Properties

Label 1904.2.c.g.1121.1
Level $1904$
Weight $2$
Character 1904.1121
Analytic conductor $15.204$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1904,2,Mod(1121,1904)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1904.1121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1904, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1904 = 2^{4} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1904.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.2035165449\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.6179217664.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 13x^{6} + 40x^{4} + 13x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 952)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1121.1
Root \(0.344151i\) of defining polynomial
Character \(\chi\) \(=\) 1904.1121
Dual form 1904.2.c.g.1121.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.04948i q^{3} +1.48793i q^{5} -1.00000i q^{7} -6.29934 q^{9} +3.81141i q^{11} -5.12311 q^{13} +4.53741 q^{15} +(-3.24985 - 2.53741i) q^{17} +2.09896 q^{19} -3.04948 q^{21} +2.97586i q^{23} +2.78607 q^{25} +10.0613i q^{27} +6.78726i q^{29} -3.92273i q^{31} +11.6228 q^{33} +1.48793 q^{35} +0.688301i q^{37} +15.6228i q^{39} +11.8850i q^{41} +9.83674 q^{43} -9.37296i q^{45} -10.0990 q^{47} -1.00000 q^{49} +(-7.73778 + 9.91037i) q^{51} -4.32348 q^{53} -5.67110 q^{55} -6.40075i q^{57} -1.02414 q^{59} +4.22087i q^{61} +6.29934i q^{63} -7.62281i q^{65} +9.15209 q^{67} +9.07482 q^{69} +3.42489i q^{71} +13.2616i q^{73} -8.49607i q^{75} +3.81141 q^{77} +10.4514i q^{79} +11.7836 q^{81} +3.69822 q^{83} +(3.77548 - 4.83555i) q^{85} +20.6976 q^{87} -11.3693 q^{89} +5.12311i q^{91} -11.9623 q^{93} +3.12311i q^{95} -14.3235i q^{97} -24.0093i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{9} - 8 q^{13} + 16 q^{15} - 20 q^{19} - 6 q^{21} + 2 q^{25} + 8 q^{33} + 10 q^{35} + 14 q^{43} - 44 q^{47} - 8 q^{49} - 34 q^{51} + 6 q^{53} + 32 q^{55} - 12 q^{59} + 58 q^{67} + 32 q^{69} - 12 q^{77}+ \cdots - 64 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1904\mathbb{Z}\right)^\times\).

\(n\) \(239\) \(785\) \(1361\) \(1429\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.04948i 1.76062i −0.474400 0.880309i \(-0.657335\pi\)
0.474400 0.880309i \(-0.342665\pi\)
\(4\) 0 0
\(5\) 1.48793i 0.665422i 0.943029 + 0.332711i \(0.107963\pi\)
−0.943029 + 0.332711i \(0.892037\pi\)
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) −6.29934 −2.09978
\(10\) 0 0
\(11\) 3.81141i 1.14918i 0.818441 + 0.574591i \(0.194839\pi\)
−0.818441 + 0.574591i \(0.805161\pi\)
\(12\) 0 0
\(13\) −5.12311 −1.42089 −0.710447 0.703751i \(-0.751507\pi\)
−0.710447 + 0.703751i \(0.751507\pi\)
\(14\) 0 0
\(15\) 4.53741 1.17155
\(16\) 0 0
\(17\) −3.24985 2.53741i −0.788205 0.615412i
\(18\) 0 0
\(19\) 2.09896 0.481535 0.240767 0.970583i \(-0.422601\pi\)
0.240767 + 0.970583i \(0.422601\pi\)
\(20\) 0 0
\(21\) −3.04948 −0.665451
\(22\) 0 0
\(23\) 2.97586i 0.620509i 0.950654 + 0.310255i \(0.100414\pi\)
−0.950654 + 0.310255i \(0.899586\pi\)
\(24\) 0 0
\(25\) 2.78607 0.557214
\(26\) 0 0
\(27\) 10.0613i 1.93629i
\(28\) 0 0
\(29\) 6.78726i 1.26036i 0.776448 + 0.630182i \(0.217020\pi\)
−0.776448 + 0.630182i \(0.782980\pi\)
\(30\) 0 0
\(31\) 3.92273i 0.704544i −0.935898 0.352272i \(-0.885409\pi\)
0.935898 0.352272i \(-0.114591\pi\)
\(32\) 0 0
\(33\) 11.6228 2.02327
\(34\) 0 0
\(35\) 1.48793 0.251506
\(36\) 0 0
\(37\) 0.688301i 0.113156i 0.998398 + 0.0565780i \(0.0180190\pi\)
