
\(95\) 114.214 0.123348
\(96\) 490.852 0.521848
\(97\) −631.573 −0.661098 −0.330549 0.943789i \(-0.607234\pi\)
−0.330549 + 0.943789i \(0.607234\pi\)
\(98\) 0 0
\(99\) 593.199 0.602209
\(100\) 77.5654 0.0775654
\(101\) −47.6116 −0.0469062 −0.0234531 0.999725i \(-0.507466\pi\)
−0.0234531 + 0.999725i \(0.507466\pi\)
\(102\) −637.364 −0.618710
\(103\) −1167.47 −1.11684 −0.558421 0.829558i \(-0.688593\pi\)
−0.558421 + 0.829558i \(0.688593\pi\)
\(104\) −310.176 −0.292454
\(105\) 0 0
\(106\) −1392.10 −1.27559
\(107\) 529.441 0.478346 0.239173 0.970977i \(-0.423124\pi\)
0.239173 + 0.970977i \(0.423124\pi\)
\(108\) −111.579 −0.0994137
\(109\) −20.0691 −0.0176355 −0.00881775 0.999961i \(-0.502807\pi\)
−0.00881775 + 0.999961i \(0.502807\pi\)
\(110\) −1335.96 −1.15799
\(111\) 467.891 0.400092
\(112\) 0 0
\(113\) −1555.90 −1.29528 −0.647640 0.761947i \(-0.724244\pi\)
−0.647640 + 0.761947i \(0.724244\pi\)
\(114\) −65.3773 −0.0537118
\(115\) −707.401 −0.573613
\(116\) 86.7087 0.0694026
\(117\) 117.000 0.0924500
\(118\) −1510.45 −1.17838
\(119\) 0 0
\(120\) 737.752 0.561227
\(121\) 3013.26 2.26390
\(122\) −770.976 −0.572139
\(123\) 650.911 0.477160
\(124\) −331.647 −0.240184
\(125\) 1481.81 1.06029
\(126\) 0 0
\(127\) −1331.46 −0.930297 −0.465148 0.885233i \(-0.653999\pi\)
−0.465148 + 0.885233i \(0.653999\pi\)
\(128\) −458.077 −0.316318
\(129\) −584.170 −0.398708
\(130\) −263.500 −0.177773
\(131\) −2157.40 −1.43888 −0.719440 0.694555i \(-0.755601\pi\)
−0.719440 + 0.694555i \(0.755601\pi\)
\(132\) −817.141 −0.538811
\(133\) 0 0
\(134\) 1632.68 1.05255
\(135\) −278.284 −0.177414
\(136\) 2577.62 1.62521
\(137\) −1348.91 −0.841206 −0.420603 0.907245i \(-0.638181\pi\)
−0.420603 + 0.907245i \(0.638181\pi\)
\(138\) 404.925 0.249779
\(139\) −2064.71 −1.25990 −0.629952 0.776634i \(-0.716926\pi\)
−0.629952 + 0.776634i \(0.716926\pi\)
\(140\) 0 0
\(141\) 759.510 0.453633
\(142\) 1273.84 0.752805
\(143\) 856.843 0.501068
\(144\) −124.755 −0.0721959
\(145\) 216.257 0.123856
\(146\) 251.163 0.142373
\(147\) 0 0
\(148\) −644.528 −0.357972
\(149\) −1706.69 −0.938374 −0.469187 0.883099i \(-0.655453\pi\)
−0.469187 + 0.883099i \(0.655453\pi\)
\(150\) −110.735 −0.0602763
\(151\) 316.050 0.170330 0.0851650 0.996367i \(-0.472858\pi\)
0.0851650 + 0.996367i \(0.472858\pi\)
\(152\) 264.398 0.141089
\(153\) −972.291 −0.513759
\(154\) 0 0
\(155\) −827.148 −0.428633
\(156\) −161.169 −0.0827172
\(157\) −3585.62 −1.82270 −0.911348 0.411637i \(-0.864957\pi\)
−0.911348 + 0.411637i \(0.864957\pi\)
\(158\) −2331.73 −1.17407
\(159\) −2123.63 −1.05921
\(160\) −1686.38 −0.833248
\(161\) 0 0
\(162\) 159.293 0.0772547
\(163\) −2178.29 −1.04673 −0.523365 0.852109i \(-0.675323\pi\)
−0.523365 + 0.852109i \(0.675323\pi\)
\(164\) −896.640 −0.426926
\(165\) −2038.00 −0.961563
\(166\) 1545.71 0.722713
\(167\) −2597.93 −1.20379 −0.601897 0.798574i \(-0.705588\pi\)
−0.601897 + 0.798574i \(0.705588\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 2189.73 0.987911
\(171\) −99.7324 −0.0446007
\(172\) 804.704 0.356733
\(173\) −3184.79 −1.39963 −0.699813 0.714326i \(-0.746733\pi\)
−0.699813 + 0.714326i \(0.746733\pi\)
\(174\) −123.788 −0.0539330
\(175\) 0 0
\(176\) −913.633 −0.391294
\(177\) −2304.18 −0.978490
\(178\) −3008.40 −1.26679
\(179\) 2586.34 1.07996 0.539978 0.841679i \(-0.318432\pi\)
0.539978 + 0.841679i \(0.318432\pi\)
\(180\) 383.341 0.158737
\(181\) 320.751 0.131720 0.0658598 0.997829i \(-0.479021\pi\)
0.0658598 + 0.997829i \(0.479021\pi\)
\(182\) 0 0
\(183\) −1176.12 −0.475087
\(184\) −1637.59 −0.656113
\(185\) −1607.49 −0.638838
\(186\) 473.469 0.186648
\(187\) −7120.52 −2.78451
\(188\) −1046.24 −0.405876
\(189\) 0 0
\(190\) 224.611 0.0857631
\(191\) −1054.33 −0.399416 −0.199708 0.979855i \(-0.563999\pi\)
−0.199708 + 0.979855i \(0.563999\pi\)
\(192\) 1297.98 0.487884
\(193\) 3259.93 1.21583 0.607915 0.794002i \(-0.292006\pi\)
0.607915 + 0.794002i \(0.292006\pi\)
\(194\) −1242.04 −0.459656
\(195\) −401.966 −0.147617
\(196\) 0 0
\(197\) 2770.81 1.00209 0.501047 0.865420i \(-0.332949\pi\)
0.501047 + 0.865420i \(0.332949\pi\)
\(198\) 1166.57 0.418711
