Properties

Label 1911.4.a.bd.1.5
Level $1911$
Weight $4$
Character 1911.1
Self dual yes
Analytic conductor $112.753$
Analytic rank $1$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1911,4,Mod(1,1911)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1911, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1911.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1911 = 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1911.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,-6,-42,50,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(112.752650021\)
Analytic rank: \(1\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 6 x^{13} - 63 x^{12} + 408 x^{11} + 1393 x^{10} - 10374 x^{9} - 12229 x^{8} + 122556 x^{7} + \cdots - 43904 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 2^{3}\cdot 7 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(2.30041\) of defining polynomial
Character \(\chi\) \(=\) 1911.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.30041 q^{2} -3.00000 q^{3} -2.70812 q^{4} +6.49112 q^{5} +6.90123 q^{6} +24.6331 q^{8} +9.00000 q^{9} -14.9322 q^{10} +18.3314 q^{11} +8.12436 q^{12} +13.0000 q^{13} -19.4734 q^{15} -35.0011 q^{16} +70.9629 q^{17} -20.7037 q^{18} -29.2042 q^{19} -17.5787 q^{20} -42.1698 q^{22} +14.8530 q^{23} -73.8992 q^{24} -82.8653 q^{25} -29.9053 q^{26} -27.0000 q^{27} +90.1767 q^{29} +44.7967 q^{30} -296.323 q^{31} -116.547 q^{32} -54.9943 q^{33} -163.244 q^{34} -24.3731 q^{36} -388.677 q^{37} +67.1815 q^{38} -39.0000 q^{39} +159.896 q^{40} +82.0539 q^{41} +318.156 q^{43} -49.6437 q^{44} +58.4201 q^{45} -34.1680 q^{46} +124.964 q^{47} +105.003 q^{48} +190.624 q^{50} -212.889 q^{51} -35.2055 q^{52} -27.0205 q^{53} +62.1110 q^{54} +118.992 q^{55} +87.6125 q^{57} -207.443 q^{58} -45.7534 q^{59} +52.7362 q^{60} -133.759 q^{61} +681.664 q^{62} +548.116 q^{64} +84.3846 q^{65} +126.509 q^{66} -713.284 q^{67} -192.176 q^{68} -44.5591 q^{69} -95.8064 q^{71} +221.697 q^{72} -211.205 q^{73} +894.117 q^{74} +248.596 q^{75} +79.0884 q^{76} +89.7159 q^{78} +262.652 q^{79} -227.197 q^{80} +81.0000 q^{81} -188.757 q^{82} -465.366 q^{83} +460.629 q^{85} -731.890 q^{86} -270.530 q^{87} +451.559 q^{88} +663.830 q^{89} -134.390 q^{90} -40.2238 q^{92} +888.968 q^{93} -287.468 q^{94} -189.568 q^{95} +349.642 q^{96} -1707.38 q^{97} +164.983 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 6 q^{2} - 42 q^{3} + 50 q^{4} - 4 q^{5} + 18 q^{6} - 30 q^{8} + 126 q^{9} + 32 q^{10} - 68 q^{11} - 150 q^{12} + 182 q^{13} + 12 q^{15} - 50 q^{16} - 54 q^{18} + 24 q^{19} + 96 q^{20} - 300 q^{22}+ \cdots - 612 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.30041 −0.813317 −0.406659 0.913580i \(-0.633306\pi\)
−0.406659 + 0.913580i \(0.633306\pi\)
\(3\) −3.00000 −0.577350
\(4\) −2.70812 −0.338515
\(5\) 6.49112 0.580584 0.290292 0.956938i \(-0.406248\pi\)
0.290292 + 0.956938i \(0.406248\pi\)
\(6\) 6.90123 0.469569
\(7\) 0 0
\(8\) 24.6331 1.08864
\(9\) 9.00000 0.333333
\(10\) −14.9322 −0.472199
\(11\) 18.3314 0.502467 0.251234 0.967927i \(-0.419164\pi\)
0.251234 + 0.967927i \(0.419164\pi\)
\(12\) 8.12436 0.195442
\(13\) 13.0000 0.277350
\(14\) 0 0
\(15\) −19.4734 −0.335200
\(16\) −35.0011 −0.546893
\(17\) 70.9629 1.01241 0.506207 0.862412i \(-0.331047\pi\)
0.506207 + 0.862412i \(0.331047\pi\)
\(18\) −20.7037 −0.271106
\(19\) −29.2042 −0.352626 −0.176313 0.984334i \(-0.556417\pi\)
−0.176313 + 0.984334i \(0.556417\pi\)
\(20\) −17.5787 −0.196536
\(21\) 0 0
\(22\) −42.1698 −0.408665
\(23\) 14.8530 0.134655 0.0673276 0.997731i \(-0.478553\pi\)
0.0673276 + 0.997731i \(0.478553\pi\)
\(24\) −73.8992 −0.628525
\(25\) −82.8653 −0.662923
\(26\) −29.9053 −0.225574
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 90.1767 0.577427 0.288714 0.957416i \(-0.406772\pi\)
0.288714 + 0.957416i \(0.406772\pi\)
\(30\) 44.7967 0.272624
\(31\) −296.323 −1.71681 −0.858405 0.512972i \(-0.828545\pi\)
−0.858405 + 0.512972i \(0.828545\pi\)
\(32\) −116.547 −0.643840
\(33\) −54.9943 −0.290099
\(34\) −163.244 −0.823413
\(35\) 0 0
\(36\) −24.3731 −0.112838
\(37\) −388.677 −1.72698 −0.863489 0.504368i \(-0.831726\pi\)
−0.863489 + 0.504368i \(0.831726\pi\)
\(38\) 67.1815 0.286797
\(39\) −39.0000 −0.160128
\(40\) 159.896 0.632045
\(41\) 82.0539 0.312553 0.156276 0.987713i \(-0.450051\pi\)
0.156276 + 0.987713i \(0.450051\pi\)
\(42\) 0 0
\(43\) 318.156 1.12833 0.564167 0.825661i \(-0.309197\pi\)
0.564167 + 0.825661i \(0.309197\pi\)
\(44\) −49.6437 −0.170093
\(45\) 58.4201 0.193528
\(46\) −34.1680 −0.109517
\(47\) 124.964 0.387826 0.193913 0.981019i \(-0.437882\pi\)
0.193913 + 0.981019i \(0.437882\pi\)
\(48\) 105.003 0.315749
\(49\) 0 0
\(50\) 190.624 0.539167
\(51\) −212.889 −0.584517
\(52\) −35.2055 −0.0938871
\(53\) −27.0205 −0.0700292 −0.0350146 0.999387i \(-0.511148\pi\)
−0.0350146 + 0.999387i \(0.511148\pi\)
\(54\) 62.1110 0.156523
\(55\) 118.992 0.291724
\(56\) 0 0
\(57\) 87.6125 0.203589