−0.998398 + 0.0565780i \(0.981981\pi\)
\(38\) 0 0
\(39\) 15.6228i 2.50165i
\(40\) 0 0
\(41\) 11.8850i 1.85613i 0.372418 + 0.928065i \(0.378529\pi\)
−0.372418 + 0.928065i \(0.621471\pi\)
\(42\) 0 0
\(43\) 9.83674 1.50009 0.750045 0.661387i \(-0.230032\pi\)
0.750045 + 0.661387i \(0.230032\pi\)
\(44\) 0 0
\(45\) 9.37296i 1.39724i
\(46\) 0 0
\(47\) −10.0990 −1.47309 −0.736543 0.676391i \(-0.763543\pi\)
−0.736543 + 0.676391i \(0.763543\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) −7.73778 + 9.91037i −1.08351 + 1.38773i
\(52\) 0 0
\(53\) −4.32348 −0.593875 −0.296938 0.954897i \(-0.595965\pi\)
−0.296938 + 0.954897i \(0.595965\pi\)
\(54\) 0 0
\(55\) −5.67110 −0.764691
\(56\) 0 0
\(57\) 6.40075i 0.847800i
\(58\) 0 0
\(59\) −1.02414 −0.133332 −0.0666660 0.997775i \(-0.521236\pi\)
−0.0666660 + 0.997775i \(0.521236\pi\)
\(60\) 0 0
\(61\) 4.22087i 0.540427i 0.962800 + 0.270214i \(0.0870944\pi\)
−0.962800 + 0.270214i \(0.912906\pi\)
\(62\) 0 0
\(63\) 6.29934i 0.793642i
\(64\) 0 0
\(65\) 7.62281i 0.945494i
\(66\) 0 0
\(67\) 9.15209 1.11811 0.559053 0.829132i \(-0.311165\pi\)
0.559053 + 0.829132i \(0.311165\pi\)
\(68\) 0 0
\(69\) 9.07482 1.09248
\(70\) 0 0
\(71\) 3.42489i 0.406460i 0.979131 + 0.203230i \(0.0651438\pi\)
−0.979131 + 0.203230i \(0.934856\pi\)
\(72\) 0 0
\(73\) 13.2616i 1.55216i 0.630636 + 0.776078i \(0.282794\pi\)
−0.630636 + 0.776078i \(0.717206\pi\)
\(74\) 0 0
\(75\) 8.49607i 0.981041i
\(76\) 0 0
\(77\) 3.81141 0.434350
\(78\) 0 0
\(79\) 10.4514i 1.17588i 0.808906 + 0.587938i \(0.200060\pi\)
−0.808906 + 0.587938i \(0.799940\pi\)
\(80\) 0 0
\(81\) 11.7836 1.30929
\(82\) 0 0
\(83\) 3.69822 0.405932 0.202966 0.979186i \(-0.434942\pi\)
0.202966 + 0.979186i \(0.434942\pi\)
\(84\) 0 0
\(85\) 3.77548 4.83555i 0.409509 0.524489i
\(86\) 0 0
\(87\) 20.6976 2.21902
\(88\) 0 0
\(89\) −11.3693 −1.20515 −0.602573 0.798064i \(-0.705858\pi\)
−0.602573 + 0.798064i \(0.705858\pi\)
\(90\) 0 0
\(91\) 5.12311i 0.537047i
\(92\) 0 0
\(93\) −11.9623 −1.24043
\(94\) 0 0
\(95\) 3.12311i 0.320424i
\(96\) 0 0
\(97\) 14.3235i 1.45433i −0.686463 0.727164i \(-0.740838\pi\)
0.686463 0.727164i \(-0.259162\pi\)
\(98\) 0 0
\(99\) 24.0093i 2.41303i
\(100\) 0 0
\(101\) 0.674073 0.0670728 0.0335364 0.999437i \(-0.489323\pi\)
0.0335364 + 0.999437i \(0.489323\pi\)
\(102\) 0 0
\(103\) −16.9994 −1.67500 −0.837501 0.546436i \(-0.815984\pi\)
−0.837501 + 0.546436i \(0.815984\pi\)
\(104\) 0 0
\(105\) 4.53741i 0.442806i
\(106\) 0 0
\(107\) 5.71244i 0.552243i −0.961123 0.276121i \(-0.910951\pi\)
0.961123 0.276121i \(-0.0890492\pi\)
\(108\) 0 0
\(109\) 3.95866i 0.379170i −0.981864 0.189585i \(-0.939286\pi\)
0.981864 0.189585i \(-0.0607143\pi\)
\(110\) 0 0
\(111\) 2.09896 0.199225
\(112\) 0 0
\(113\) 8.55038i 0.804353i 0.915562 + 0.402176i \(0.131746\pi\)
−0.915562 + 0.402176i \(0.868254\pi\)
\(114\) 0 0
\(115\) −4.42786 −0.412900
\(116\) 0 0
\(117\) 32.2722 2.98356
\(118\) 0 0
\(119\) −2.53741 + 3.24985i −0.232604 + 0.297914i
\(120\) 0 0
\(121\) −3.52682 −0.320620
\(122\) 0 0
\(123\) 36.2432 3.26794
\(124\) 0 0
\(125\) 11.5851i 1.03620i
\(126\) 0 0
\(127\) −1.37474 −0.121988 −0.0609941 0.998138i \(-0.519427\pi\)
−0.0609941 + 0.998138i \(0.519427\pi\)
\(128\) 0 0
\(129\) 29.9970i 2.64109i
\(130\) 0 0
\(131\) 15.4342i 1.34849i −0.738506 0.674247i \(-0.764468\pi\)
0.738506 0.674247i \(-0.235532\pi\)
\(132\) 0 0
\(133\) 2.09896i 0.182003i
\(134\) 0 0
\(135\) −14.9704 −1.28845
\(136\) 0 0
\(137\) −14.0323 −1.19886 −0.599429 0.800428i \(-0.704606\pi\)
−0.599429 + 0.800428i \(0.704606\pi\)
