Properties

Label 1911.2.c
Level $1911$
Weight $2$
Character orbit 1911.c
Rep. character $\chi_{1911}(883,\cdot)$
Character field $\Q$
Dimension $94$
Newform subspaces $16$
Sturm bound $522$
Trace bound $10$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1911 = 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1911.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q\)
Newform subspaces: \( 16 \)
Sturm bound: \(522\)
Trace bound: \(10\)
Distinguishing \(T_p\): \(2\), \(5\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1911, [\chi])\).

Total New Old
Modular forms 276 94 182
Cusp forms 244 94 150
Eisenstein series 32 0 32

Trace form

\( 94 q + 2 q^{3} - 90 q^{4} + 94 q^{9} - 8 q^{10} - 10 q^{12} + 6 q^{13} + 102 q^{16} - 4 q^{17} + 28 q^{22} + 8 q^{23} - 66 q^{25} - 8 q^{26} + 2 q^{27} - 4 q^{29} - 90 q^{36} - 44 q^{38} + 4 q^{39} - 16 q^{40}+ \cdots + 104 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1911, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1911.2.c.a 1911.c 13.b $2$ $15.259$ \(\Q(\sqrt{-1}) \) None 273.2.c.a \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{2}-q^{3}-2 q^{4}-3 i q^{5}-2 i q^{6}+\cdots\)
1911.2.c.b 1911.c 13.b $2$ $15.259$ \(\Q(\sqrt{-3}) \) None 273.2.bj.a \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta q^{2}-q^{3}-q^{4}-2\beta q^{5}+\beta q^{6}+\cdots\)
1911.2.c.c 1911.c 13.b $2$ $15.259$ \(\Q(\sqrt{-1}) \) None 1911.2.c.c \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}-q^{3}+q^{4}-2 i q^{5}-i q^{6}+\cdots\)
1911.2.c.d 1911.c 13.b $2$ $15.259$ \(\Q(\sqrt{-3}) \) None 39.2.b.a \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta q^{2}+q^{3}-q^{4}-\beta q^{6}-\beta q^{8}+\cdots\)
1911.2.c.e 1911.c 13.b $2$ $15.259$ \(\Q(\sqrt{-3}) \) None 273.2.bj.a \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta q^{2}+q^{3}-q^{4}+2\beta q^{5}-\beta q^{6}+\cdots\)
1911.2.c.f 1911.c 13.b $2$ $15.259$ \(\Q(\sqrt{-1}) \) None 1911.2.c.c \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+q^{3}+q^{4}+2 i q^{5}+i q^{6}+\cdots\)
1911.2.c.g 1911.c 13.b $6$ $15.259$ 6.0.1531626496.1 None 1911.2.c.g \(0\) \(-6\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-q^{3}+(-2+\beta _{2})q^{4}+\beta _{3}q^{5}+\cdots\)
1911.2.c.h 1911.c 13.b $6$ $15.259$ 6.0.350464.1 None 273.2.c.b \(0\) \(-6\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{2}-q^{3}+\beta _{2}q^{4}+(-\beta _{1}-\beta _{3}+\cdots)q^{5}+\cdots\)
1911.2.c.i 1911.c 13.b $6$ $15.259$ 6.0.1531626496.1 None 1911.2.c.g \(0\) \(6\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+q^{3}+(-2+\beta _{2})q^{4}-\beta _{3}q^{5}+\cdots\)
1911.2.c.j 1911.c 13.b $8$ $15.259$ 8.0.\(\cdots\).1 None 273.2.bj.d \(0\) \(-8\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{2}-q^{3}+(-1-\beta _{2}-\beta _{4}-\beta _{5}+\cdots)q^{4}+\cdots\)
1911.2.c.k 1911.c 13.b $8$ $15.259$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 273.2.bj.c \(0\) \(-8\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-q^{3}+(-1+\beta _{2})q^{4}+\beta _{7}q^{5}+\cdots\)
1911.2.c.l 1911.c 13.b $8$ $15.259$ 8.0.\(\cdots\).1 None 273.2.c.c \(0\) \(8\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+q^{3}+(-2+\beta _{2})q^{4}-\beta _{7}q^{5}+\cdots\)
1911.2.c.m 1911.c 13.b $8$ $15.259$ 8.0.\(\cdots\).1 None 273.2.bj.d \(0\) \(8\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{2}+q^{3}+(-1-\beta _{2}-\beta _{4}-\beta _{5}+\cdots)q^{4}+\cdots\)
1911.2.c.n 1911.c 13.b $8$ $15.259$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 273.2.bj.c \(0\) \(8\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+q^{3}+(-1+\beta _{2})q^{4}-\beta _{7}q^{5}+\cdots\)
1911.2.c.o 1911.c 13.b $12$ $15.259$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 1911.2.c.o \(0\) \(-12\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-q^{3}+(-1+\beta _{2})q^{4}-\beta _{4}q^{5}+\cdots\)
1911.2.c.p 1911.c 13.b $12$ $15.259$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 1911.2.c.o \(0\) \(12\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+q^{3}+(-1+\beta _{2})q^{4}+\beta _{4}q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1911, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1911, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(273, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(637, [\chi])\)\(^{\oplus 2}\)