\(58\) −207.443 −0.469631
\(59\) −45.7534 −0.100959 −0.0504796 0.998725i \(-0.516075\pi\)
−0.0504796 + 0.998725i \(0.516075\pi\)
\(60\) 52.7362 0.113470
\(61\) −133.759 −0.280755 −0.140378 0.990098i \(-0.544832\pi\)
−0.140378 + 0.990098i \(0.544832\pi\)
\(62\) 681.664 1.39631
\(63\) 0 0
\(64\) 548.116 1.07054
\(65\) 84.3846 0.161025
\(66\) 126.509 0.235943
\(67\) −713.284 −1.30062 −0.650309 0.759669i \(-0.725361\pi\)
−0.650309 + 0.759669i \(0.725361\pi\)
\(68\) −192.176 −0.342717
\(69\) −44.5591 −0.0777432
\(70\) 0 0
\(71\) −95.8064 −0.160143 −0.0800714 0.996789i \(-0.525515\pi\)
−0.0800714 + 0.996789i \(0.525515\pi\)
\(72\) 221.697 0.362879
\(73\) −211.205 −0.338625 −0.169313 0.985562i \(-0.554155\pi\)
−0.169313 + 0.985562i \(0.554155\pi\)
\(74\) 894.117 1.40458
\(75\) 248.596 0.382739
\(76\) 79.0884 0.119369
\(77\) 0 0
\(78\) 89.7159 0.130235
\(79\) 262.652 0.374058 0.187029 0.982354i \(-0.440114\pi\)
0.187029 + 0.982354i \(0.440114\pi\)
\(80\) −227.197 −0.317517
\(81\) 81.0000 0.111111
\(82\) −188.757 −0.254205
\(83\) −465.366 −0.615429 −0.307714 0.951479i \(-0.599564\pi\)
−0.307714 + 0.951479i \(0.599564\pi\)
\(84\) 0 0
\(85\) 460.629 0.587791
\(86\) −731.890 −0.917694
\(87\) −270.530 −0.333378
\(88\) 451.559 0.547004
\(89\) 663.830 0.790627 0.395314 0.918546i \(-0.370636\pi\)
0.395314 + 0.918546i \(0.370636\pi\)
\(90\) −134.390 −0.157400
\(91\) 0 0
\(92\) −40.2238 −0.0455828
\(93\) 888.968 0.991201
\(94\) −287.468 −0.315426
\(95\) −189.568 −0.204729
\(96\) 349.642 0.371721
\(97\) −1707.38 −1.78720 −0.893600 0.448865i \(-0.851828\pi\)
−0.893600 + 0.448865i \(0.851828\pi\)
\(98\) 0 0
\(99\) 164.983 0.167489
\(100\) 224.409 0.224409
\(101\) −684.010 −0.673876 −0.336938 0.941527i \(-0.609391\pi\)
−0.336938 + 0.941527i \(0.609391\pi\)
\(102\) 489.731 0.475398
\(103\) 702.550 0.672081 0.336040 0.941848i \(-0.390912\pi\)
0.336040 + 0.941848i \(0.390912\pi\)
\(104\) 320.230 0.301934
\(105\) 0 0
\(106\) 62.1581 0.0569560
\(107\) 1565.49 1.41441 0.707205 0.707009i \(-0.249956\pi\)
0.707205 + 0.707009i \(0.249956\pi\)
\(108\) 73.1192 0.0651472
\(109\) 409.492 0.359837 0.179919 0.983682i \(-0.442417\pi\)
0.179919 + 0.983682i \(0.442417\pi\)
\(110\) −273.729 −0.237264
\(111\) 1166.03 0.997071
\(112\) 0 0
\(113\) 1197.97 0.997307 0.498654 0.866801i \(-0.333828\pi\)
0.498654 + 0.866801i \(0.333828\pi\)
\(114\) −201.545 −0.165582
\(115\) 96.4128 0.0781786
\(116\) −244.209 −0.195468
\(117\) 117.000 0.0924500
\(118\) 105.252 0.0821118
\(119\) 0 0
\(120\) −479.688 −0.364911
\(121\) −994.958 −0.747527
\(122\) 307.700 0.228343
\(123\) −246.162 −0.180452
\(124\) 802.477 0.581166
\(125\) −1349.28 −0.965466
\(126\) 0 0
\(127\) 886.966 0.619729 0.309864 0.950781i \(-0.399716\pi\)
0.309864 + 0.950781i \(0.399716\pi\)
\(128\) −328.511 −0.226848
\(129\) −954.469 −0.651444
\(130\) −194.119 −0.130964
\(131\) 2695.42 1.79771 0.898853 0.438250i \(-0.144402\pi\)
0.898853 + 0.438250i \(0.144402\pi\)
\(132\) 148.931 0.0982030
\(133\) 0 0
\(134\) 1640.84 1.05782
\(135\) −175.260 −0.111733
\(136\) 1748.03 1.10215
\(137\) −121.610 −0.0758383 −0.0379192 0.999281i \(-0.512073\pi\)
−0.0379192 + 0.999281i \(0.512073\pi\)
\(138\) 102.504 0.0632299
\(139\) 1361.08 0.830544 0.415272 0.909697i \(-0.363686\pi\)
0.415272 + 0.909697i \(0.363686\pi\)
\(140\) 0 0
\(141\) −374.891 −0.223912
\(142\) 220.394 0.130247
\(143\) 238.309 0.139359
\(144\) −315.010 −0.182298
\(145\) 585.348 0.335245
\(146\) 485.857 0.275410
\(147\) 0 0
\(148\) 1052.58 0.584608
\(149\) −1058.67 −0.582077 −0.291038 0.956711i \(-0.594001\pi\)
−0.291038 + 0.956711i \(0.594001\pi\)
\(150\) −571.872 −0.311288
\(151\) −3151.67 −1.69854 −0.849268 0.527962i \(-0.822956\pi\)
−0.849268 + 0.527962i \(0.822956\pi\)
\(152\) −719.388 −0.383882
\(153\) 638.666 0.337471
\(154\) 0 0
\(155\) −1923.47 −0.996752
\(156\) 105.617 0.0542058
\(157\) −324.356 −0.164882 −0.0824409 0.996596i \(-0.526272\pi\)
−0.0824409 + 0.996596i \(0.526272\pi\)
\(158\) −604.206 −0.304228
\(159\) 81.0614 0.0404314
\(160\) −756.524 −0.373803
\(161\) 0 0
\(162\) −186.333 −0.0903686
\(163\) −3156.15 −1.51662 −0.758309 0.651895i \(-0.773974\pi\)
−0.758309 + 0.651895i \(0.773974\pi\)
\(164\) −222.212 −0.105804
\(165\) −356.975 −0.168427
\(166\) 1070.53 0.500539
\(167\) 1566.64 0.725931 0.362965 0.931803i \(-0.381764\pi\)
0.362965 + 0.931803i \(0.381764\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) −1059.63 −0.478060
\(171\) −262.838 −0.117542
\(172\) −861.605 −0.381958
\(173\) 1330.13 0.584556 0.292278 0.956333i \(-0.405587\pi\)
0.292278 + 0.956333i \(0.405587\pi\)
\(174\) 622.330 0.271142
\(175\) 0 0
\(176\) −641.621 −0.274796
\(177\) 137.260 0.0582888
\(178\) −1527.08 −0.643031
\(179\) 1934.84 0.807913 0.403957 0.914778i \(-0.367635\pi\)
0.403957 + 0.914778i \(0.367635\pi\)
\(180\) −158.209 −0.0655121
\(181\) −560.218 −0.230059 −0.115029 0.993362i \(-0.536696\pi\)
−0.115029 + 0.993362i \(0.536696\pi\)