\(138\) 0 0
\(139\) 14.3328i 1.21569i 0.794055 + 0.607847i \(0.207966\pi\)
−0.794055 + 0.607847i \(0.792034\pi\)
\(140\) 0 0
\(141\) 30.7966i 2.59354i
\(142\) 0 0
\(143\) 19.5262i 1.63287i
\(144\) 0 0
\(145\) −10.0990 −0.838673
\(146\) 0 0
\(147\) 3.04948i 0.251517i
\(148\) 0 0
\(149\) 16.0347 1.31361 0.656806 0.754060i \(-0.271907\pi\)
0.656806 + 0.754060i \(0.271907\pi\)
\(150\) 0 0
\(151\) 11.2133 0.912529 0.456265 0.889844i \(-0.349187\pi\)
0.456265 + 0.889844i \(0.349187\pi\)
\(152\) 0 0
\(153\) 20.4719 + 15.9840i 1.65506 + 1.29223i
\(154\) 0 0
\(155\) 5.83674 0.468819
\(156\) 0 0
\(157\) −17.6735 −1.41050 −0.705249 0.708960i \(-0.749165\pi\)
−0.705249 + 0.708960i \(0.749165\pi\)
\(158\) 0 0
\(159\) 13.1844i 1.04559i
\(160\) 0 0
\(161\) 2.97586 0.234530
\(162\) 0 0
\(163\) 19.2870i 1.51067i −0.655338 0.755336i \(-0.727474\pi\)
0.655338 0.755336i \(-0.272526\pi\)
\(164\) 0 0
\(165\) 17.2939i 1.34633i
\(166\) 0 0
\(167\) 2.08785i 0.161563i −0.996732 0.0807815i \(-0.974258\pi\)
0.996732 0.0807815i \(-0.0257416\pi\)
\(168\) 0 0
\(169\) 13.2462 1.01894
\(170\) 0 0
\(171\) −13.2221 −1.01112
\(172\) 0 0
\(173\) 22.4496i 1.70681i 0.521244 + 0.853407i \(0.325468\pi\)
−0.521244 + 0.853407i \(0.674532\pi\)
\(174\) 0 0
\(175\) 2.78607i 0.210607i
\(176\) 0 0
\(177\) 3.12311i 0.234747i
\(178\) 0 0
\(179\) 10.3612 0.774431 0.387215 0.921989i \(-0.373437\pi\)
0.387215 + 0.921989i \(0.373437\pi\)
\(180\) 0 0
\(181\) 5.26341i 0.391226i −0.980681 0.195613i \(-0.937330\pi\)
0.980681 0.195613i \(-0.0626697\pi\)
\(182\) 0 0
\(183\) 12.8715 0.951487
\(184\) 0 0
\(185\) −1.02414 −0.0752965
\(186\) 0 0
\(187\) 9.67110 12.3865i 0.707221 0.905792i
\(188\) 0 0
\(189\) 10.0613 0.731849
\(190\) 0 0
\(191\) −19.9487 −1.44344 −0.721718 0.692187i \(-0.756647\pi\)
−0.721718 + 0.692187i \(0.756647\pi\)
\(192\) 0 0
\(193\) 6.09896i 0.439013i 0.975611 + 0.219506i \(0.0704447\pi\)
−0.975611 + 0.219506i \(0.929555\pi\)
\(194\) 0 0
\(195\) −23.2456 −1.66465
\(196\) 0 0
\(197\) 6.26283i 0.446208i 0.974795 + 0.223104i \(0.0716190\pi\)
−0.974795 + 0.223104i \(0.928381\pi\)
\(198\) 0 0
\(199\) 7.18740i 0.509501i 0.967007 + 0.254751i \(0.0819934\pi\)
−0.967007 + 0.254751i \(0.918007\pi\)
\(200\) 0 0
\(201\) 27.9091i 1.96856i
\(202\) 0 0
\(203\) 6.78726 0.476373
\(204\) 0 0
\(205\) −17.6841 −1.23511
\(206\) 0 0
\(207\) 18.7459i 1.30293i
\(208\) 0 0
\(209\) 8.00000i 0.553372i
\(210\) 0 0
\(211\) 5.93510i 0.408589i 0.978909 + 0.204294i \(0.0654900\pi\)
−0.978909 + 0.204294i \(0.934510\pi\)
\(212\) 0 0
\(213\) 10.4441 0.715620
\(214\) 0 0
\(215\) 14.6364i 0.998192i
\(216\) 0 0
\(217\) −3.92273 −0.266292
\(218\) 0 0
\(219\) 40.4411 2.73276
\(220\) 0 0
\(221\) 16.6493 + 12.9994i 1.11996 + 0.874435i
\(222\) 0 0
\(223\) 21.5166 1.44086 0.720428 0.693530i \(-0.243945\pi\)
0.720428 + 0.693530i \(0.243945\pi\)
\(224\) 0 0
\(225\) −17.5504 −1.17003
\(226\) 0 0
\(227\) 6.03831i 0.400777i −0.979717 0.200388i \(-0.935780\pi\)
0.979717 0.200388i \(-0.0642204\pi\)
\(228\) 0 0
\(229\) 17.0477 1.12654 0.563272 0.826272i \(-0.309542\pi\)
0.563272 + 0.826272i \(0.309542\pi\)
\(230\) 0 0
\(231\) 11.6228i 0.764725i
\(232\) 0 0
\(233\) 2.82861i 0.185308i 0.995698 + 0.0926541i \(0.0295351\pi\)
−0.995698 + 0.0926541i \(0.970465\pi\)
\(234\) 0 0
\(235\) 15.0265i 0.980223i
\(236\) 0 0
\(237\) 31.8714 2.07027
\(238\) 0 0
\(239\) −3.08354 −0.199458 −0.0997288 0.995015i \(-0.531798\pi\)
−0.0997288 + 0.995015i \(0.531798\pi\)
\(240\) 0 0
\(241\) 15.3229i 0.987034i −0.869736 0.493517i \(-0.835711\pi\)
