Properties

Label 1911.2.c.b
Level $1911$
Weight $2$
Character orbit 1911.c
Analytic conductor $15.259$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1911,2,Mod(883,1911)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1911, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1911.883"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1911 = 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1911.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2,-2,0,0,0,0,2,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.2594118263\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 273)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{2} - q^{3} - q^{4} - 2 \beta q^{5} + \beta q^{6} - \beta q^{8} + q^{9} - 6 q^{10} - 3 \beta q^{11} + q^{12} + ( - 2 \beta - 1) q^{13} + 2 \beta q^{15} - 5 q^{16} - 3 q^{17} - \beta q^{18} + \cdots - 3 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 2 q^{4} + 2 q^{9} - 12 q^{10} + 2 q^{12} - 2 q^{13} - 10 q^{16} - 6 q^{17} - 18 q^{22} + 12 q^{23} - 14 q^{25} - 12 q^{26} - 2 q^{27} + 6 q^{29} + 12 q^{30} - 2 q^{36} + 18 q^{38} + 2 q^{39}+ \cdots + 36 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1911\mathbb{Z}\right)^\times\).

\(n\) \(638\) \(1471\) \(1522\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
883.1
0.500000 + 0.866025i
0.500000 0.866025i
1.73205i −1.00000 −1.00000 3.46410i 1.73205i 0 1.73205i 1.00000 −6.00000
883.2 1.73205i −1.00000 −1.00000 3.46410i 1.73205i 0 1.73205i 1.00000 −6.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1911.2.c.b 2
7.b odd 2 1 1911.2.c.e 2
7.c even 3 1 273.2.bj.a 2
7.c even 3 1 273.2.bj.b yes 2
13.b even 2 1 inner 1911.2.c.b 2
21.h odd 6 1 819.2.dl.a 2
21.h odd 6 1 819.2.dl.d 2
91.b odd 2 1 1911.2.c.e 2
91.r even 6 1 273.2.bj.a 2
91.r even 6 1 273.2.bj.b yes 2
273.w odd 6 1 819.2.dl.a 2
273.w odd 6 1 819.2.dl.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
273.2.bj.a 2 7.c even 3 1
273.2.bj.a 2 91.r even 6 1
273.2.bj.b yes 2 7.c even 3 1
273.2.bj.b yes 2 91.r even 6 1
819.2.dl.a 2 21.h odd 6 1
819.2.dl.a 2 273.w odd 6 1
819.2.dl.d 2 21.h odd 6 1
819.2.dl.d 2 273.w odd 6 1
1911.2.c.b 2 1.a even 1 1 trivial
1911.2.c.b 2 13.b even 2 1 inner
1911.2.c.e 2 7.b odd 2 1
1911.2.c.e 2 91.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1911, [\chi])\):

\( T_{2}^{2} + 3 \) Copy content Toggle raw display
\( T_{5}^{2} + 12 \) Copy content Toggle raw display
\( T_{17} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 3 \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 12 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 27 \) Copy content Toggle raw display
$13$ \( T^{2} + 2T + 13 \) Copy content Toggle raw display
$17$ \( (T + 3)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 27 \) Copy content Toggle raw display
$23$ \( (T - 6)^{2} \) Copy content Toggle raw display
$29$ \( (T - 3)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 12 \) Copy content Toggle raw display
$37$ \( T^{2} + 12 \) Copy content Toggle raw display
$41$ \( T^{2} + 108 \) Copy content Toggle raw display
$43$ \( (T - 8)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 3 \) Copy content Toggle raw display
$53$ \( (T - 3)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 75 \) Copy content Toggle raw display
$61$ \( (T - 1)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 3 \) Copy content Toggle raw display
$71$ \( T^{2} + 147 \) Copy content Toggle raw display
$73$ \( T^{2} + 108 \) Copy content Toggle raw display
$79$ \( (T - 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 12 \) Copy content Toggle raw display
$89$ \( T^{2} + 12 \) Copy content Toggle raw display
$97$ \( T^{2} + 300 \) Copy content Toggle raw display
show more
show less