\(182\) 0 0
\(183\) 401.277 0.162094
\(184\) 365.875 0.146591
\(185\) −2522.95 −1.00265
\(186\) −2044.99 −0.806161
\(187\) 1300.85 0.508704
\(188\) −338.417 −0.131285
\(189\) 0 0
\(190\) 436.084 0.166510
\(191\) 563.500 0.213473 0.106737 0.994287i \(-0.465960\pi\)
0.106737 + 0.994287i \(0.465960\pi\)
\(192\) −1644.35 −0.618076
\(193\) 1315.51 0.490633 0.245317 0.969443i \(-0.421108\pi\)
0.245317 + 0.969443i \(0.421108\pi\)
\(194\) 3927.68 1.45356
\(195\) −253.154 −0.0929678
\(196\) 0 0
\(197\) 166.769 0.0603138 0.0301569 0.999545i \(-0.490399\pi\)
0.0301569 + 0.999545i \(0.490399\pi\)
\(198\) −379.528 −0.136222
\(199\) −793.489 −0.282658 −0.141329 0.989963i \(-0.545138\pi\)
−0.141329 + 0.989963i \(0.545138\pi\)
\(200\) −2041.23 −0.721682
\(201\) 2139.85 0.750913
\(202\) 1573.50 0.548075
\(203\) 0 0
\(204\) 576.528 0.197868
\(205\) 532.622 0.181463
\(206\) −1616.15 −0.546615
\(207\) 133.677 0.0448851
\(208\) −455.015 −0.151681
\(209\) −535.354 −0.177183
\(210\) 0 0
\(211\) −3863.28 −1.26047 −0.630235 0.776404i \(-0.717041\pi\)
−0.630235 + 0.776404i \(0.717041\pi\)
\(212\) 73.1746 0.0237059
\(213\) 287.419 0.0924584
\(214\) −3601.27 −1.15036
\(215\) 2065.19 0.655092
\(216\) −665.092 −0.209508
\(217\) 0 0
\(218\) −942.000 −0.292662
\(219\) 633.614 0.195505
\(220\) −322.243 −0.0987529
\(221\) 922.517 0.280793
\(222\) −2682.35 −0.810935
\(223\) 1525.79 0.458181 0.229090 0.973405i \(-0.426425\pi\)
0.229090 + 0.973405i \(0.426425\pi\)
\(224\) 0 0
\(225\) −745.788 −0.220974
\(226\) −2755.82 −0.811127
\(227\) −4398.69 −1.28613 −0.643065 0.765812i \(-0.722338\pi\)
−0.643065 + 0.765812i \(0.722338\pi\)
\(228\) −237.265 −0.0689178
\(229\) 4751.83 1.37122 0.685611 0.727968i \(-0.259535\pi\)
0.685611 + 0.727968i \(0.259535\pi\)
\(230\) −221.789 −0.0635840
\(231\) 0 0
\(232\) 2221.33 0.628609
\(233\) −4346.80 −1.22218 −0.611091 0.791561i \(-0.709269\pi\)
−0.611091 + 0.791561i \(0.709269\pi\)
\(234\) −269.148 −0.0751912
\(235\) 811.155 0.225166
\(236\) 123.906 0.0341762
\(237\) −787.955 −0.215963
\(238\) 0 0
\(239\) −4303.53 −1.16474 −0.582369 0.812925i \(-0.697874\pi\)
−0.582369 + 0.812925i \(0.697874\pi\)
\(240\) 681.590 0.183319
\(241\) 2695.06 0.720350 0.360175 0.932885i \(-0.382717\pi\)
0.360175 + 0.932885i \(0.382717\pi\)
\(242\) 2288.81 0.607977
\(243\) −243.000 −0.0641500
\(244\) 362.235 0.0950399
\(245\) 0 0
\(246\) 566.272 0.146765
\(247\) −379.654 −0.0978009
\(248\) −7299.33 −1.86898
\(249\) 1396.10 0.355318
\(250\) 3103.89 0.785230
\(251\) 4829.84 1.21457 0.607284 0.794485i \(-0.292259\pi\)
0.607284 + 0.794485i \(0.292259\pi\)
\(252\) 0 0
\(253\) 272.277 0.0676598
\(254\) −2040.38 −0.504036
\(255\) −1381.89 −0.339361
\(256\) −3629.22 −0.886040
\(257\) −4279.27 −1.03865 −0.519326 0.854576i \(-0.673817\pi\)
−0.519326 + 0.854576i \(0.673817\pi\)
\(258\) 2195.67 0.529831
\(259\) 0 0
\(260\) −228.523 −0.0545093
\(261\) 811.590 0.192476
\(262\) −6200.56 −1.46211
\(263\) −2923.33 −0.685401 −0.342700 0.939445i \(-0.611342\pi\)
−0.342700 + 0.939445i \(0.611342\pi\)
\(264\) −1354.68 −0.315813
\(265\) −175.393 −0.0406578
\(266\) 0 0
\(267\) −1991.49 −0.456469
\(268\) 1931.66 0.440279
\(269\) −6329.23 −1.43457 −0.717286 0.696779i \(-0.754616\pi\)
−0.717286 + 0.696779i \(0.754616\pi\)
\(270\) 403.170 0.0908747
\(271\) 822.584 0.184385 0.0921926 0.995741i \(-0.470612\pi\)
0.0921926 + 0.995741i \(0.470612\pi\)
\(272\) −2483.78 −0.553682
\(273\) 0 0
\(274\) 279.753 0.0616806
\(275\) −1519.04 −0.333097
\(276\) 120.671 0.0263172
\(277\) −8358.12 −1.81296 −0.906482 0.422244i \(-0.861242\pi\)
−0.906482 + 0.422244i \(0.861242\pi\)
\(278\) −3131.05 −0.675496
\(279\) −2666.90 −0.572270
\(280\) 0 0
\(281\) −1498.18 −0.318057 −0.159028 0.987274i \(-0.550836\pi\)
−0.159028 + 0.987274i \(0.550836\pi\)
\(282\) 862.403 0.182111
\(283\) −2486.81 −0.522352 −0.261176 0.965291i \(-0.584110\pi\)
−0.261176 + 0.965291i \(0.584110\pi\)
\(284\) 259.455 0.0542107
\(285\) 568.703 0.118200
\(286\) −548.208 −0.113343
\(287\) 0 0
\(288\) −1048.93 −0.214613
\(289\) 122.729 0.0249805
\(290\) −1346.54 −0.272660
\(291\) 5122.14 1.03184
\(292\) 571.967 0.114630
\(293\) −8676.96 −1.73008 −0.865040 0.501703i \(-0.832707\pi\)
−0.865040 + 0.501703i \(0.832707\pi\)
\(294\) 0 0
\(295\) −296.991 −0.0586152
\(296\) −9574.31 −1.88005
\(297\) −494.949 −0.0966998
\(298\) 2435.37 0.473413
\(299\) 193.089 0.0373466
\(300\) −673.227 −0.129563
\(301\) 0 0
\(302\) 7250.12 1.38145
\(303\) 2052.03 0.389063
\(304\) 1022.18 0.192849
\(305\) −868.246 −0.163002
\(306\) −1469.19 −0.274471
\(307\) 5158.24 0.958946 0.479473 0.877557i \(-0.340828\pi\)
0.479473 + 0.877557i \(0.340828\pi\)
\(308\) 0 0
\(309\) −2107.65 −0.388026
\(310\) 4424.76 0.810676
\(311\) 8589.06 1.56605 0.783024 0.621991i \(-0.213676\pi\)
0.783024 + 0.621991i \(0.213676\pi\)
\(312\) −960.689 −0.174321
\(313\) −231.476 −0.0418013 −0.0209006 0.999782i \(-0.506653\pi\)
−0.0209006 + 0.999782i \(0.506653\pi\)