\(199\) 1328.01 0.473068 0.236534 0.971623i \(-0.423989\pi\)
0.236534 + 0.971623i \(0.423989\pi\)
\(200\) 447.831 0.158332
\(201\) 2490.64 0.874009
\(202\) −93.6321 −0.0326135
\(203\) 0 0
\(204\) 1339.35 0.459672
\(205\) −2236.27 −0.761893
\(206\) −2295.94 −0.776531
\(207\) 617.708 0.207409
\(208\) −180.201 −0.0600706
\(209\) −730.384 −0.241731
\(210\) 0 0
\(211\) −200.402 −0.0653850 −0.0326925 0.999465i \(-0.510408\pi\)
−0.0326925 + 0.999465i \(0.510408\pi\)
\(212\) 2925.34 0.947702
\(213\) 1943.23 0.625107
\(214\) 1041.19 0.332590
\(215\) 2006.98 0.636627
\(216\) −644.211 −0.202931
\(217\) 0 0
\(218\) −39.4675 −0.0122618
\(219\) 383.146 0.118222
\(220\) 2807.38 0.860333
\(221\) −1404.42 −0.427473
\(222\) 920.147 0.278181
\(223\) 1054.09 0.316533 0.158267 0.987396i \(-0.449409\pi\)
0.158267 + 0.987396i \(0.449409\pi\)
\(224\) 0 0
\(225\) −168.924 −0.0500517
\(226\) −3059.80 −0.900598
\(227\) 1417.97 0.414600 0.207300 0.978277i \(-0.433532\pi\)
0.207300 + 0.978277i \(0.433532\pi\)
\(228\) 137.383 0.0399053
\(229\) −3808.57 −1.09903 −0.549514 0.835484i \(-0.685187\pi\)
−0.549514 + 0.835484i \(0.685187\pi\)
\(230\) −1391.16 −0.398829
\(231\) 0 0
\(232\) 500.621 0.141670
\(233\) −3189.67 −0.896835 −0.448417 0.893824i \(-0.648012\pi\)
−0.448417 + 0.893824i \(0.648012\pi\)
\(234\) 230.090 0.0642798
\(235\) −2609.38 −0.724328
\(236\) 3174.05 0.875478
\(237\) −3557.03 −0.974912
\(238\) 0 0
\(239\) 236.764 0.0640794 0.0320397 0.999487i \(-0.489800\pi\)
0.0320397 + 0.999487i \(0.489800\pi\)
\(240\) 428.608 0.115277
\(241\) −6110.84 −1.63334 −0.816668 0.577108i \(-0.804181\pi\)
−0.816668 + 0.577108i \(0.804181\pi\)
\(242\) 5925.82 1.57407
\(243\) 243.000 0.0641500
\(244\) 1620.12 0.425072
\(245\) 0 0
\(246\) 1280.07 0.331765
\(247\) −144.058 −0.0371101
\(248\) −1914.80 −0.490281
\(249\) 2357.96 0.600119
\(250\) 2914.09 0.737214
\(251\) 3253.27 0.818106 0.409053 0.912511i \(-0.365859\pi\)
0.409053 + 0.912511i \(0.365859\pi\)
\(252\) 0 0
\(253\) 4523.75 1.12413
\(254\) −2618.42 −0.646828
\(255\) 3340.41 0.820332
\(256\) −4362.13 −1.06497
\(257\) 4998.99 1.21334 0.606670 0.794954i \(-0.292505\pi\)
0.606670 + 0.794954i \(0.292505\pi\)
\(258\) −1148.82 −0.277218
\(259\) 0 0
\(260\) 553.715 0.132077
\(261\) −188.837 −0.0447844
\(262\) −4242.71 −1.00044
\(263\) −4207.34 −0.986448 −0.493224 0.869902i \(-0.664182\pi\)
−0.493224 + 0.869902i \(0.664182\pi\)
\(264\) −4717.84 −1.09986
\(265\) 7295.96 1.69127
\(266\) 0 0
\(267\) −4589.28 −1.05191
\(268\) −3430.89 −0.781997
\(269\) 638.057 0.144621 0.0723104 0.997382i \(-0.476963\pi\)
0.0723104 + 0.997382i \(0.476963\pi\)
\(270\) −547.269 −0.123355
\(271\) −3925.27 −0.879864 −0.439932 0.898031i \(-0.644997\pi\)
−0.439932 + 0.898031i \(0.644997\pi\)
\(272\) 1497.50 0.333822
\(273\) 0 0
\(274\) −2652.75 −0.584884
\(275\) −1237.11 −0.271274
\(276\) −850.903 −0.185574
\(277\) 7696.13 1.66937 0.834685 0.550727i \(-0.185650\pi\)
0.834685 + 0.550727i \(0.185650\pi\)
\(278\) −4060.43 −0.876002
\(279\) 722.272 0.154987
\(280\) 0 0
\(281\) 8259.88 1.75353 0.876767 0.480916i \(-0.159696\pi\)
0.876767 + 0.480916i \(0.159696\pi\)
\(282\) 1493.64 0.315407
\(283\) −1700.91 −0.357275 −0.178637 0.983915i \(-0.557169\pi\)
−0.178637 + 0.983915i \(0.557169\pi\)
\(284\) −2676.83 −0.559298
\(285\) 342.641 0.0712152
\(286\) 1685.05 0.348389
\(287\) 0 0
\(288\) 1472.56 0.301289
\(289\) 6757.99 1.37553
\(290\) 425.287 0.0861162
\(291\) −1894.72 −0.381685
\(292\) −527.791 −0.105776
\(293\) 5896.29 1.17565 0.587824 0.808989i \(-0.299985\pi\)
0.587824 + 0.808989i \(0.299985\pi\)
\(294\) 0 0
\(295\) 7916.26 1.56238
\(296\) −3721.24 −0.730719
\(297\) 1779.60 0.347686
\(298\) −3356.35 −0.652444
\(299\) 892.245 0.172575
\(300\) 232.696 0.0447824
\(301\) 0 0
\(302\) 621.539 0.118429
\(303\) −142.835 −0.0270813
\(304\) 153.606 0.0289799
\(305\) 4040.67 0.758584
\(306\) −1912.09 −0.357212
\(307\) −804.548 −0.149570 −0.0747850 0.997200i \(-0.523827\pi\)
−0.0747850 + 0.997200i \(0.523827\pi\)
\(308\) 0 0
\(309\) −3502.42 −0.644809
\(310\) −1626.66 −0.298025
\(311\) −1310.68 −0.238977 −0.119489 0.992836i \(-0.538125\pi\)
−0.119489 + 0.992836i \(0.538125\pi\)
