Properties

Label 1911.4.a.ba
Level $1911$
Weight $4$
Character orbit 1911.a
Self dual yes
Analytic conductor $112.753$
Analytic rank $0$
Dimension $13$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1911,4,Mod(1,1911)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1911, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1911.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1911 = 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1911.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [13,-1,39,55,39] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(112.752650021\)
Analytic rank: \(0\)
Dimension: \(13\)
Coefficient field: \(\mathbb{Q}[x]/(x^{13} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{13} - x^{12} - 79 x^{11} + 56 x^{10} + 2342 x^{9} - 1043 x^{8} - 32595 x^{7} + 7442 x^{6} + \cdots - 201600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 273)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{12}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + 3 q^{3} + (\beta_{2} + 4) q^{4} + (\beta_{7} + \beta_{2} + 3) q^{5} - 3 \beta_1 q^{6} + ( - \beta_{3} - \beta_{2} - 4 \beta_1 - 4) q^{8} + 9 q^{9} + ( - \beta_{4} - \beta_{3} - \beta_{2} + \cdots + 1) q^{10}+ \cdots + (9 \beta_{8} - 36 \beta_1 - 27) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 13 q - q^{2} + 39 q^{3} + 55 q^{4} + 39 q^{5} - 3 q^{6} - 54 q^{8} + 117 q^{9} + 5 q^{10} - 49 q^{11} + 165 q^{12} - 169 q^{13} + 117 q^{15} + 223 q^{16} + 82 q^{17} - 9 q^{18} - 26 q^{19} + 898 q^{20}+ \cdots - 441 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{13} - x^{12} - 79 x^{11} + 56 x^{10} + 2342 x^{9} - 1043 x^{8} - 32595 x^{7} + 7442 x^{6} + \cdots - 201600 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 12 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 20\nu + 8 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 16069 \nu^{12} - 2098 \nu^{11} - 1287949 \nu^{10} - 160683 \nu^{9} + 38626109 \nu^{8} + \cdots + 5593144800 ) / 1684320 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 1701 \nu^{12} - 276 \nu^{11} - 135765 \nu^{10} - 14665 \nu^{9} + 4053495 \nu^{8} + 1373538 \nu^{7} + \cdots + 586130400 ) / 153120 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 50245 \nu^{12} + 19999 \nu^{11} + 3979579 \nu^{10} - 403482 \nu^{9} - 117774824 \nu^{8} + \cdots - 15904511520 ) / 3368640 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 27702 \nu^{12} - 11633 \nu^{11} - 2190556 \nu^{10} + 263363 \nu^{9} + 64717401 \nu^{8} + \cdots + 8814012480 ) / 1684320 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 73705 \nu^{12} + 31209 \nu^{11} + 5831219 \nu^{10} - 728512 \nu^{9} - 172359554 \nu^{8} + \cdots - 23497178400 ) / 3368640 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 83351 \nu^{12} - 32951 \nu^{11} - 6600885 \nu^{10} + 662080 \nu^{9} + 195330070 \nu^{8} + \cdots + 26783610720 ) / 3368640 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 202511 \nu^{12} + 70957 \nu^{11} + 16058761 \nu^{10} - 959038 \nu^{9} - 475889296 \nu^{8} + \cdots - 65769858720 ) / 3368640 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 124941 \nu^{12} + 46749 \nu^{11} + 9900023 \nu^{10} - 797344 \nu^{9} - 293150658 \nu^{8} + \cdots - 40219934880 ) / 1684320 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 66899 \nu^{12} - 24366 \nu^{11} - 5301537 \nu^{10} + 385431 \nu^{9} + 156984577 \nu^{8} + \cdots + 21466022640 ) / 842160 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 12 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 20\beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{11} + \beta_{9} - \beta_{8} + \beta_{7} + \beta_{5} + 29\beta_{2} + 5\beta _1 + 240 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 2 \beta_{11} + 5 \beta_{9} + 3 \beta_{8} + 3 \beta_{7} - 2 \beta_{6} + \beta_{5} + 37 \beta_{3} + \cdots + 180 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 2 \beta_{12} + 52 \beta_{11} + 2 \beta_{10} + 44 \beta_{9} - 38 \beta_{8} + 70 \beta_{7} - 12 \beta_{6} + \cdots + 5700 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 4 \beta_{12} + 133 \beta_{11} - 16 \beta_{10} + 257 \beta_{9} + 163 \beta_{8} + 241 \beta_{7} + \cdots + 6532 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 108 \beta_{12} + 1983 \beta_{11} + 152 \beta_{10} + 1562 \beta_{9} - 1134 \beta_{8} + 3196 \beta_{7} + \cdots + 147372 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 162 \beta_{12} + 5933 \beta_{11} - 858 \beta_{10} + 9884 \beta_{9} + 6282 \beta_{8} + 11664 \beta_{7} + \cdots + 226360 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 4322 \beta_{12} + 68111 \beta_{11} + 6842 \beta_{10} + 52116 \beta_{9} - 30870 \beta_{8} + \cdots + 4000344 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 3526 \beta_{12} + 227556 \beta_{11} - 32014 \beta_{10} + 342523 \beta_{9} + 213103 \beta_{8} + \cdots + 7697692 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 155162 \beta_{12} + 2232727 \beta_{11} + 250510 \beta_{10} + 1697749 \beta_{9} - 796499 \beta_{8} + \cdots + 112068948 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.58417
4.70294
3.99039
3.09669
2.12882
0.627484
0.625075
−1.31861
−2.43661
−3.04612
−3.22563
−4.55760
−5.17100
−5.58417 3.00000 23.1829 18.9283 −16.7525 0 −84.7842 9.00000 −105.699
1.2 −4.70294 3.00000 14.1177 −5.85882 −14.1088 0 −28.7709 9.00000 27.5537
1.3 −3.99039 3.00000 7.92322 5.64940 −11.9712 0 0.306392 9.00000 −22.5433
1.4 −3.09669 3.00000 1.58951 13.6249 −9.29008 0 19.8513 9.00000 −42.1921
1.5 −2.12882 3.00000 −3.46812 −9.36199 −6.38646 0 24.4136 9.00000 19.9300
1.6 −0.627484 3.00000 −7.60626 −18.3276 −1.88245 0 9.79268 9.00000 11.5003
1.7 −0.625075 3.00000 −7.60928 6.73628 −1.87523 0 9.75697 9.00000 −4.21068
1.8 1.31861 3.00000 −6.26127 5.43650 3.95583 0 −18.8050 9.00000 7.16862
1.9 2.43661 3.00000 −2.06295 −5.79278 7.30982 0 −24.5194 9.00000 −14.1147
1.10 3.04612 3.00000 1.27888 −11.6156 9.13837 0 −20.4734 9.00000 −35.3827
1.11 3.22563 3.00000 2.40468 21.4709 9.67689 0 −18.0484 9.00000 69.2570
1.12 4.55760 3.00000 12.7717 −0.133912 13.6728 0 21.7476 9.00000 −0.610318
1.13 5.17100 3.00000 18.7393 18.2446 15.5130 0 55.5328 9.00000 94.3429
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.13
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1911.4.a.ba 13
7.b odd 2 1 1911.4.a.z 13
7.d odd 6 2 273.4.i.f 26
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
273.4.i.f 26 7.d odd 6 2
1911.4.a.z 13 7.b odd 2 1
1911.4.a.ba 13 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1911))\):

\( T_{2}^{13} + T_{2}^{12} - 79 T_{2}^{11} - 56 T_{2}^{10} + 2342 T_{2}^{9} + 1043 T_{2}^{8} + \cdots + 201600 \) Copy content Toggle raw display
\( T_{5}^{13} - 39 T_{5}^{12} - 275 T_{5}^{11} + 24835 T_{5}^{10} - 91896 T_{5}^{9} - 5141446 T_{5}^{8} + \cdots - 189323197920 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{13} + T^{12} + \cdots + 201600 \) Copy content Toggle raw display
$3$ \( (T - 3)^{13} \) Copy content Toggle raw display
$5$ \( T^{13} + \cdots - 189323197920 \) Copy content Toggle raw display
$7$ \( T^{13} \) Copy content Toggle raw display
$11$ \( T^{13} + \cdots + 21\!\cdots\!85 \) Copy content Toggle raw display
$13$ \( (T + 13)^{13} \) Copy content Toggle raw display
$17$ \( T^{13} + \cdots + 73\!\cdots\!98 \) Copy content Toggle raw display
$19$ \( T^{13} + \cdots - 96\!\cdots\!16 \) Copy content Toggle raw display
$23$ \( T^{13} + \cdots - 26\!\cdots\!92 \) Copy content Toggle raw display
$29$ \( T^{13} + \cdots + 59\!\cdots\!31 \) Copy content Toggle raw display
$31$ \( T^{13} + \cdots + 87\!\cdots\!04 \) Copy content Toggle raw display
$37$ \( T^{13} + \cdots + 40\!\cdots\!60 \) Copy content Toggle raw display
$41$ \( T^{13} + \cdots + 12\!\cdots\!84 \) Copy content Toggle raw display
$43$ \( T^{13} + \cdots - 11\!\cdots\!48 \) Copy content Toggle raw display
$47$ \( T^{13} + \cdots + 77\!\cdots\!20 \) Copy content Toggle raw display
$53$ \( T^{13} + \cdots - 26\!\cdots\!65 \) Copy content Toggle raw display
$59$ \( T^{13} + \cdots + 35\!\cdots\!75 \) Copy content Toggle raw display
$61$ \( T^{13} + \cdots + 30\!\cdots\!20 \) Copy content Toggle raw display
$67$ \( T^{13} + \cdots - 18\!\cdots\!52 \) Copy content Toggle raw display
$71$ \( T^{13} + \cdots - 12\!\cdots\!38 \) Copy content Toggle raw display
$73$ \( T^{13} + \cdots - 19\!\cdots\!96 \) Copy content Toggle raw display
$79$ \( T^{13} + \cdots - 66\!\cdots\!92 \) Copy content Toggle raw display
$83$ \( T^{13} + \cdots + 15\!\cdots\!28 \) Copy content Toggle raw display
$89$ \( T^{13} + \cdots + 39\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{13} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
show more
show less