\(314\) 746.152 0.134101
\(315\) 0 0
\(316\) −711.292 −0.126624
\(317\) 254.028 0.0450084 0.0225042 0.999747i \(-0.492836\pi\)
0.0225042 + 0.999747i \(0.492836\pi\)
\(318\) −186.474 −0.0328835
\(319\) 1653.07 0.290138
\(320\) 3557.89 0.621537
\(321\) −4696.47 −0.816610
\(322\) 0 0
\(323\) −2072.41 −0.357003
\(324\) −219.358 −0.0376128
\(325\) −1077.25 −0.183862
\(326\) 7260.43 1.23349
\(327\) −1228.48 −0.207752
\(328\) 2021.24 0.340257
\(329\) 0 0
\(330\) 821.188 0.136985
\(331\) −2434.59 −0.404281 −0.202141 0.979357i \(-0.564790\pi\)
−0.202141 + 0.979357i \(0.564790\pi\)
\(332\) 1260.27 0.208332
\(333\) −3498.10 −0.575659
\(334\) −3603.92 −0.590412
\(335\) −4630.01 −0.755118
\(336\) 0 0
\(337\) −5431.74 −0.878000 −0.439000 0.898487i \(-0.644667\pi\)
−0.439000 + 0.898487i \(0.644667\pi\)
\(338\) −388.769 −0.0625629
\(339\) −3593.92 −0.575795
\(340\) −1247.44 −0.198976
\(341\) −5432.02 −0.862641
\(342\) 604.634 0.0955990
\(343\) 0 0
\(344\) 7837.16 1.22835
\(345\) −289.238 −0.0451364
\(346\) −3059.85 −0.475430
\(347\) −3877.63 −0.599891 −0.299946 0.953956i \(-0.596969\pi\)
−0.299946 + 0.953956i \(0.596969\pi\)
\(348\) 732.627 0.112853
\(349\) 10225.6 1.56838 0.784189 0.620522i \(-0.213079\pi\)
0.784189 + 0.620522i \(0.213079\pi\)
\(350\) 0 0
\(351\) −351.000 −0.0533761
\(352\) −2136.48 −0.323508
\(353\) −3730.56 −0.562486 −0.281243 0.959637i \(-0.590747\pi\)
−0.281243 + 0.959637i \(0.590747\pi\)
\(354\) −315.755 −0.0474073
\(355\) −621.891 −0.0929762
\(356\) −1797.73 −0.267639
\(357\) 0 0
\(358\) −4450.91 −0.657090
\(359\) −7412.63 −1.08976 −0.544880 0.838514i \(-0.683425\pi\)
−0.544880 + 0.838514i \(0.683425\pi\)
\(360\) 1439.07 0.210682
\(361\) −6006.12 −0.875655
\(362\) 1288.73 0.187111
\(363\) 2984.87 0.431585
\(364\) 0 0
\(365\) −1370.96 −0.196600
\(366\) −923.101 −0.131834
\(367\) 11777.8 1.67519 0.837595 0.546291i \(-0.183961\pi\)
0.837595 + 0.546291i \(0.183961\pi\)
\(368\) −519.873 −0.0736420
\(369\) 738.485 0.104184
\(370\) 5803.82 0.815477
\(371\) 0 0
\(372\) −2407.43 −0.335536
\(373\) −10844.5 −1.50538 −0.752689 0.658376i \(-0.771244\pi\)
−0.752689 + 0.658376i \(0.771244\pi\)
\(374\) −2992.49 −0.413738
\(375\) 4047.84 0.557412
\(376\) 3078.24 0.422202
\(377\) 1172.30 0.160149
\(378\) 0 0
\(379\) 1521.26 0.206180 0.103090 0.994672i \(-0.467127\pi\)
0.103090 + 0.994672i \(0.467127\pi\)
\(380\) 513.372 0.0693038
\(381\) −2660.90 −0.357800
\(382\) −1296.28 −0.173622
\(383\) −13373.9 −1.78427 −0.892137 0.451766i \(-0.850794\pi\)
−0.892137 + 0.451766i \(0.850794\pi\)
\(384\) 985.534 0.130971
\(385\) 0 0
\(386\) −3026.20 −0.399041
\(387\) 2863.41 0.376111
\(388\) 4623.79 0.604993
\(389\) −1238.58 −0.161436 −0.0807181 0.996737i \(-0.525721\pi\)
−0.0807181 + 0.996737i \(0.525721\pi\)
\(390\) 582.357 0.0756123
\(391\) 1054.01 0.136327
\(392\) 0 0
\(393\) −8086.25 −1.03791
\(394\) −383.638 −0.0490543
\(395\) 1704.90 0.217172
\(396\) −446.793 −0.0566975
\(397\) 3857.21 0.487627 0.243813 0.969822i \(-0.421602\pi\)
0.243813 + 0.969822i \(0.421602\pi\)
\(398\) 1825.35 0.229891
\(399\) 0 0
\(400\) 2900.38 0.362548
\(401\) −10143.6 −1.26321 −0.631604 0.775291i \(-0.717603\pi\)
−0.631604 + 0.775291i \(0.717603\pi\)
\(402\) −4922.53 −0.610730
\(403\) −3852.20 −0.476158
\(404\) 1852.38 0.228117
\(405\) 525.781 0.0645093
\(406\) 0 0
\(407\) −7125.02 −0.867749
\(408\) −5244.10 −0.636327
\(409\) −5742.38 −0.694236 −0.347118 0.937822i \(-0.612840\pi\)
−0.347118 + 0.937822i \(0.612840\pi\)
\(410\) −1225.25 −0.147587
\(411\) 364.830 0.0437853
\(412\) −1902.59 −0.227509
\(413\) 0 0
\(414\) −307.512 −0.0365058
\(415\) −3020.75 −0.357308
\(416\) −1515.12 −0.178569
\(417\) −4083.25 −0.479515
\(418\) 1231.53 0.144106
\(419\) −5033.18 −0.586842 −0.293421 0.955983i \(-0.594794\pi\)
−0.293421 + 0.955983i \(0.594794\pi\)
\(420\) 0 0
\(421\) 4747.80 0.549628 0.274814 0.961497i \(-0.411384\pi\)
0.274814 + 0.961497i \(0.411384\pi\)
\(422\) 8887.12 1.02516
\(423\) 1124.67 0.129275
\(424\) −665.597 −0.0762364
\(425\) −5880.36 −0.671152
\(426\) −661.182 −0.0751981
\(427\) 0 0
\(428\) −4239.54 −0.478798
\(429\) −714.926 −0.0804591
\(430\) −4750.78 −0.532798
\(431\) 14372.3 1.60624 0.803120 0.595818i \(-0.203172\pi\)
0.803120 + 0.595818i \(0.203172\pi\)
\(432\) 945.031 0.105250
\(433\) 6796.64 0.754332 0.377166 0.926146i \(-0.376899\pi\)
0.377166 + 0.926146i \(0.376899\pi\)
\(434\) 0 0
\(435\) −1756.04 −0.193554
\(436\) −1108.95 −0.121810
\(437\) −433.770 −0.0474829
\(438\) −1457.57 −0.159008
\(439\) −84.0065 −0.00913305 −0.00456653 0.999990i \(-0.501454\pi\)
−0.00456653 + 0.999990i \(0.501454\pi\)
\(440\) 2931.13 0.317582
\(441\) 0 0
\(442\) −2122.17 −0.228374
\(443\) −6394.05 −0.685757 −0.342878 0.939380i \(-0.611402\pi\)
−0.342878 + 0.939380i \(0.611402\pi\)
\(444\) −3157.75 −0.337523
\(445\) 4309.00 0.459025
\(446\) −3509.94 −0.372646
\(447\) 3176.00 0.336062
\(448\) 0 0
\(449\) −8684.68 −0.912818 −0.456409 0.889770i \(-0.650865\pi\)