\(312\) −930.527 −0.168848
\(313\) −8819.69 −1.59271 −0.796355 0.604830i \(-0.793241\pi\)
−0.796355 + 0.604830i \(0.793241\pi\)
\(314\) −7051.41 −1.26731
\(315\) 0 0
\(316\) 4899.87 0.872276
\(317\) 2952.84 0.523180 0.261590 0.965179i \(-0.415753\pi\)
0.261590 + 0.965179i \(0.415753\pi\)
\(318\) −4176.29 −0.736462
\(319\) −1382.94 −0.242726
\(320\) −4459.35 −0.779017
\(321\) 1588.32 0.276173
\(322\) 0 0
\(323\) 1197.15 0.206226
\(324\) −334.737 −0.0573965
\(325\) −244.002 −0.0416455
\(326\) −4283.79 −0.727783
\(327\) −60.2073 −0.0101819
\(328\) −5176.84 −0.871473
\(329\) 0 0
\(330\) −4007.89 −0.668568
\(331\) −1925.35 −0.319719 −0.159859 0.987140i \(-0.551104\pi\)
−0.159859 + 0.987140i \(0.551104\pi\)
\(332\) −3248.13 −0.536941
\(333\) 1403.67 0.230993
\(334\) −5109.04 −0.836989
\(335\) −8556.85 −1.39555
\(336\) 0 0
\(337\) 7061.36 1.14141 0.570707 0.821154i \(-0.306669\pi\)
0.570707 + 0.821154i \(0.306669\pi\)
\(338\) 332.353 0.0534840
\(339\) −4667.69 −0.747830
\(340\) −4601.47 −0.733970
\(341\) 5289.52 0.840010
\(342\) −196.132 −0.0310105
\(343\) 0 0
\(344\) 4646.03 0.728190
\(345\) −2122.20 −0.331176
\(346\) −6263.16 −0.973148
\(347\) −3784.91 −0.585547 −0.292773 0.956182i \(-0.594578\pi\)
−0.292773 + 0.956182i \(0.594578\pi\)
\(348\) 260.126 0.0400696
\(349\) 6267.40 0.961279 0.480639 0.876918i \(-0.340405\pi\)
0.480639 + 0.876918i \(0.340405\pi\)
\(350\) 0 0
\(351\) 351.000 0.0533761
\(352\) 10784.2 1.63295
\(353\) −7092.57 −1.06940 −0.534702 0.845041i \(-0.679576\pi\)
−0.534702 + 0.845041i \(0.679576\pi\)
\(354\) −4531.36 −0.680336
\(355\) −6676.17 −0.998125
\(356\) 6321.82 0.941167
\(357\) 0 0
\(358\) 5086.26 0.750886
\(359\) −1502.90 −0.220947 −0.110473 0.993879i \(-0.535237\pi\)
−0.110473 + 0.993879i \(0.535237\pi\)
\(360\) 2213.26 0.324025
\(361\) −6736.20 −0.982097
\(362\) 630.784 0.0915836
\(363\) 9039.77 1.30707
\(364\) 0 0
\(365\) −1316.34 −0.188768
\(366\) −2312.93 −0.330324
\(367\) 474.710 0.0675195 0.0337598 0.999430i \(-0.489252\pi\)
0.0337598 + 0.999430i \(0.489252\pi\)
\(368\) −951.382 −0.134767
\(369\) 1952.73 0.275488
\(370\) −3161.26 −0.444179
\(371\) 0 0
\(372\) −994.942 −0.138670
\(373\) 8739.85 1.21322 0.606612 0.794998i \(-0.292528\pi\)
0.606612 + 0.794998i \(0.292528\pi\)
\(374\) −14003.1 −1.93605
\(375\) 4445.42 0.612161
\(376\) −6040.55 −0.828504
\(377\) −272.765 −0.0372628
\(378\) 0 0
\(379\) 5951.16 0.806572 0.403286 0.915074i \(-0.367868\pi\)
0.403286 + 0.915074i \(0.367868\pi\)
\(380\) −471.994 −0.0637179
\(381\) −3994.37 −0.537107
\(382\) −2073.43 −0.277711
\(383\) −6526.43 −0.870718 −0.435359 0.900257i \(-0.643379\pi\)
−0.435359 + 0.900257i \(0.643379\pi\)
\(384\) −1374.23 −0.182626
\(385\) 0 0
\(386\) 6410.93 0.845357
\(387\) −1752.51 −0.230194
\(388\) 2610.01 0.341503
\(389\) −4854.73 −0.632762 −0.316381 0.948632i \(-0.602468\pi\)
−0.316381 + 0.948632i \(0.602468\pi\)
\(390\) −790.500 −0.102637
\(391\) −7414.72 −0.959024
\(392\) 0 0
\(393\) −6472.21 −0.830738
\(394\) 5449.04 0.696747
\(395\) 12220.6 1.55667
\(396\) −2451.42 −0.311083
\(397\) 4128.64 0.521941 0.260971 0.965347i \(-0.415957\pi\)
0.260971 + 0.965347i \(0.415957\pi\)
\(398\) 2611.65 0.328920
\(399\) 0 0
\(400\) 260.174 0.0325217
\(401\) 4604.18 0.573371 0.286686 0.958025i \(-0.407447\pi\)
0.286686 + 0.958025i \(0.407447\pi\)
\(402\) 4898.04 0.607692
\(403\) 1043.28 0.128957
\(404\) 196.757 0.0242303
\(405\) −834.853 −0.102430
\(406\) 0 0
\(407\) 10279.7 1.25196
\(408\) 7732.85 0.938316
\(409\) 10392.6 1.25643 0.628217 0.778038i \(-0.283785\pi\)
0.628217 + 0.778038i \(0.283785\pi\)
\(410\) −4397.82 −0.529738
\(411\) −4046.73 −0.485671
\(412\) 4824.65 0.576926
\(413\) 0 0
\(414\) 1214.77 0.144210
\(415\) −8101.03 −0.958227
\(416\) 2127.03 0.250687
\(417\) −6194.14 −0.727406
\(418\) −1436.36 −0.168074
\(419\) −3735.98 −0.435596 −0.217798 0.975994i \(-0.569887\pi\)
−0.217798 + 0.975994i \(0.569887\pi\)
\(420\) 0 0
\(421\) 4603.90 0.532970 0.266485 0.963839i \(-0.414138\pi\)
0.266485 + 0.963839i \(0.414138\pi\)
\(422\) −394.107 −0.0454617
\(423\) 2278.53 0.261905
\(424\) 16889.7 1.93452
\(425\) 2027.70 0.231430
\(426\) 3821.52 0.434632