0.869736 0.493517i \(-0.164289\pi\)
\(242\) 0 0
\(243\) 5.75015i 0.368872i
\(244\) 0 0
\(245\) 1.48793i 0.0950603i
\(246\) 0 0
\(247\) −10.7532 −0.684210
\(248\) 0 0
\(249\) 11.2776i 0.714691i
\(250\) 0 0
\(251\) −22.8473 −1.44211 −0.721053 0.692879i \(-0.756342\pi\)
−0.721053 + 0.692879i \(0.756342\pi\)
\(252\) 0 0
\(253\) −11.3422 −0.713078
\(254\) 0 0
\(255\) −14.7459 11.5133i −0.923425 0.720989i
\(256\) 0 0
\(257\) −25.5262 −1.59228 −0.796142 0.605110i \(-0.793129\pi\)
−0.796142 + 0.605110i \(0.793129\pi\)
\(258\) 0 0
\(259\) 0.688301 0.0427690
\(260\) 0 0
\(261\) 42.7553i 2.64648i
\(262\) 0 0
\(263\) −27.0192 −1.66608 −0.833039 0.553214i \(-0.813401\pi\)
−0.833039 + 0.553214i \(0.813401\pi\)
\(264\) 0 0
\(265\) 6.43303i 0.395178i
\(266\) 0 0
\(267\) 34.6705i 2.12180i
\(268\) 0 0
\(269\) 14.6400i 0.892617i 0.894879 + 0.446309i \(0.147262\pi\)
−0.894879 + 0.446309i \(0.852738\pi\)
\(270\) 0 0
\(271\) −22.8473 −1.38787 −0.693936 0.720036i \(-0.744125\pi\)
−0.693936 + 0.720036i \(0.744125\pi\)
\(272\) 0 0
\(273\) 15.6228 0.945536
\(274\) 0 0
\(275\) 10.6188i 0.640340i
\(276\) 0 0
\(277\) 9.23869i 0.555099i −0.960711 0.277549i \(-0.910478\pi\)
0.960711 0.277549i \(-0.0895222\pi\)
\(278\) 0 0
\(279\) 24.7106i 1.47939i
\(280\) 0 0
\(281\) −10.0525 −0.599684 −0.299842 0.953989i \(-0.596934\pi\)
−0.299842 + 0.953989i \(0.596934\pi\)
\(282\) 0 0
\(283\) 19.3570i 1.15065i −0.817924 0.575326i \(-0.804875\pi\)
0.817924 0.575326i \(-0.195125\pi\)
\(284\) 0 0
\(285\) 9.52385 0.564144
\(286\) 0 0
\(287\) 11.8850 0.701551
\(288\) 0 0
\(289\) 4.12311 + 16.4924i 0.242536 + 0.970143i
\(290\) 0 0
\(291\) −43.6792 −2.56052
\(292\) 0 0
\(293\) 6.35246 0.371115 0.185557 0.982633i \(-0.440591\pi\)
0.185557 + 0.982633i \(0.440591\pi\)
\(294\) 0 0
\(295\) 1.52385i 0.0887221i
\(296\) 0 0
\(297\) −38.3476 −2.22515
\(298\) 0 0
\(299\) 15.2456i 0.881677i
\(300\) 0 0
\(301\) 9.83674i 0.566981i
\(302\) 0 0
\(303\) 2.05557i 0.118090i
\(304\) 0 0
\(305\) −6.28036 −0.359612
\(306\) 0 0
\(307\) −1.64993 −0.0941665 −0.0470832 0.998891i \(-0.514993\pi\)
−0.0470832 + 0.998891i \(0.514993\pi\)
\(308\) 0 0
\(309\) 51.8394i 2.94904i
\(310\) 0 0
\(311\) 2.47801i 0.140515i 0.997529 + 0.0702576i \(0.0223821\pi\)
−0.997529 + 0.0702576i \(0.977618\pi\)
\(312\) 0 0
\(313\) 13.1201i 0.741590i −0.928715 0.370795i \(-0.879085\pi\)
0.928715 0.370795i \(-0.120915\pi\)
\(314\) 0 0
\(315\) −9.37296 −0.528106
\(316\) 0 0
\(317\) 15.0099i 0.843041i −0.906819 0.421520i \(-0.861497\pi\)
0.906819 0.421520i \(-0.138503\pi\)
\(318\) 0 0
\(319\) −25.8690 −1.44839
\(320\) 0 0
\(321\) −17.4200 −0.972289
\(322\) 0 0
\(323\) −6.82132 5.32593i −0.379548 0.296343i
\(324\) 0 0
\(325\) −14.2733 −0.791742
\(326\) 0 0
\(327\) −12.0718 −0.667575
\(328\) 0 0
\(329\) 10.0990i 0.556774i
\(330\) 0 0
\(331\) −22.1949 −1.21994 −0.609971 0.792424i \(-0.708819\pi\)
−0.609971 + 0.792424i \(0.708819\pi\)
\(332\) 0 0
\(333\) 4.33584i 0.237603i
\(334\) 0 0
\(335\) 13.6176i 0.744012i
\(336\) 0 0
\(337\) 16.4713i 0.897246i 0.893721 + 0.448623i \(0.148085\pi\)
−0.893721 + 0.448623i \(0.851915\pi\)
\(338\) 0 0
\(339\) 26.0742 1.41616
\(340\) 0 0
\(341\) 14.9511 0.809649
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 13.5027i 0.726960i
\(346\) 0 0
\(347\) 8.31112i 0.446164i 0.974800 + 0.223082i \(0.0716118\pi\)
−0.974800 + 0.223082i \(0.928388\pi\)
\(348\) 0 0
\(349\) −22.1014 −1.18306 −0.591529 0.806284i \(-0.701476\pi\)
−0.591529 + 0.806284i \(0.701476\pi\)