−0.456409 + 0.889770i \(0.650865\pi\)
\(450\) 1715.62 0.179722
\(451\) 1504.17 0.157047
\(452\) −3244.25 −0.337603
\(453\) 9455.00 0.980650
\(454\) 10118.8 1.04603
\(455\) 0 0
\(456\) 2158.16 0.221634
\(457\) 3705.07 0.379247 0.189623 0.981857i \(-0.439273\pi\)
0.189623 + 0.981857i \(0.439273\pi\)
\(458\) −10931.2 −1.11524
\(459\) −1916.00 −0.194839
\(460\) −261.097 −0.0264646
\(461\) −1109.11 −0.112053 −0.0560264 0.998429i \(-0.517843\pi\)
−0.0560264 + 0.998429i \(0.517843\pi\)
\(462\) 0 0
\(463\) 16318.8 1.63801 0.819004 0.573788i \(-0.194527\pi\)
0.819004 + 0.573788i \(0.194527\pi\)
\(464\) −3156.29 −0.315791
\(465\) 5770.40 0.575475
\(466\) 9999.41 0.994021
\(467\) 10345.0 1.02507 0.512536 0.858665i \(-0.328706\pi\)
0.512536 + 0.858665i \(0.328706\pi\)
\(468\) −316.850 −0.0312957
\(469\) 0 0
\(470\) −1865.99 −0.183131
\(471\) 973.069 0.0951945
\(472\) −1127.05 −0.109908
\(473\) 5832.26 0.566951
\(474\) 1812.62 0.175646
\(475\) 2420.01 0.233764
\(476\) 0 0
\(477\) −243.184 −0.0233431
\(478\) 9899.88 0.947301
\(479\) −2635.22 −0.251370 −0.125685 0.992070i \(-0.540113\pi\)
−0.125685 + 0.992070i \(0.540113\pi\)
\(480\) 2269.57 0.215815
\(481\) −5052.81 −0.478977
\(482\) −6199.75 −0.585873
\(483\) 0 0
\(484\) 2694.46 0.253049
\(485\) −11082.8 −1.03762
\(486\) 558.999 0.0521743
\(487\) −15546.4 −1.44656 −0.723278 0.690557i \(-0.757365\pi\)
−0.723278 + 0.690557i \(0.757365\pi\)
\(488\) −3294.89 −0.305641
\(489\) 9468.45 0.875620
\(490\) 0 0
\(491\) −15347.6 −1.41064 −0.705321 0.708888i \(-0.749197\pi\)
−0.705321 + 0.708888i \(0.749197\pi\)
\(492\) 666.635 0.0610858
\(493\) 6399.19 0.584595
\(494\) 873.360 0.0795432
\(495\) 1070.92 0.0972414
\(496\) 10371.6 0.938912
\(497\) 0 0
\(498\) −3211.60 −0.288986
\(499\) −2660.47 −0.238675 −0.119337 0.992854i \(-0.538077\pi\)
−0.119337 + 0.992854i \(0.538077\pi\)
\(500\) 3654.01 0.326824
\(501\) −4699.93 −0.419116
\(502\) −11110.6 −0.987830
\(503\) 4459.34 0.395293 0.197646 0.980273i \(-0.436670\pi\)
0.197646 + 0.980273i \(0.436670\pi\)
\(504\) 0 0
\(505\) −4439.99 −0.391242
\(506\) −626.349 −0.0550289
\(507\) −507.000 −0.0444116
\(508\) −2402.01 −0.209787
\(509\) 2022.07 0.176083 0.0880417 0.996117i \(-0.471939\pi\)
0.0880417 + 0.996117i \(0.471939\pi\)
\(510\) 3178.90 0.276008
\(511\) 0 0
\(512\) 10976.8 0.947480
\(513\) 788.513 0.0678629
\(514\) 9844.07 0.844753
\(515\) 4560.34 0.390199
\(516\) 2584.81 0.220524
\(517\) 2290.77 0.194870
\(518\) 0 0
\(519\) −3990.40 −0.337494
\(520\) 2078.65 0.175298
\(521\) 5329.77 0.448180 0.224090 0.974568i \(-0.428059\pi\)
0.224090 + 0.974568i \(0.428059\pi\)
\(522\) −1866.99 −0.156544
\(523\) 272.713 0.0228010 0.0114005 0.999935i \(-0.496371\pi\)
0.0114005 + 0.999935i \(0.496371\pi\)
\(524\) −7299.50 −0.608550
\(525\) 0 0
\(526\) 6724.86 0.557448
\(527\) −21027.9 −1.73812
\(528\) 1924.86 0.158653
\(529\) −11946.4 −0.981868
\(530\) 403.476 0.0330677
\(531\) −411.781 −0.0336530
\(532\) 0 0
\(533\) 1066.70 0.0866865
\(534\) 4581.24 0.371254
\(535\) 10161.8 0.821183
\(536\) −17570.4 −1.41590
\(537\) −5804.51 −0.466449
\(538\) 14559.8 1.16676
\(539\) 0 0
\(540\) 474.626 0.0378234
\(541\) −12728.4 −1.01153 −0.505763 0.862672i \(-0.668789\pi\)
−0.505763 + 0.862672i \(0.668789\pi\)
\(542\) −1892.28 −0.149964
\(543\) 1680.65 0.132825
\(544\) −8270.54 −0.651832
\(545\) 2658.06 0.208916
\(546\) 0 0
\(547\) −6159.68 −0.481479 −0.240739 0.970590i \(-0.577390\pi\)
−0.240739 + 0.970590i \(0.577390\pi\)
\(548\) 329.335 0.0256724
\(549\) −1203.83 −0.0935851
\(550\) 3494.42 0.270913
\(551\) −2633.53 −0.203616
\(552\) −1097.63 −0.0846342
\(553\) 0 0
\(554\) 19227.1 1.47452
\(555\) 7568.86 0.578883
\(556\) −3685.98 −0.281152
\(557\) 8289.50 0.630588 0.315294 0.948994i \(-0.397897\pi\)
0.315294 + 0.948994i \(0.397897\pi\)
\(558\) 6134.97 0.465437
\(559\) 4136.03 0.312944
\(560\) 0 0
\(561\) −3902.56 −0.293701
\(562\) 3446.43 0.258681
\(563\) 2500.87 0.187210 0.0936049 0.995609i \(-0.470161\pi\)
0.0936049 + 0.995609i \(0.470161\pi\)
\(564\) 1015.25 0.0757974
\(565\) 7776.18 0.579020
\(566\) 5720.68 0.424838
\(567\) 0 0
\(568\) −2360.01 −0.174337
\(569\) 1122.48 0.0827013 0.0413506 0.999145i \(-0.486834\pi\)
0.0413506 + 0.999145i \(0.486834\pi\)
\(570\) −1308.25 −0.0961344
\(571\) −3755.95 −0.275274 −0.137637 0.990483i \(-0.543951\pi\)
−0.137637 + 0.990483i \(0.543951\pi\)
\(572\) −645.368 −0.0471752
\(573\) −1690.50 −0.123249
\(574\) 0 0
\(575\) −1230.80 −0.0892660
\(576\) 4933.04 0.356846
\(577\) 9761.33 0.704280 0.352140 0.935947i \(-0.385454\pi\)
0.352140 + 0.935947i \(0.385454\pi\)
\(578\) −282.328 −0.0203171
\(579\) −3946.52 −0.283267
\(580\) −1585.19 −0.113485
\(581\) 0 0
\(582\) −11783.0 −0.839213
\(583\) −495.324 −0.0351874
\(584\) −5202.62 −0.368640
\(585\) 759.461 0.0536750
\(586\) 19960.6 1.40710
\(587\) −15036.2 −1.05726 −0.528629 0.848853i \(-0.677294\pi\)
−0.528629 + 0.848853i \(0.677294\pi\)
\(588\) 0 0