\(427\) 0 0
\(428\) −2187.94 −0.247098
\(429\) 2570.53 0.289292
\(430\) 3946.89 0.442642
\(431\) −7231.42 −0.808179 −0.404089 0.914720i \(-0.632412\pi\)
−0.404089 + 0.914720i \(0.632412\pi\)
\(432\) −374.264 −0.0416823
\(433\) 5871.38 0.651641 0.325820 0.945432i \(-0.394360\pi\)
0.325820 + 0.945432i \(0.394360\pi\)
\(434\) 0 0
\(435\) 648.770 0.0715084
\(436\) 82.9365 0.00910995
\(437\) −760.562 −0.0832554
\(438\) 753.489 0.0821989
\(439\) 7552.55 0.821102 0.410551 0.911838i \(-0.365336\pi\)
0.410551 + 0.911838i \(0.365336\pi\)
\(440\) 16208.7 1.75618
\(441\) 0 0
\(442\) −2761.91 −0.297219
\(443\) −2640.78 −0.283221 −0.141611 0.989922i \(-0.545228\pi\)
−0.141611 + 0.989922i \(0.545228\pi\)
\(444\) −1933.58 −0.206675
\(445\) 15767.0 1.67961
\(446\) 2072.95 0.220083
\(447\) −5120.08 −0.541770
\(448\) 0 0
\(449\) 8934.03 0.939027 0.469513 0.882925i \(-0.344429\pi\)
0.469513 + 0.882925i \(0.344429\pi\)
\(450\) −332.204 −0.0348005
\(451\) 14300.7 1.49311
\(452\) 6429.83 0.669101
\(453\) 948.151 0.0983400
\(454\) 2788.56 0.288268
\(455\) 0 0
\(456\) 793.194 0.0814577
\(457\) −9931.16 −1.01654 −0.508271 0.861197i \(-0.669715\pi\)
−0.508271 + 0.861197i \(0.669715\pi\)
\(458\) −7489.87 −0.764146
\(459\) −2916.87 −0.296619
\(460\) 2923.37 0.296311
\(461\) −6986.75 −0.705869 −0.352934 0.935648i \(-0.614816\pi\)
−0.352934 + 0.935648i \(0.614816\pi\)
\(462\) 0 0
\(463\) −6918.40 −0.694439 −0.347220 0.937784i \(-0.612874\pi\)
−0.347220 + 0.937784i \(0.612874\pi\)
\(464\) 290.843 0.0290992
\(465\) −2481.44 −0.247471
\(466\) −6272.76 −0.623562
\(467\) −8224.96 −0.815001 −0.407501 0.913205i \(-0.633600\pi\)
−0.407501 + 0.913205i \(0.633600\pi\)
\(468\) −483.508 −0.0477568
\(469\) 0 0
\(470\) −5131.56 −0.503619
\(471\) −10756.8 −1.05233
\(472\) 18325.6 1.78709
\(473\) −12834.4 −1.24762
\(474\) −6995.20 −0.677849
\(475\) 207.990 0.0200911
\(476\) 0 0
\(477\) −6370.89 −0.611537
\(478\) 465.615 0.0445539
\(479\) 4476.57 0.427014 0.213507 0.976941i \(-0.431511\pi\)
0.213507 + 0.976941i \(0.431511\pi\)
\(480\) −5059.13 −0.481076
\(481\) 2027.53 0.192198
\(482\) −12017.5 −1.13565
\(483\) 0 0
\(484\) −12452.4 −1.16946
\(485\) 6509.51 0.609447
\(486\) 477.880 0.0446030
\(487\) 20683.2 1.92453 0.962263 0.272121i \(-0.0877250\pi\)
0.962263 + 0.272121i \(0.0877250\pi\)
\(488\) 9353.91 0.867688
\(489\) −6534.87 −0.604329
\(490\) 0 0
\(491\) 10117.4 0.929922 0.464961 0.885331i \(-0.346068\pi\)
0.464961 + 0.885331i \(0.346068\pi\)
\(492\) −2689.92 −0.246486
\(493\) 2266.72 0.207075
\(494\) −283.302 −0.0258023
\(495\) −6114.00 −0.555159
\(496\) −1112.43 −0.100705
\(497\) 0 0
\(498\) 4637.13 0.417258
\(499\) 10268.1 0.921165 0.460583 0.887617i \(-0.347641\pi\)
0.460583 + 0.887617i \(0.347641\pi\)
\(500\) −6123.64 −0.547715
\(501\) −7793.78 −0.695011
\(502\) 6397.82 0.568822
\(503\) 2506.71 0.222204 0.111102 0.993809i \(-0.464562\pi\)
0.111102 + 0.993809i \(0.464562\pi\)
\(504\) 0 0
\(505\) 490.724 0.0432415
\(506\) 8896.33 0.781601
\(507\) 507.000 0.0444116
\(508\) 5502.31 0.480562
\(509\) 14404.1 1.25433 0.627163 0.778888i \(-0.284216\pi\)
0.627163 + 0.778888i \(0.284216\pi\)
\(510\) 6569.20 0.570370
\(511\) 0 0
\(512\) −4913.87 −0.424149
\(513\) −299.197 −0.0257502
\(514\) 9830.92 0.843625
\(515\) 12033.0 1.02958
\(516\) 2414.11 0.205960
\(517\) 16686.7 1.41950
\(518\) 0 0
\(519\) −9554.37 −0.808074
\(520\) 3196.93 0.269605
\(521\) 9809.30 0.824862 0.412431 0.910989i \(-0.364680\pi\)
0.412431 + 0.910989i \(0.364680\pi\)
\(522\) −371.364 −0.0311382
\(523\) 1928.74 0.161258 0.0806292 0.996744i \(-0.474307\pi\)
0.0806292 + 0.996744i \(0.474307\pi\)
\(524\) 8915.58 0.743281
\(525\) 0 0
\(526\) −8274.09 −0.685869
\(527\) −8669.86 −0.716632
\(528\) −2740.90 −0.225913
\(529\) −7456.34 −0.612833
\(530\) 14348.1 1.17593
\(531\) −6912.54 −0.564931
\(532\) 0 0
\(533\) 2820.61 0.229220
\(534\) −9025.21 −0.731384
\(535\) −5456.86 −0.440973
\(536\) −19808.6 −1.59627
\(537\) 7759.03 0.623513
\(538\) 1254.79 0.100554
\(539\) 0 0
\(540\) 1150.02 0.0916466
\(541\) −19621.1 −1.55929 −0.779645 0.626221i \(-0.784601\pi\)
−0.779645 + 0.626221i \(0.784601\pi\)