\(350\) 0 0
\(351\) 51.5449i 2.75126i
\(352\) 0 0
\(353\) 35.0501 1.86553 0.932764 0.360487i \(-0.117390\pi\)
0.932764 + 0.360487i \(0.117390\pi\)
\(354\) 0 0
\(355\) −5.09599 −0.270467
\(356\) 0 0
\(357\) 9.91037 + 7.73778i 0.524512 + 0.409527i
\(358\) 0 0
\(359\) −14.6005 −0.770587 −0.385293 0.922794i \(-0.625900\pi\)
−0.385293 + 0.922794i \(0.625900\pi\)
\(360\) 0 0
\(361\) −14.5944 −0.768124
\(362\) 0 0
\(363\) 10.7550i 0.564490i
\(364\) 0 0
\(365\) −19.7324 −1.03284
\(366\) 0 0
\(367\) 7.28875i 0.380470i −0.981739 0.190235i \(-0.939075\pi\)
0.981739 0.190235i \(-0.0609249\pi\)
\(368\) 0 0
\(369\) 74.8678i 3.89746i
\(370\) 0 0
\(371\) 4.32348i 0.224464i
\(372\) 0 0
\(373\) −14.8844 −0.770688 −0.385344 0.922773i \(-0.625917\pi\)
−0.385344 + 0.922773i \(0.625917\pi\)
\(374\) 0 0
\(375\) 35.3286 1.82436
\(376\) 0 0
\(377\) 34.7719i 1.79084i
\(378\) 0 0
\(379\) 36.2791i 1.86353i 0.363059 + 0.931766i \(0.381732\pi\)
−0.363059 + 0.931766i \(0.618268\pi\)
\(380\) 0 0
\(381\) 4.19224i 0.214775i
\(382\) 0 0
\(383\) 29.1973 1.49191 0.745957 0.665994i \(-0.231992\pi\)
0.745957 + 0.665994i \(0.231992\pi\)
\(384\) 0 0
\(385\) 5.67110i 0.289026i
\(386\) 0 0
\(387\) −61.9650 −3.14986
\(388\) 0 0
\(389\) 12.4634 0.631922 0.315961 0.948772i \(-0.397673\pi\)
0.315961 + 0.948772i \(0.397673\pi\)
\(390\) 0 0
\(391\) 7.55097 9.67110i 0.381869 0.489089i
\(392\) 0 0
\(393\) −47.0664 −2.37418
\(394\) 0 0
\(395\) −15.5510 −0.782454
\(396\) 0 0
\(397\) 4.38110i 0.219881i 0.993938 + 0.109940i \(0.0350660\pi\)
−0.993938 + 0.109940i \(0.964934\pi\)
\(398\) 0 0
\(399\) −6.40075 −0.320438
\(400\) 0 0
\(401\) 17.3234i 0.865090i 0.901612 + 0.432545i \(0.142384\pi\)
−0.901612 + 0.432545i \(0.857616\pi\)
\(402\) 0 0
\(403\) 20.0966i 1.00108i
\(404\) 0 0
\(405\) 17.5332i 0.871231i
\(406\) 0 0
\(407\) −2.62340 −0.130037
\(408\) 0 0
\(409\) −28.3228 −1.40047 −0.700237 0.713910i \(-0.746922\pi\)
−0.700237 + 0.713910i \(0.746922\pi\)
\(410\) 0 0
\(411\) 42.7912i 2.11073i
\(412\) 0 0
\(413\) 1.02414i 0.0503948i
\(414\) 0 0
\(415\) 5.50268i 0.270116i
\(416\) 0 0
\(417\) 43.7076 2.14037
\(418\) 0 0
\(419\) 12.9562i 0.632952i 0.948600 + 0.316476i \(0.102500\pi\)
−0.948600 + 0.316476i \(0.897500\pi\)
\(420\) 0 0
\(421\) −38.6913 −1.88570 −0.942849 0.333219i \(-0.891865\pi\)
−0.942849 + 0.333219i \(0.891865\pi\)
\(422\) 0 0
\(423\) 63.6168 3.09315
\(424\) 0 0
\(425\) −9.05432 7.06940i −0.439199 0.342916i
\(426\) 0 0
\(427\) 4.22087 0.204262
\(428\) 0 0
\(429\) −59.5449 −2.87486
\(430\) 0 0
\(431\) 13.5486i 0.652612i 0.945264 + 0.326306i \(0.105804\pi\)
−0.945264 + 0.326306i \(0.894196\pi\)
\(432\) 0 0
\(433\) −15.4273 −0.741388 −0.370694 0.928755i \(-0.620880\pi\)
−0.370694 + 0.928755i \(0.620880\pi\)
\(434\) 0 0
\(435\) 30.7966i 1.47658i
\(436\) 0 0
\(437\) 6.24621i 0.298797i
\(438\) 0 0
\(439\) 2.98947i 0.142680i −0.997452 0.0713399i \(-0.977273\pi\)
0.997452 0.0713399i \(-0.0227275\pi\)
\(440\) 0 0
\(441\) 6.29934 0.299968
\(442\) 0 0
\(443\) −11.8492 −0.562972 −0.281486 0.959565i \(-0.590827\pi\)
−0.281486 + 0.959565i \(0.590827\pi\)
\(444\) 0 0
\(445\) 16.9167i 0.801930i
\(446\) 0 0
\(447\) 48.8974i 2.31277i
\(448\) 0 0
\(449\) 10.2709i 0.484716i 0.970187 + 0.242358i \(0.0779208\pi\)
−0.970187 + 0.242358i \(0.922079\pi\)
\(450\) 0 0
\(451\) −45.2987 −2.13303
\(452\) 0 0
\(453\) 34.1949i 1.60662i
\(454\) 0 0
\(455\) −7.62281 −0.357363
\(456\) 0 0
\(457\) 15.3241 0.716829 0.358415 0.933562i \(-0.383317\pi\)
0.358415 + 0.933562i \(0.383317\pi\)
\(458\) 0 0