\(589\) 8653.86 0.605392
\(590\) 683.201 0.0476728
\(591\) −500.308 −0.0348222
\(592\) 13604.2 0.944472
\(593\) −12879.5 −0.891901 −0.445950 0.895058i \(-0.647134\pi\)
−0.445950 + 0.895058i \(0.647134\pi\)
\(594\) 1138.58 0.0786476
\(595\) 0 0
\(596\) 2867.00 0.197042
\(597\) 2380.47 0.163193
\(598\) −444.184 −0.0303747
\(599\) −22540.7 −1.53754 −0.768771 0.639525i \(-0.779131\pi\)
−0.768771 + 0.639525i \(0.779131\pi\)
\(600\) 6123.68 0.416664
\(601\) 13338.7 0.905320 0.452660 0.891683i \(-0.350475\pi\)
0.452660 + 0.891683i \(0.350475\pi\)
\(602\) 0 0
\(603\) −6419.55 −0.433540
\(604\) 8535.08 0.574980
\(605\) −6458.40 −0.434002
\(606\) −4720.51 −0.316431
\(607\) −11916.6 −0.796837 −0.398418 0.917204i \(-0.630441\pi\)
−0.398418 + 0.917204i \(0.630441\pi\)
\(608\) 3403.67 0.227035
\(609\) 0 0
\(610\) 1997.32 0.132572
\(611\) 1624.53 0.107564
\(612\) −1729.58 −0.114239
\(613\) −7011.21 −0.461958 −0.230979 0.972959i \(-0.574193\pi\)
−0.230979 + 0.972959i \(0.574193\pi\)
\(614\) −11866.1 −0.779927
\(615\) −1597.86 −0.104768
\(616\) 0 0
\(617\) 8178.61 0.533644 0.266822 0.963746i \(-0.414026\pi\)
0.266822 + 0.963746i \(0.414026\pi\)
\(618\) 4848.46 0.315588
\(619\) −7287.01 −0.473166 −0.236583 0.971611i \(-0.576027\pi\)
−0.236583 + 0.971611i \(0.576027\pi\)
\(620\) 5208.98 0.337415
\(621\) −401.032 −0.0259144
\(622\) −19758.4 −1.27369
\(623\) 0 0
\(624\) 1365.04 0.0875729
\(625\) 1599.83 0.102389
\(626\) 532.490 0.0339977
\(627\) 1606.06 0.102297
\(628\) 878.395 0.0558149
\(629\) −27581.7 −1.74841
\(630\) 0 0
\(631\) −6587.01 −0.415570 −0.207785 0.978174i \(-0.566625\pi\)
−0.207785 + 0.978174i \(0.566625\pi\)
\(632\) 6469.91 0.407214
\(633\) 11589.8 0.727733
\(634\) −584.369 −0.0366061
\(635\) 5757.41 0.359804
\(636\) −219.524 −0.0136866
\(637\) 0 0
\(638\) −3802.73 −0.235974
\(639\) −862.258 −0.0533809
\(640\) −2132.41 −0.131704
\(641\) −2112.68 −0.130181 −0.0650904 0.997879i \(-0.520734\pi\)
−0.0650904 + 0.997879i \(0.520734\pi\)
\(642\) 10803.8 0.664163
\(643\) −17906.3 −1.09822 −0.549109 0.835751i \(-0.685033\pi\)
−0.549109 + 0.835751i \(0.685033\pi\)
\(644\) 0 0
\(645\) −6195.57 −0.378218
\(646\) 4767.39 0.290357
\(647\) 25737.0 1.56387 0.781936 0.623358i \(-0.214232\pi\)
0.781936 + 0.623358i \(0.214232\pi\)
\(648\) 1995.28 0.120960
\(649\) −838.726 −0.0507286
\(650\) 2478.11 0.149538
\(651\) 0 0
\(652\) 8547.23 0.513398
\(653\) 30506.6 1.82820 0.914100 0.405488i \(-0.132899\pi\)
0.914100 + 0.405488i \(0.132899\pi\)
\(654\) 2826.00 0.168968
\(655\) 17496.3 1.04372
\(656\) −2871.98 −0.170933
\(657\) −1900.84 −0.112875
\(658\) 0 0
\(659\) 1244.16 0.0735440 0.0367720 0.999324i \(-0.488292\pi\)
0.0367720 + 0.999324i \(0.488292\pi\)
\(660\) 966.730 0.0570150
\(661\) 6621.65 0.389641 0.194820 0.980839i \(-0.437588\pi\)
0.194820 + 0.980839i \(0.437588\pi\)
\(662\) 5600.55 0.328809
\(663\) −2767.55 −0.162116
\(664\) −11463.4 −0.669979
\(665\) 0 0
\(666\) 8047.05 0.468194
\(667\) 1339.40 0.0777536
\(668\) −4242.65 −0.245738
\(669\) −4577.36 −0.264531
\(670\) 10650.9 0.614151
\(671\) −2451.99 −0.141070
\(672\) 0 0
\(673\) −185.685 −0.0106354 −0.00531770 0.999986i \(-0.501693\pi\)
−0.00531770 + 0.999986i \(0.501693\pi\)
\(674\) 12495.2 0.714093
\(675\) 2237.36 0.127580
\(676\) −457.672 −0.0260396
\(677\) 7200.43 0.408767 0.204383 0.978891i \(-0.434481\pi\)
0.204383 + 0.978891i \(0.434481\pi\)
\(678\) 8267.47 0.468304
\(679\) 0 0
\(680\) 11346.7 0.639891
\(681\) 13196.1 0.742548
\(682\) 12495.9 0.701601
\(683\) 16462.5 0.922283 0.461141 0.887327i \(-0.347440\pi\)
0.461141 + 0.887327i \(0.347440\pi\)
\(684\) 711.795 0.0397897
\(685\) −789.386 −0.0440305
\(686\) 0 0
\(687\) −14255.5 −0.791675
\(688\) −11135.8 −0.617078
\(689\) −351.266 −0.0194226
\(690\) 665.367 0.0367102
\(691\) 578.872 0.0318688 0.0159344 0.999873i \(-0.494928\pi\)
0.0159344 + 0.999873i \(0.494928\pi\)
\(692\) −3602.16 −0.197881
\(693\) 0 0
\(694\) 8920.14 0.487902
\(695\) 8834.96 0.482200
\(696\) −6663.98 −0.362927
\(697\) 5822.78 0.316432
\(698\) −23523.1 −1.27559
\(699\) 13040.4 0.705627
\(700\) 0 0
\(701\) 9222.05 0.496879 0.248439 0.968647i \(-0.420082\pi\)
0.248439 + 0.968647i \(0.420082\pi\)
\(702\) 807.444 0.0434117
\(703\) 11351.0 0.608977
\(704\) 10047.8 0.537911
\(705\) −2433.46 −0.129999
\(706\) 8581.81 0.457480
\(707\) 0 0
\(708\) −371.717 −0.0197316
\(709\) −1204.23 −0.0637882 −0.0318941 0.999491i \(-0.510154\pi\)
−0.0318941 + 0.999491i \(0.510154\pi\)
\(710\) 1430.60 0.0756192
\(711\) 2363.86 0.124686
\(712\) 16352.2 0.860706
\(713\) −4401.29 −0.231178
\(714\) 0 0
\(715\) 1546.89 0.0809097
\(716\) −5239.77 −0.273491
\(717\) 12910.6 0.672461
\(718\) 17052.1 0.886320
\(719\) −11557.0 −0.599446 −0.299723 0.954026i \(-0.596894\pi\)
−0.299723 + 0.954026i \(0.596894\pi\)
\(720\) −2044.77 −0.105839
\(721\) 0 0
\(722\) 13816.5 0.712185
\(723\) −8085.19 −0.415894
\(724\) 1517.14 0.0778783
\(725\) −7472.52 −0.382789
\(726\) −6866.43 −0.351015