\(542\) −7719.37 −0.611762
\(543\) 962.254 0.0760484
\(544\) −17676.0 −1.39311
\(545\) 206.849 0.0162577
\(546\) 0 0
\(547\) −18394.7 −1.43784 −0.718921 0.695092i \(-0.755364\pi\)
−0.718921 + 0.695092i \(0.755364\pi\)
\(548\) 5574.44 0.434541
\(549\) −3528.35 −0.274292
\(550\) −2432.87 −0.188615
\(551\) 232.508 0.0179767
\(552\) −4912.77 −0.378807
\(553\) 0 0
\(554\) 15135.1 1.16070
\(555\) −4822.47 −0.368833
\(556\) 8532.54 0.650828
\(557\) 2658.08 0.202202 0.101101 0.994876i \(-0.467763\pi\)
0.101101 + 0.994876i \(0.467763\pi\)
\(558\) 1420.41 0.107761
\(559\) −2531.40 −0.191533
\(560\) 0 0
\(561\) −21361.6 −1.60764
\(562\) 16243.7 1.21922
\(563\) −18361.4 −1.37450 −0.687249 0.726422i \(-0.741182\pi\)
−0.687249 + 0.726422i \(0.741182\pi\)
\(564\) −3138.71 −0.234333
\(565\) 16036.4 1.19408
\(566\) −3344.99 −0.248410
\(567\) 0 0
\(568\) −15454.9 −1.14168
\(569\) −22360.5 −1.64745 −0.823725 0.566989i \(-0.808108\pi\)
−0.823725 + 0.566989i \(0.808108\pi\)
\(570\) 673.833 0.0495153
\(571\) −26613.2 −1.95049 −0.975245 0.221127i \(-0.929026\pi\)
−0.975245 + 0.221127i \(0.929026\pi\)
\(572\) −3540.95 −0.258836
\(573\) −3162.99 −0.230603
\(574\) 0 0
\(575\) −1288.22 −0.0934305
\(576\) 3893.94 0.281680
\(577\) −2670.66 −0.192688 −0.0963440 0.995348i \(-0.530715\pi\)
−0.0963440 + 0.995348i \(0.530715\pi\)
\(578\) 13290.1 0.956396
\(579\) 9779.80 0.701960
\(580\) −893.692 −0.0639802
\(581\) 0 0
\(582\) −3726.12 −0.265383
\(583\) −46656.8 −3.31446
\(584\) −3047.25 −0.215918
\(585\) −1205.90 −0.0852269
\(586\) 11595.5 0.817419
\(587\) 16289.7 1.14540 0.572698 0.819767i \(-0.305897\pi\)
0.572698 + 0.819767i \(0.305897\pi\)
\(588\) 0 0
\(589\) −889.308 −0.0622127
\(590\) 15568.0 1.08631
\(591\) 8312.44 0.578559
\(592\) −2161.91 −0.150091
\(593\) 4984.73 0.345191 0.172596 0.984993i \(-0.444785\pi\)
0.172596 + 0.984993i \(0.444785\pi\)
\(594\) 3499.72 0.241743
\(595\) 0 0
\(596\) 7052.99 0.484735
\(597\) 3984.04 0.273126
\(598\) 1754.67 0.119990
\(599\) −8261.79 −0.563552 −0.281776 0.959480i \(-0.590924\pi\)
−0.281776 + 0.959480i \(0.590924\pi\)
\(600\) 1343.49 0.0914131
\(601\) −7867.97 −0.534012 −0.267006 0.963695i \(-0.586034\pi\)
−0.267006 + 0.963695i \(0.586034\pi\)
\(602\) 0 0
\(603\) 7471.91 0.504610
\(604\) −1306.09 −0.0879871
\(605\) −31057.1 −2.08703
\(606\) −280.896 −0.0188294
\(607\) 15106.2 1.01012 0.505059 0.863085i \(-0.331471\pi\)
0.505059 + 0.863085i \(0.331471\pi\)
\(608\) −1813.10 −0.120939
\(609\) 0 0
\(610\) 7946.32 0.527438
\(611\) 3291.21 0.217918
\(612\) 4018.04 0.265392
\(613\) −144.119 −0.00949580 −0.00474790 0.999989i \(-0.501511\pi\)
−0.00474790 + 0.999989i \(0.501511\pi\)
\(614\) −1582.21 −0.103995
\(615\) −6708.82 −0.439879
\(616\) 0 0
\(617\) −17656.7 −1.15208 −0.576038 0.817423i \(-0.695402\pi\)
−0.576038 + 0.817423i \(0.695402\pi\)
\(618\) −6887.81 −0.448331
\(619\) −15069.2 −0.978487 −0.489244 0.872147i \(-0.662727\pi\)
−0.489244 + 0.872147i \(0.662727\pi\)
\(620\) 3418.23 0.221418
\(621\) 1853.12 0.119748
\(622\) −2577.56 −0.166159
\(623\) 0 0
\(624\) −540.603 −0.0346818
\(625\) −12926.5 −0.827299
\(626\) −17344.6 −1.10740
\(627\) −2191.15 −0.139563
\(628\) 14817.7 0.941548
\(629\) −16849.1 −1.06807
\(630\) 0 0
\(631\) −2524.21 −0.159251 −0.0796253 0.996825i \(-0.525372\pi\)
−0.0796253 + 0.996825i \(0.525372\pi\)
\(632\) 28289.9 1.78056
\(633\) −601.205 −0.0377500
\(634\) 5807.01 0.363763
\(635\) 13723.1 0.857613
\(636\) 8776.01 0.547156
\(637\) 0 0
\(638\) −2719.66 −0.168765
\(639\) 5829.69 0.360906
\(640\) 4721.32 0.291604
\(641\) 18446.5 1.13665 0.568325 0.822804i \(-0.307592\pi\)
0.568325 + 0.822804i \(0.307592\pi\)
\(642\) 3123.57 0.192021
\(643\) 9541.38 0.585187 0.292594 0.956237i \(-0.405482\pi\)
0.292594 + 0.956237i \(0.405482\pi\)
\(644\) 0 0
\(645\) 6020.94 0.367557
\(646\) 2354.29 0.143387
\(647\) 15243.0 0.926219 0.463109 0.886301i \(-0.346734\pi\)
0.463109 + 0.886301i \(0.346734\pi\)
\(648\) −1932.63 −0.117162
\(649\) −50623.6 −3.06186
\(650\) −479.850 −0.0289558
\(651\) 0 0
\(652\) 9001.89 0.540708
\(653\) 9063.17 0.543138 0.271569 0.962419i \(-0.412457\pi\)
0.271569 + 0.962419i \(0.412457\pi\)