\(459\) 25.5295 32.6976i 1.19162 1.52619i
\(460\) 0 0
\(461\) 9.55097 0.444833 0.222416 0.974952i \(-0.428606\pi\)
0.222416 + 0.974952i \(0.428606\pi\)
\(462\) 0 0
\(463\) 22.7855 1.05893 0.529466 0.848331i \(-0.322392\pi\)
0.529466 + 0.848331i \(0.322392\pi\)
\(464\) 0 0
\(465\) 17.7990i 0.825411i
\(466\) 0 0
\(467\) 21.5957 0.999330 0.499665 0.866219i \(-0.333456\pi\)
0.499665 + 0.866219i \(0.333456\pi\)
\(468\) 0 0
\(469\) 9.15209i 0.422604i
\(470\) 0 0
\(471\) 53.8950i 2.48335i
\(472\) 0 0
\(473\) 37.4918i 1.72388i
\(474\) 0 0
\(475\) 5.84785 0.268318
\(476\) 0 0
\(477\) 27.2350 1.24701
\(478\) 0 0
\(479\) 38.6357i 1.76531i −0.470020 0.882656i \(-0.655753\pi\)
0.470020 0.882656i \(-0.344247\pi\)
\(480\) 0 0
\(481\) 3.52624i 0.160783i
\(482\) 0 0
\(483\) 9.07482i 0.412919i
\(484\) 0 0
\(485\) 21.3123 0.967742
\(486\) 0 0
\(487\) 19.5262i 0.884818i −0.896813 0.442409i \(-0.854124\pi\)
0.896813 0.442409i \(-0.145876\pi\)
\(488\) 0 0
\(489\) −58.8153 −2.65972
\(490\) 0 0
\(491\) 1.75192 0.0790632 0.0395316 0.999218i \(-0.487413\pi\)
0.0395316 + 0.999218i \(0.487413\pi\)
\(492\) 0 0
\(493\) 17.2221 22.0576i 0.775643 0.993425i
\(494\) 0 0
\(495\) 35.7242 1.60568
\(496\) 0 0
\(497\) 3.42489 0.153627
\(498\) 0 0
\(499\) 18.0503i 0.808044i −0.914749 0.404022i \(-0.867612\pi\)
0.914749 0.404022i \(-0.132388\pi\)
\(500\) 0 0
\(501\) −6.36687 −0.284451
\(502\) 0 0
\(503\) 18.7007i 0.833821i −0.908947 0.416911i \(-0.863113\pi\)
0.908947 0.416911i \(-0.136887\pi\)
\(504\) 0 0
\(505\) 1.00297i 0.0446317i
\(506\) 0 0
\(507\) 40.3941i 1.79396i
\(508\) 0 0
\(509\) 39.1219 1.73405 0.867025 0.498265i \(-0.166029\pi\)
0.867025 + 0.498265i \(0.166029\pi\)
\(510\) 0 0
\(511\) 13.2616 0.586660
\(512\) 0 0
\(513\) 21.1182i 0.932392i
\(514\) 0 0
\(515\) 25.2939i 1.11458i
\(516\) 0 0
\(517\) 38.4913i 1.69284i
\(518\) 0 0
\(519\) 68.4598 3.00505
\(520\) 0 0
\(521\) 31.9544i 1.39995i 0.714169 + 0.699973i \(0.246805\pi\)
−0.714169 + 0.699973i \(0.753195\pi\)
\(522\) 0 0
\(523\) 21.8516 0.955503 0.477752 0.878495i \(-0.341452\pi\)
0.477752 + 0.878495i \(0.341452\pi\)
\(524\) 0 0
\(525\) −8.49607 −0.370799
\(526\) 0 0
\(527\) −9.95358 + 12.7483i −0.433585 + 0.555325i
\(528\) 0 0
\(529\) 14.1443 0.614969
\(530\) 0 0
\(531\) 6.45142 0.279968
\(532\) 0 0
\(533\) 60.8883i 2.63736i
\(534\) 0 0
\(535\) 8.49971 0.367474
\(536\) 0 0
\(537\) 31.5962i 1.36348i
\(538\) 0 0
\(539\) 3.81141i 0.164169i
\(540\) 0 0
\(541\) 32.0847i 1.37943i 0.724081 + 0.689715i \(0.242264\pi\)
−0.724081 + 0.689715i \(0.757736\pi\)
\(542\) 0 0
\(543\) −16.0507 −0.688800
\(544\) 0 0
\(545\) 5.89020 0.252308
\(546\) 0 0
\(547\) 34.9098i 1.49263i −0.665590 0.746317i \(-0.731820\pi\)
0.665590 0.746317i \(-0.268180\pi\)
\(548\) 0 0
\(549\) 26.5887i 1.13478i
\(550\) 0 0
\(551\) 14.2462i 0.606909i
\(552\) 0 0
\(553\) 10.4514 0.444440
\(554\) 0 0
\(555\) 3.12311i 0.132568i
\(556\) 0 0
\(557\) −28.9511 −1.22670 −0.613349 0.789812i \(-0.710178\pi\)
−0.613349 + 0.789812i \(0.710178\pi\)
\(558\) 0 0
\(559\) −50.3947 −2.13147
\(560\) 0 0
\(561\) −37.7725 29.4918i −1.59475 1.24515i
\(562\) 0 0
\(563\) 24.2698 1.02285 0.511424 0.859328i \(-0.329118\pi\)
0.511424 + 0.859328i \(0.329118\pi\)
\(564\) 0 0
\(565\) −12.7224 −0.535234
\(566\) 0 0
\(567\) 11.7836i 0.494866i
\(568\) 0 0
\(569\) 25.3606 1.06317 0.531586 0.847004i \(-0.321596\pi\)
0.531586 + 0.847004i \(0.321596\pi\)
\(570\) 0 0
\(571\) 8.79694i 0.368140i 0.982913 + 0.184070i \(0.0589274\pi\)
−0.982913 + 0.184070i \(0.941073\pi\)
\(572\) 0 0