\(727\) 15374.8 0.784348 0.392174 0.919891i \(-0.371723\pi\)
0.392174 + 0.919891i \(0.371723\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 3153.76 0.159898
\(731\) 22577.3 1.14234
\(732\) −1086.71 −0.0548713
\(733\) −21765.1 −1.09674 −0.548371 0.836235i \(-0.684752\pi\)
−0.548371 + 0.836235i \(0.684752\pi\)
\(734\) −27093.7 −1.36246
\(735\) 0 0
\(736\) −1731.08 −0.0866964
\(737\) −13075.5 −0.653518
\(738\) −1698.82 −0.0847348
\(739\) −35547.1 −1.76945 −0.884723 0.466116i \(-0.845653\pi\)
−0.884723 + 0.466116i \(0.845653\pi\)
\(740\) 6832.45 0.339414
\(741\) 1138.96 0.0564654
\(742\) 0 0
\(743\) 27378.3 1.35183 0.675917 0.736978i \(-0.263748\pi\)
0.675917 + 0.736978i \(0.263748\pi\)
\(744\) 21898.0 1.07906
\(745\) −6871.94 −0.337944
\(746\) 24946.7 1.22435
\(747\) −4188.30 −0.205143
\(748\) −3522.86 −0.172204
\(749\) 0 0
\(750\) −9311.68 −0.453353
\(751\) 22165.5 1.07700 0.538501 0.842625i \(-0.318991\pi\)
0.538501 + 0.842625i \(0.318991\pi\)
\(752\) −4373.87 −0.212099
\(753\) −14489.5 −0.701232
\(754\) −2696.76 −0.130252
\(755\) −20457.8 −0.986142
\(756\) 0 0
\(757\) 11078.4 0.531906 0.265953 0.963986i \(-0.414313\pi\)
0.265953 + 0.963986i \(0.414313\pi\)
\(758\) −3499.53 −0.167690
\(759\) −816.832 −0.0390634
\(760\) −4669.63 −0.222876
\(761\) −36505.5 −1.73893 −0.869464 0.493996i \(-0.835536\pi\)
−0.869464 + 0.493996i \(0.835536\pi\)
\(762\) 6121.15 0.291005
\(763\) 0 0
\(764\) −1526.02 −0.0722639
\(765\) 4145.66 0.195930
\(766\) 30765.5 1.45118
\(767\) −594.795 −0.0280010
\(768\) 10887.7 0.511555
\(769\) −25846.6 −1.21203 −0.606015 0.795453i \(-0.707233\pi\)
−0.606015 + 0.795453i \(0.707233\pi\)
\(770\) 0 0
\(771\) 12837.8 0.599666
\(772\) −3562.55 −0.166087
\(773\) 15995.0 0.744245 0.372123 0.928184i \(-0.378630\pi\)
0.372123 + 0.928184i \(0.378630\pi\)
\(774\) −6587.01 −0.305898
\(775\) 24554.9 1.13811
\(776\) −42058.0 −1.94561
\(777\) 0 0
\(778\) 2849.25 0.131299
\(779\) −2396.31 −0.110214
\(780\) 685.570 0.0314710
\(781\) −1756.27 −0.0804664
\(782\) −2424.66 −0.110877
\(783\) −2434.77 −0.111126
\(784\) 0 0
\(785\) −2105.44 −0.0957277
\(786\) 18601.7 0.844147
\(787\) 16809.8 0.761380 0.380690 0.924703i \(-0.375687\pi\)
0.380690 + 0.924703i \(0.375687\pi\)
\(788\) −451.631 −0.0204171
\(789\) 8770.00 0.395716
\(790\) −3921.98 −0.176630
\(791\) 0 0
\(792\) 4064.03 0.182335
\(793\) −1738.87 −0.0778675
\(794\) −8873.16 −0.396595
\(795\) 526.180 0.0234738
\(796\) 2148.86 0.0956839
\(797\) −21593.1 −0.959681 −0.479841 0.877356i \(-0.659306\pi\)
−0.479841 + 0.877356i \(0.659306\pi\)
\(798\) 0 0
\(799\) 8867.79 0.392640
\(800\) 9657.74 0.426816
\(801\) 5974.47 0.263542
\(802\) 23334.4 1.02739
\(803\) −3871.69 −0.170148
\(804\) −5794.97 −0.254195
\(805\) 0 0
\(806\) 8861.63 0.387267
\(807\) 18987.7 0.828251
\(808\) −16849.2 −0.733607
\(809\) 25072.5 1.08962 0.544810 0.838559i \(-0.316602\pi\)
0.544810 + 0.838559i \(0.316602\pi\)
\(810\) −1209.51 −0.0524665
\(811\) −608.030 −0.0263265 −0.0131633 0.999913i \(-0.504190\pi\)
−0.0131633 + 0.999913i \(0.504190\pi\)
\(812\) 0 0
\(813\) −2467.75 −0.106455
\(814\) 16390.5 0.705756
\(815\) −20486.9 −0.880523
\(816\) 7451.35 0.319668
\(817\) −9291.49 −0.397880
\(818\) 13209.8 0.564634
\(819\) 0 0
\(820\) −1442.40 −0.0614279
\(821\) −24468.5 −1.04014 −0.520072 0.854123i \(-0.674095\pi\)
−0.520072 + 0.854123i \(0.674095\pi\)
\(822\) −839.259 −0.0356113
\(823\) 15609.0 0.661113 0.330556 0.943786i \(-0.392764\pi\)
0.330556 + 0.943786i \(0.392764\pi\)
\(824\) 17306.0 0.731652
\(825\) 4557.12 0.192314
\(826\) 0 0
\(827\) 652.098 0.0274192 0.0137096 0.999906i \(-0.495636\pi\)
0.0137096 + 0.999906i \(0.495636\pi\)
\(828\) −362.014 −0.0151943
\(829\) 2364.96 0.0990812 0.0495406 0.998772i \(-0.484224\pi\)
0.0495406 + 0.998772i \(0.484224\pi\)
\(830\) 6948.96 0.290605
\(831\) 25074.4 1.04672
\(832\) 7125.51 0.296914
\(833\) 0 0
\(834\) 9393.15 0.389998
\(835\) 10169.3 0.421464
\(836\) 1449.80 0.0599791
\(837\) 8000.71 0.330400
\(838\) 11578.4 0.477289
\(839\) 16664.6 0.685730 0.342865 0.939385i \(-0.388603\pi\)
0.342865 + 0.939385i \(0.388603\pi\)
\(840\) 0 0
\(841\) −16257.2 −0.666578
\(842\) −10921.9 −0.447022
\(843\) 4494.54 0.183630
\(844\) 10462.2 0.426688
\(845\) 1097.00 0.0446603
\(846\) −2587.21 −0.105142
\(847\) 0 0
\(848\) 945.748 0.0382985
\(849\) 7460.44 0.301580
\(850\) 13527.2 0.545859
\(851\) −5773.03 −0.232547
\(852\) −778.366 −0.0312986
\(853\) −8267.76 −0.331867 −0.165934 0.986137i \(-0.553064\pi\)
−0.165934 + 0.986137i \(0.553064\pi\)
\(854\) 0 0
\(855\) −1706.11 −0.0682430
\(856\) 38562.8 1.53978
\(857\) −10868.8 −0.433223 −0.216612 0.976258i \(-0.569501\pi\)
−0.216612 + 0.976258i \(0.569501\pi\)
\(858\) 1644.62 0.0654388
\(859\) −1400.80 −0.0556398 −0.0278199 0.999613i \(-0.508856\pi\)
−0.0278199 + 0.999613i \(0.508856\pi\)
\(860\) −5592.78 −0.221759
\(861\) 0 0
\(862\) −33062.2 −1.30638
\(863\) −38078.9 −1.50199 −0.750997 0.660305i \(-0.770427\pi\)