\(654\) −118.403 −0.00707937
\(655\) 22236.0 1.32646
\(656\) −3007.56 −0.179002
\(657\) 1149.44 0.0682555
\(658\) 0 0
\(659\) 18173.0 1.07423 0.537116 0.843508i \(-0.319514\pi\)
0.537116 + 0.843508i \(0.319514\pi\)
\(660\) 8422.13 0.496714
\(661\) −1041.37 −0.0612779 −0.0306390 0.999531i \(-0.509754\pi\)
−0.0306390 + 0.999531i \(0.509754\pi\)
\(662\) −3786.37 −0.222298
\(663\) −4213.26 −0.246802
\(664\) −18753.4 −1.09604
\(665\) 0 0
\(666\) 2760.44 0.160608
\(667\) −1440.08 −0.0835981
\(668\) 10736.1 0.621843
\(669\) 3162.26 0.182751
\(670\) −16827.8 −0.970318
\(671\) −25839.6 −1.48663
\(672\) 0 0
\(673\) 15334.5 0.878310 0.439155 0.898411i \(-0.355278\pi\)
0.439155 + 0.898411i \(0.355278\pi\)
\(674\) 13886.7 0.793617
\(675\) −506.773 −0.0288973
\(676\) −698.401 −0.0397361
\(677\) −2380.19 −0.135123 −0.0675613 0.997715i \(-0.521522\pi\)
−0.0675613 + 0.997715i \(0.521522\pi\)
\(678\) −9179.41 −0.519960
\(679\) 0 0
\(680\) −26567.0 −1.49823
\(681\) 4253.92 0.239369
\(682\) 10402.3 0.584052
\(683\) −1206.19 −0.0675749 −0.0337874 0.999429i \(-0.510757\pi\)
−0.0337874 + 0.999429i \(0.510757\pi\)
\(684\) 412.149 0.0230393
\(685\) 13903.0 0.775483
\(686\) 0 0
\(687\) −11425.7 −0.634524
\(688\) 2699.18 0.149572
\(689\) −9202.40 −0.508829
\(690\) −4173.49 −0.230264
\(691\) −18505.6 −1.01879 −0.509395 0.860533i \(-0.670131\pi\)
−0.509395 + 0.860533i \(0.670131\pi\)
\(692\) 13161.3 0.723003
\(693\) 0 0
\(694\) −7443.35 −0.407126
\(695\) 21280.6 1.16147
\(696\) 1501.86 0.0817931
\(697\) −23439.8 −1.27381
\(698\) 12325.4 0.668370
\(699\) −9569.02 −0.517788
\(700\) 0 0
\(701\) −10639.5 −0.573249 −0.286625 0.958043i \(-0.592533\pi\)
−0.286625 + 0.958043i \(0.592533\pi\)
\(702\) 690.271 0.0371119
\(703\) −1728.29 −0.0927223
\(704\) 28517.0 1.52667
\(705\) −7828.13 −0.418191
\(706\) −13948.1 −0.743548
\(707\) 0 0
\(708\) 9522.14 0.505457
\(709\) 7984.88 0.422960 0.211480 0.977382i \(-0.432172\pi\)
0.211480 + 0.977382i \(0.432172\pi\)
\(710\) −13129.3 −0.693989
\(711\) −10671.1 −0.562866
\(712\) 36499.6 1.92118
\(713\) 5508.07 0.289311
\(714\) 0 0
\(715\) −8831.33 −0.461920
\(716\) −10688.2 −0.557872
\(717\) 710.291 0.0369962
\(718\) −2955.57 −0.153622
\(719\) −17213.1 −0.892823 −0.446412 0.894828i \(-0.647298\pi\)
−0.446412 + 0.894828i \(0.647298\pi\)
\(720\) 1285.82 0.0665553
\(721\) 0 0
\(722\) −13247.3 −0.682844
\(723\) −18332.5 −0.943007
\(724\) −1325.52 −0.0680423
\(725\) 393.817 0.0201738
\(726\) 17777.5 0.908793
\(727\) −10806.2 −0.551278 −0.275639 0.961261i \(-0.588889\pi\)
−0.275639 + 0.961261i \(0.588889\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) −2588.69 −0.131249
\(731\) 21036.4 1.06438
\(732\) 4860.36 0.245415
\(733\) −26918.9 −1.35644 −0.678222 0.734857i \(-0.737249\pi\)
−0.678222 + 0.734857i \(0.737249\pi\)
\(734\) 933.557 0.0469458
\(735\) 0 0
\(736\) 11229.8 0.562410
\(737\) 54720.1 2.73492
\(738\) 3840.21 0.191545
\(739\) −28907.8 −1.43896 −0.719480 0.694513i \(-0.755620\pi\)
−0.719480 + 0.694513i \(0.755620\pi\)
\(740\) 6643.03 0.330004
\(741\) −432.174 −0.0214255
\(742\) 0 0
\(743\) 19192.8 0.947666 0.473833 0.880615i \(-0.342870\pi\)
0.473833 + 0.880615i \(0.342870\pi\)
\(744\) −5744.39 −0.283064
\(745\) 17590.6 0.865059
\(746\) 17187.6 0.843545
\(747\) 7073.88 0.346479
\(748\) 29425.9 1.43839
\(749\) 0 0
\(750\) 8742.28 0.425631
\(751\) −35433.6 −1.72169 −0.860845 0.508867i \(-0.830065\pi\)
−0.860845 + 0.508867i \(0.830065\pi\)
\(752\) −3509.34 −0.170176
\(753\) 9759.81 0.472334
\(754\) −536.414 −0.0259086
\(755\) −3257.48 −0.157022
\(756\) 0 0
\(757\) −16832.2 −0.808162 −0.404081 0.914723i \(-0.632409\pi\)
−0.404081 + 0.914723i \(0.632409\pi\)
\(758\) 11703.5 0.560803
\(759\) 13571.2 0.649019
\(760\) −2725.10 −0.130066
\(761\) 10219.5 0.486802 0.243401 0.969926i \(-0.421737\pi\)
0.243401 + 0.969926i \(0.421737\pi\)
\(762\) −7855.26 −0.373446
\(763\) 0 0
\(764\) 4357.07 0.206326
\(765\) 10021.2 0.473619
\(766\) −12834.8 −0.605403
\(767\) −9984.78 −0.470051
\(768\) −13086.4 −0.614862
\(769\) −30338.0 −1.42265 −0.711324 0.702865i \(-0.751904\pi\)
−0.711324 + 0.702865i \(0.751904\pi\)
\(770\) 0 0
\(771\) 14997.0 0.700522