\(573\) 60.8331i 2.54134i
\(574\) 0 0
\(575\) 8.29094i 0.345756i
\(576\) 0 0
\(577\) 12.2215 0.508787 0.254394 0.967101i \(-0.418124\pi\)
0.254394 + 0.967101i \(0.418124\pi\)
\(578\) 0 0
\(579\) 18.5987 0.772934
\(580\) 0 0
\(581\) 3.69822i 0.153428i
\(582\) 0 0
\(583\) 16.4785i 0.682471i
\(584\) 0 0
\(585\) 48.0187i 1.98533i
\(586\) 0 0
\(587\) −15.2704 −0.630275 −0.315137 0.949046i \(-0.602051\pi\)
−0.315137 + 0.949046i \(0.602051\pi\)
\(588\) 0 0
\(589\) 8.23367i 0.339262i
\(590\) 0 0
\(591\) 19.0984 0.785602
\(592\) 0 0
\(593\) 42.7163 1.75415 0.877074 0.480355i \(-0.159492\pi\)
0.877074 + 0.480355i \(0.159492\pi\)
\(594\) 0 0
\(595\) −4.83555 3.77548i −0.198238 0.154780i
\(596\) 0 0
\(597\) 21.9178 0.897037
\(598\) 0 0
\(599\) 1.06371 0.0434620 0.0217310 0.999764i \(-0.493082\pi\)
0.0217310 + 0.999764i \(0.493082\pi\)
\(600\) 0 0
\(601\) 14.3501i 0.585352i −0.956212 0.292676i \(-0.905454\pi\)
0.956212 0.292676i \(-0.0945457\pi\)
\(602\) 0 0
\(603\) −57.6521 −2.34777
\(604\) 0 0
\(605\) 5.24766i 0.213348i
\(606\) 0 0
\(607\) 34.1689i 1.38687i 0.720517 + 0.693437i \(0.243905\pi\)
−0.720517 + 0.693437i \(0.756095\pi\)
\(608\) 0 0
\(609\) 20.6976i 0.838710i
\(610\) 0 0
\(611\) 51.7381 2.09310
\(612\) 0 0
\(613\) −29.9227 −1.20857 −0.604284 0.796769i \(-0.706541\pi\)
−0.604284 + 0.796769i \(0.706541\pi\)
\(614\) 0 0
\(615\) 53.9273i 2.17456i
\(616\) 0 0
\(617\) 21.4127i 0.862043i −0.902342 0.431022i \(-0.858153\pi\)
0.902342 0.431022i \(-0.141847\pi\)
\(618\) 0 0
\(619\) 26.1874i 1.05256i 0.850311 + 0.526281i \(0.176414\pi\)
−0.850311 + 0.526281i \(0.823586\pi\)
\(620\) 0 0
\(621\) −29.9409 −1.20149
\(622\) 0 0
\(623\) 11.3693i 0.455502i
\(624\) 0 0
\(625\) −3.30747 −0.132299
\(626\) 0 0
\(627\) 24.3958 0.974276
\(628\) 0 0
\(629\) 1.74650 2.23688i 0.0696376 0.0891902i
\(630\) 0 0
\(631\) −22.8913 −0.911288 −0.455644 0.890162i \(-0.650591\pi\)
−0.455644 + 0.890162i \(0.650591\pi\)
\(632\) 0 0
\(633\) 18.0990 0.719369
\(634\) 0 0
\(635\) 2.04551i 0.0811736i
\(636\) 0 0
\(637\) 5.12311 0.202985
\(638\) 0 0
\(639\) 21.5745i 0.853475i
\(640\) 0 0
\(641\) 34.4514i 1.36075i −0.732864 0.680375i \(-0.761817\pi\)
0.732864 0.680375i \(-0.238183\pi\)
\(642\) 0 0
\(643\) 6.57572i 0.259321i 0.991558 + 0.129661i \(0.0413888\pi\)
−0.991558 + 0.129661i \(0.958611\pi\)
\(644\) 0 0
\(645\) 44.6333 1.75744
\(646\) 0 0
\(647\) −18.4689 −0.726086 −0.363043 0.931772i \(-0.618262\pi\)
−0.363043 + 0.931772i \(0.618262\pi\)
\(648\) 0 0
\(649\) 3.90343i 0.153223i
\(650\) 0 0
\(651\) 11.9623i 0.468839i
\(652\) 0 0
\(653\) 41.7523i 1.63389i 0.576713 + 0.816946i \(0.304335\pi\)
−0.576713 + 0.816946i \(0.695665\pi\)
\(654\) 0 0
\(655\) 22.9650 0.897317
\(656\) 0 0
\(657\) 83.5395i 3.25919i
\(658\) 0 0
\(659\) −0.552250 −0.0215126 −0.0107563 0.999942i \(-0.503424\pi\)
−0.0107563 + 0.999942i \(0.503424\pi\)
\(660\) 0 0
\(661\) 11.2294 0.436771 0.218386 0.975863i \(-0.429921\pi\)
0.218386 + 0.975863i \(0.429921\pi\)
\(662\) 0 0
\(663\) 39.6415 50.7719i 1.53955 1.97182i
\(664\) 0 0
\(665\) 3.12311 0.121109
\(666\) 0 0
\(667\) −20.1979 −0.782067
\(668\) 0 0
\(669\) 65.6144i 2.53680i
\(670\) 0 0
\(671\) −16.0875 −0.621050
\(672\) 0 0
\(673\) 27.4471i 1.05801i −0.848619 0.529004i \(-0.822566\pi\)
0.848619 0.529004i \(-0.177434\pi\)
\(674\) 0 0
\(675\) 28.0314i 1.07893i
\(676\) 0 0
\(677\) 15.6062i 0.599795i 0.953971 + 0.299897i \(0.0969525\pi\)
−0.953971 + 0.299897i \(0.903048\pi\)
\(678\) 0 0
\(679\) −14.3235 −0.549685
\(680\) 0 0
\(681\) −18.4137 −0.705615