−0.750997 + 0.660305i \(0.770427\pi\)
\(864\) 3146.78 0.123907
\(865\) 8634.06 0.339384
\(866\) −15635.0 −0.613511
\(867\) −368.188 −0.0144225
\(868\) 0 0
\(869\) 4814.78 0.187952
\(870\) 4039.62 0.157421
\(871\) −9272.69 −0.360727
\(872\) 10087.0 0.391732
\(873\) −15366.4 −0.595733
\(874\) 997.849 0.0386187
\(875\) 0 0
\(876\) −1715.90 −0.0661815
\(877\) 25837.4 0.994832 0.497416 0.867512i \(-0.334282\pi\)
0.497416 + 0.867512i \(0.334282\pi\)
\(878\) 193.249 0.00742807
\(879\) 26030.9 0.998862
\(880\) −4164.84 −0.159542
\(881\) −16123.6 −0.616591 −0.308296 0.951291i \(-0.599759\pi\)
−0.308296 + 0.951291i \(0.599759\pi\)
\(882\) 0 0
\(883\) −45405.2 −1.73047 −0.865236 0.501365i \(-0.832831\pi\)
−0.865236 + 0.501365i \(0.832831\pi\)
\(884\) −2498.29 −0.0950526
\(885\) 890.973 0.0338415
\(886\) 14708.9 0.557738
\(887\) −20269.7 −0.767293 −0.383647 0.923480i \(-0.625332\pi\)
−0.383647 + 0.923480i \(0.625332\pi\)
\(888\) 28722.9 1.08545
\(889\) 0 0
\(890\) −9912.46 −0.373333
\(891\) 1484.85 0.0558297
\(892\) −4132.02 −0.155101
\(893\) −3649.46 −0.136758
\(894\) −7306.10 −0.273325
\(895\) 12559.3 0.469061
\(896\) 0 0
\(897\) −579.268 −0.0215621
\(898\) 19978.3 0.742411
\(899\) −26721.4 −0.991333
\(900\) 2019.68 0.0748030
\(901\) −1917.45 −0.0708985
\(902\) −3460.20 −0.127729
\(903\) 0 0
\(904\) 29509.7 1.08571
\(905\) −3636.44 −0.133568
\(906\) −21750.4 −0.797580
\(907\) −12300.2 −0.450301 −0.225150 0.974324i \(-0.572287\pi\)
−0.225150 + 0.974324i \(0.572287\pi\)
\(908\) 11912.2 0.435374
\(909\) −6156.09 −0.224625
\(910\) 0 0
\(911\) 32418.4 1.17900 0.589500 0.807769i \(-0.299325\pi\)
0.589500 + 0.807769i \(0.299325\pi\)
\(912\) −3066.54 −0.111341
\(913\) −8530.83 −0.309233
\(914\) −8523.17 −0.308448
\(915\) 2604.74 0.0941093
\(916\) −12868.5 −0.464179
\(917\) 0 0
\(918\) 4407.58 0.158466
\(919\) −2034.41 −0.0730239 −0.0365119 0.999333i \(-0.511625\pi\)
−0.0365119 + 0.999333i \(0.511625\pi\)
\(920\) 2374.94 0.0851081
\(921\) −15474.7 −0.553648
\(922\) 2551.40 0.0911345
\(923\) −1245.48 −0.0444156
\(924\) 0 0
\(925\) 32207.9 1.14485
\(926\) −37539.8 −1.33222
\(927\) 6322.95 0.224027
\(928\) −10509.9 −0.371771
\(929\) 44854.2 1.58409 0.792045 0.610462i \(-0.209016\pi\)
0.792045 + 0.610462i \(0.209016\pi\)
\(930\) −13274.3 −0.468044
\(931\) 0 0
\(932\) 11771.6 0.413726
\(933\) −25767.2 −0.904159
\(934\) −23797.7 −0.833710
\(935\) 8443.99 0.295345
\(936\) 2882.07 0.100645
\(937\) 7037.56 0.245365 0.122683 0.992446i \(-0.460850\pi\)
0.122683 + 0.992446i \(0.460850\pi\)
\(938\) 0 0
\(939\) 694.428 0.0241340
\(940\) −2196.70 −0.0762219
\(941\) 31954.6 1.10700 0.553502 0.832848i \(-0.313291\pi\)
0.553502 + 0.832848i \(0.313291\pi\)
\(942\) −2238.46 −0.0774234
\(943\) 1218.75 0.0420868
\(944\) 1601.42 0.0552138
\(945\) 0 0
\(946\) −13416.6 −0.461111
\(947\) 32079.0 1.10077 0.550385 0.834911i \(-0.314481\pi\)
0.550385 + 0.834911i \(0.314481\pi\)
\(948\) 2133.87 0.0731066
\(949\) −2745.66 −0.0939177
\(950\) −5567.02 −0.190124
\(951\) −762.085 −0.0259856
\(952\) 0 0
\(953\) −33462.1 −1.13740 −0.568700 0.822545i \(-0.692554\pi\)
−0.568700 + 0.822545i \(0.692554\pi\)
\(954\) 559.423 0.0189853
\(955\) 3657.75 0.123939
\(956\) 11654.5 0.394281
\(957\) −4959.20 −0.167511
\(958\) 6062.08 0.204443
\(959\) 0 0
\(960\) −10673.7 −0.358845
\(961\) 58016.2 1.94744
\(962\) 11623.5 0.389561
\(963\) 14089.4 0.471470
\(964\) −7298.55 −0.243849
\(965\) 8539.12 0.284854
\(966\) 0 0
\(967\) −18051.2 −0.600298 −0.300149 0.953892i \(-0.597036\pi\)
−0.300149 + 0.953892i \(0.597036\pi\)
\(968\) −24508.9 −0.813786
\(969\) 6217.24 0.206116
\(970\) 25495.0 0.843913
\(971\) −16678.4 −0.551221 −0.275611 0.961269i \(-0.588880\pi\)
−0.275611 + 0.961269i \(0.588880\pi\)
\(972\) 658.073 0.0217157
\(973\) 0 0
\(974\) 35763.0 1.17651
\(975\) 3231.75 0.106153
\(976\) 4681.72 0.153543
\(977\) 35548.7 1.16408 0.582038 0.813161i \(-0.302255\pi\)
0.582038 + 0.813161i \(0.302255\pi\)
\(978\) −21781.3 −0.712157
\(979\) 12169.0 0.397264
\(980\) 0 0
\(981\) 3685.43 0.119946
\(982\) 35305.7 1.14730
\(983\) −11404.2 −0.370029 −0.185015 0.982736i \(-0.559233\pi\)
−0.185015 + 0.982736i \(0.559233\pi\)
\(984\) −6063.71 −0.196447
\(985\) 1082.52 0.0350172
\(986\) −14720.8 −0.475461
\(987\) 0 0
\(988\) 1028.15 0.0331070
\(989\) 4725.58 0.151936
\(990\) −2463.56 −0.0790881
\(991\) −12945.2 −0.414953 −0.207477 0.978240i \(-0.566525\pi\)
−0.207477 + 0.978240i \(0.566525\pi\)
\(992\) 34535.7 1.10535
\(993\) 7303.76 0.233412
\(994\) 0 0
\(995\) −5150.63 −0.164107
\(996\) −3780.80 −0.120280
\(997\) 8623.30 0.273924 0.136962 0.990576i \(-0.456266\pi\)
0.136962 + 0.990576i \(0.456266\pi\)
\(998\) 6120.16 0.194119
\(999\) 10494.3 0.332357
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1911.4.a.bd.1.5 14
7.6 odd 2 1911.4.a.be.1.5 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1911.4.a.bd.1.5 14 1.1 even 1 trivial
1911.4.a.be.1.5 yes 14 7.6 odd 2