\(772\) −13471.8 −0.628060
\(773\) −21757.6 −1.01237 −0.506187 0.862424i \(-0.668945\pi\)
−0.506187 + 0.862424i \(0.668945\pi\)
\(774\) −3446.46 −0.160052
\(775\) −1506.29 −0.0698161
\(776\) 15069.1 0.697100
\(777\) 0 0
\(778\) −9547.22 −0.439954
\(779\) −2404.33 −0.110583
\(780\) 1661.15 0.0762546
\(781\) 42693.4 1.95607
\(782\) −14581.7 −0.666802
\(783\) −566.511 −0.0258563
\(784\) 0 0
\(785\) 36956.3 1.68029
\(786\) −12728.1 −0.577605
\(787\) −7178.12 −0.325124 −0.162562 0.986698i \(-0.551976\pi\)
−0.162562 + 0.986698i \(0.551976\pi\)
\(788\) −11450.5 −0.517650
\(789\) −12622.0 −0.569526
\(790\) 24032.8 1.08234
\(791\) 0 0
\(792\) −14153.5 −0.635005
\(793\) −5096.50 −0.228225
\(794\) 8119.32 0.362902
\(795\) 21887.9 0.976457
\(796\) −5488.09 −0.244372
\(797\) 17696.9 0.786521 0.393261 0.919427i \(-0.371347\pi\)
0.393261 + 0.919427i \(0.371347\pi\)
\(798\) 0 0
\(799\) −27350.5 −1.21100
\(800\) −3070.99 −0.135720
\(801\) −13767.9 −0.607320
\(802\) 9054.50 0.398660
\(803\) 8417.85 0.369937
\(804\) −10292.7 −0.451486
\(805\) 0 0
\(806\) 2051.70 0.0896626
\(807\) 1914.17 0.0834969
\(808\) 1136.00 0.0494607
\(809\) 45279.3 1.96778 0.983891 0.178769i \(-0.0572114\pi\)
0.983891 + 0.178769i \(0.0572114\pi\)
\(810\) −1641.81 −0.0712188
\(811\) −28130.9 −1.21801 −0.609007 0.793165i \(-0.708432\pi\)
−0.609007 + 0.793165i \(0.708432\pi\)
\(812\) 0 0
\(813\) −11775.8 −0.507990
\(814\) 20215.9 0.870476
\(815\) 22451.3 0.964949
\(816\) 4492.51 0.192732
\(817\) 2157.80 0.0924014
\(818\) 20437.9 0.873588
\(819\) 0 0
\(820\) 9241.52 0.393570
\(821\) 1213.20 0.0515725 0.0257862 0.999667i \(-0.491791\pi\)
0.0257862 + 0.999667i \(0.491791\pi\)
\(822\) −7958.24 −0.337683
\(823\) −35692.8 −1.51175 −0.755876 0.654715i \(-0.772789\pi\)
−0.755876 + 0.654715i \(0.772789\pi\)
\(824\) 27855.6 1.17766
\(825\) −3711.32 −0.156620
\(826\) 0 0
\(827\) −43406.1 −1.82513 −0.912563 0.408937i \(-0.865900\pi\)
−0.912563 + 0.408937i \(0.865900\pi\)
\(828\) −2552.71 −0.107141
\(829\) −2918.73 −0.122282 −0.0611409 0.998129i \(-0.519474\pi\)
−0.0611409 + 0.998129i \(0.519474\pi\)
\(830\) −15931.4 −0.666247
\(831\) 23088.4 0.963811
\(832\) 5624.58 0.234372
\(833\) 0 0
\(834\) −12181.3 −0.505760
\(835\) 26776.4 1.10974
\(836\) 3018.35 0.124871
\(837\) 2166.82 0.0894816
\(838\) −7347.12 −0.302866
\(839\) 34816.9 1.43267 0.716336 0.697756i \(-0.245818\pi\)
0.716336 + 0.697756i \(0.245818\pi\)
\(840\) 0 0
\(841\) −23948.8 −0.981949
\(842\) 9053.96 0.370570
\(843\) 24779.6 1.01240
\(844\) 828.171 0.0337758
\(845\) −1741.85 −0.0709131
\(846\) 4480.92 0.182101
\(847\) 0 0
\(848\) 9812.32 0.397354
\(849\) −5102.74 −0.206273
\(850\) 3987.64 0.160912
\(851\) 10704.4 0.431191
\(852\) −8030.49 −0.322911
\(853\) 19224.6 0.771674 0.385837 0.922567i \(-0.373913\pi\)
0.385837 + 0.922567i \(0.373913\pi\)
\(854\) 0 0
\(855\) 1027.92 0.0411161
\(856\) −12632.3 −0.504396
\(857\) 41170.2 1.64101 0.820507 0.571637i \(-0.193691\pi\)
0.820507 + 0.571637i \(0.193691\pi\)
\(858\) 5055.16 0.201142
\(859\) −9066.63 −0.360127 −0.180064 0.983655i \(-0.557630\pi\)
−0.180064 + 0.983655i \(0.557630\pi\)
\(860\) −8293.94 −0.328862
\(861\) 0 0
\(862\) −14221.2 −0.561920
\(863\) 36433.1 1.43708 0.718538 0.695488i \(-0.244812\pi\)
0.718538 + 0.695488i \(0.244812\pi\)
\(864\) 4417.67 0.173949
\(865\) 32825.1 1.29027
\(866\) 11546.6 0.453081
\(867\) 20274.0 0.794164
\(868\) 0 0
\(869\) −78149.2 −3.05067
\(870\) 1275.86 0.0497192
\(871\) 10792.8 0.419861
\(872\) 478.842 0.0185959
\(873\) −5684.16 −0.220366
\(874\) −1495.71 −0.0578868
\(875\) 0 0
\(876\) −1583.37 −0.0610698
\(877\) 5148.99 0.198254 0.0991272 0.995075i \(-0.468395\pi\)
0.0991272 + 0.995075i \(0.468395\pi\)
\(878\) 14852.7 0.570906
\(879\) 17688.9 0.678761
\(880\) 9416.65 0.360722
\(881\) −35179.3 −1.34531 −0.672657 0.739955i \(-0.734847\pi\)
−0.672657 + 0.739955i \(0.734847\pi\)
\(882\) 0 0
\(883\) 14167.5 0.539949 0.269974 0.962867i \(-0.412985\pi\)
0.269974 + 0.962867i \(0.412985\pi\)
\(884\) 5803.84 0.220819
\(885\) 23748.8 0.902041
\(886\) −5193.30 −0.196922
\(887\) 35159.3 1.33093 0.665464 0.746430i \(-0.268234\pi\)
0.665464 + 0.746430i \(0.268234\pi\)
\(888\) −11163.7 −0.421881
\(889\) 0 0
\(890\) 31007.1 1.16782
\(891\) 5338.79 0.200736
\(892\) −4356.07 −0.163511
\(893\) −2805.47 −0.105130
\(894\) −10069.1 −0.376689
\(895\) −26657.0 −0.995580
\(896\) 0 0
\(897\) 2676.74 0.0996361
\(898\) 17569.5 0.652898
\(899\) −1683.85 −0.0624688
\(900\) 698.088 0.0258551
\(901\) 76473.6 2.82764
\(902\) 28123.6 1.03815
\(903\) 0 0
\(904\) 37123.2 1.36582
\(905\) −3305.93 −0.121428
\(906\) 1864.62 0.0683751
\(907\) 14634.5 0.535757 0.267879 0.963453i \(-0.413677\pi\)
0.267879 + 0.963453i \(0.413677\pi\)
\(908\) −5859.84 −0.214169
\(909\) −428.504 −0.0156354
\(910\) 0 0
\(911\) 38854.2 1.41306 0.706530 0.707683i \(-0.250259\pi\)
0.706530 + 0.707683i \(0.250259\pi\)
\(912\) 460.817 0.0167316
\(913\) 51805.2 1.87788
\(914\) −19530.4 −0.706794
\(915\) 12122.0 0.437969
\(916\) 15739.1 0.567724
\(917\) 0 0
\(918\) −5736.27 −0.206237
\(919\) −38399.2 −1.37832 −0.689158 0.724611i \(-0.742020\pi\)
−0.689158 + 0.724611i \(0.742020\pi\)
\(920\) 16878.4 0.604851
\(921\) −2413.64 −0.0863542
\(922\) −13740.0 −0.490785
\(923\) 8420.66 0.300292
\(924\) 0 0
\(925\) −2927.34 −0.104054
\(926\) −13605.6 −0.482838
\(927\) −10507.3 −0.372281
\(928\) −3433.00 −0.121437
\(929\) −23361.9 −0.825058 −0.412529 0.910944i \(-0.635354\pi\)
−0.412529 + 0.910944i \(0.635354\pi\)
\(930\) −4879.97 −0.172065
\(931\) 0 0
\(932\) 13181.5 0.463277
\(933\) −3932.04 −0.137973
\(934\) −16175.1 −0.566664
\(935\) 73389.9 2.56696
\(936\) −2791.58 −0.0974847
\(937\) 21769.0 0.758978 0.379489 0.925196i \(-0.376100\pi\)
0.379489 + 0.925196i \(0.376100\pi\)
\(938\) 0 0
\(939\) −26459.1 −0.919551
\(940\) 10783.4 0.374165
\(941\) −42983.4 −1.48907 −0.744536 0.667582i \(-0.767329\pi\)
−0.744536 + 0.667582i \(0.767329\pi\)
\(942\) −21154.2 −0.731679
\(943\) 14891.6 0.514249
\(944\) 10646.5 0.367072
\(945\) 0 0
\(946\) −25239.9 −0.867463
\(947\) 17612.7 0.604367 0.302183 0.953250i \(-0.402285\pi\)
0.302183 + 0.953250i \(0.402285\pi\)
\(948\) 14699.6 0.503609
\(949\) 1660.30 0.0567920
\(950\) 409.030 0.0139692
\(951\) 8858.53 0.302058
\(952\) 0 0
\(953\) 15162.6 0.515389 0.257694 0.966227i \(-0.417037\pi\)
0.257694 + 0.966227i \(0.417037\pi\)
\(954\) −12528.9 −0.425197
\(955\) 10866.8 0.368210
\(956\) −978.438 −0.0331014
\(957\) −4148.81 −0.140138
\(958\) 8803.56 0.296900
\(959\) 0 0
\(960\) −13378.1 −0.449765
\(961\) −23350.5 −0.783812
\(962\) 3987.30 0.133634
\(963\) 4764.97 0.159449
\(964\) 25253.4 0.843730
\(965\) −33599.6 −1.12084
\(966\) 0 0
\(967\) −25202.6 −0.838118 −0.419059 0.907959i \(-0.637640\pi\)
−0.419059 + 0.907959i \(0.637640\pi\)
\(968\) −71895.3 −2.38719
\(969\) 3591.44 0.119065
\(970\) 12801.5 0.423743
\(971\) −2022.40 −0.0668403 −0.0334202 0.999441i \(-0.510640\pi\)
−0.0334202 + 0.999441i \(0.510640\pi\)
\(972\) −1004.21 −0.0331379
\(973\) 0 0
\(974\) 40675.2 1.33811
\(975\) −732.005 −0.0240440
\(976\) 5434.29 0.178225
\(977\) 50725.2 1.66105 0.830524 0.556983i \(-0.188041\pi\)
0.830524 + 0.556983i \(0.188041\pi\)
\(978\) −12851.4 −0.420185
\(979\) −100828. −3.29160
\(980\) 0 0
\(981\) −180.622 −0.00587850
\(982\) 19896.7 0.646567
\(983\) −30468.7 −0.988608 −0.494304 0.869289i \(-0.664577\pi\)
−0.494304 + 0.869289i \(0.664577\pi\)
\(984\) −15530.5 −0.503145
\(985\) −28558.3 −0.923800
\(986\) 4457.70 0.143978
\(987\) 0 0
\(988\) 595.326 0.0191699
\(989\) −13364.7 −0.429699
\(990\) −12023.7 −0.385998
\(991\) −573.809 −0.0183932 −0.00919660 0.999958i \(-0.502927\pi\)
−0.00919660 + 0.999958i \(0.502927\pi\)
\(992\) 13130.7 0.420262
\(993\) −5776.06 −0.184590
\(994\) 0 0
\(995\) −13687.6 −0.436107
\(996\) −9744.40 −0.310003
\(997\) −6382.35 −0.202739 −0.101370 0.994849i \(-0.532322\pi\)
−0.101370 + 0.994849i \(0.532322\pi\)
\(998\) 20193.0 0.640479
\(999\) 4211.02 0.133364
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1911.4.a.w.1.8 11
7.3 odd 6 273.4.i.d.79.4 22
7.5 odd 6 273.4.i.d.235.4 yes 22
7.6 odd 2 1911.4.a.v.1.8 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.4.i.d.79.4 22 7.3 odd 6
273.4.i.d.235.4 yes 22 7.5 odd 6
1911.4.a.v.1.8 11 7.6 odd 2
1911.4.a.w.1.8 11 1.1 even 1 trivial