\(682\) 0 0
\(683\) 6.68591i 0.255829i 0.991785 + 0.127915i \(0.0408284\pi\)
−0.991785 + 0.127915i \(0.959172\pi\)
\(684\) 0 0
\(685\) 20.8790i 0.797747i
\(686\) 0 0
\(687\) 51.9867i 1.98341i
\(688\) 0 0
\(689\) 22.1496 0.843834
\(690\) 0 0
\(691\) 26.4459i 1.00605i 0.864272 + 0.503025i \(0.167780\pi\)
−0.864272 + 0.503025i \(0.832220\pi\)
\(692\) 0 0
\(693\) −24.0093 −0.912039
\(694\) 0 0
\(695\) −21.3262 −0.808949
\(696\) 0 0
\(697\) 30.1572 38.6246i 1.14229 1.46301i
\(698\) 0 0
\(699\) 8.62579 0.326257
\(700\) 0 0
\(701\) 37.4436 1.41422 0.707112 0.707102i \(-0.249998\pi\)
0.707112 + 0.707102i \(0.249998\pi\)
\(702\) 0 0
\(703\) 1.44472i 0.0544886i
\(704\) 0 0
\(705\) −45.8231 −1.72580
\(706\) 0 0
\(707\) 0.674073i 0.0253511i
\(708\) 0 0
\(709\) 11.6110i 0.436059i 0.975942 + 0.218030i \(0.0699630\pi\)
−0.975942 + 0.218030i \(0.930037\pi\)
\(710\) 0 0
\(711\) 65.8370i 2.46908i
\(712\) 0 0
\(713\) 11.6735 0.437176
\(714\) 0 0
\(715\) 29.0536 1.08654
\(716\) 0 0
\(717\) 9.40319i 0.351169i
\(718\) 0 0
\(719\) 9.04254i 0.337230i 0.985682 + 0.168615i \(0.0539294\pi\)
−0.985682 + 0.168615i \(0.946071\pi\)
\(720\) 0 0
\(721\) 16.9994i 0.633091i
\(722\) 0 0
\(723\) −46.7269 −1.73779
\(724\) 0 0
\(725\) 18.9098i 0.702292i
\(726\) 0 0
\(727\) 8.12608 0.301380 0.150690 0.988581i \(-0.451851\pi\)
0.150690 + 0.988581i \(0.451851\pi\)
\(728\) 0 0
\(729\) 17.8159 0.659848
\(730\) 0 0
\(731\) −31.9680 24.9599i −1.18238 0.923173i
\(732\) 0 0
\(733\) 9.25647 0.341896 0.170948 0.985280i \(-0.445317\pi\)
0.170948 + 0.985280i \(0.445317\pi\)
\(734\) 0 0
\(735\) −4.53741 −0.167365
\(736\) 0 0
\(737\) 34.8823i 1.28491i
\(738\) 0 0
\(739\) −19.9864 −0.735211 −0.367605 0.929982i \(-0.619822\pi\)
−0.367605 + 0.929982i \(0.619822\pi\)
\(740\) 0 0
\(741\) 32.7917i 1.20463i
\(742\) 0 0
\(743\) 20.9674i 0.769219i −0.923079 0.384610i \(-0.874336\pi\)
0.923079 0.384610i \(-0.125664\pi\)
\(744\) 0 0
\(745\) 23.8584i 0.874106i
\(746\) 0 0
\(747\) −23.2963 −0.852367
\(748\) 0 0
\(749\) −5.71244 −0.208728
\(750\) 0 0
\(751\) 28.8918i 1.05428i 0.849779 + 0.527139i \(0.176735\pi\)
−0.849779 + 0.527139i \(0.823265\pi\)
\(752\) 0 0
\(753\) 69.6723i 2.53900i
\(754\) 0 0
\(755\) 16.6847i 0.607217i
\(756\) 0 0
\(757\) 48.8216 1.77445 0.887225 0.461336i \(-0.152630\pi\)
0.887225 + 0.461336i \(0.152630\pi\)
\(758\) 0 0
\(759\) 34.5878i 1.25546i
\(760\) 0 0
\(761\) −18.0507 −0.654336 −0.327168 0.944966i \(-0.606094\pi\)
−0.327168 + 0.944966i \(0.606094\pi\)
\(762\) 0 0
\(763\) −3.95866 −0.143313
\(764\) 0 0
\(765\) −23.7830 + 30.4608i −0.859878 + 1.10131i
\(766\) 0 0
\(767\) 5.24679 0.189451
\(768\) 0 0
\(769\) −9.57942 −0.345443 −0.172721 0.984971i \(-0.555256\pi\)
−0.172721 + 0.984971i \(0.555256\pi\)
\(770\) 0 0
\(771\) 77.8418i 2.80340i
\(772\) 0 0
\(773\) 14.3572 0.516394 0.258197 0.966092i \(-0.416872\pi\)
0.258197 + 0.966092i \(0.416872\pi\)
\(774\) 0 0
\(775\) 10.9290i 0.392581i
\(776\) 0 0
\(777\) 2.09896i 0.0752999i
\(778\) 0 0
\(779\) 24.9462i 0.893792i
\(780\) 0 0
\(781\) −13.0536 −0.467096
\(782\) 0 0
\(783\) −68.2884 −2.44043
\(784\) 0 0
\(785\) 26.2969i 0.938576i
\(786\) 0 0
\(787\) 10.4063i 0.370946i 0.982649 + 0.185473i \(0.0593818\pi\)
−0.982649 + 0.185473i \(0.940618\pi\)
\(788\) 0 0
\(789\) 82.3947i 2.93333i
\(790\) 0 0
\(791\) 8.55038 0.304017
\(792\) 0 0
\(793\) 21.6240i 0.767890i
\(794\) 0 0
\(795\) −19.6174 −0.695757
\(796\) 0 0
\(797\) −22.8981 −0.811091 −0.405546 0.914075i \(-0.632918\pi\)
−0.405546 + 0.914075i \(0.632918\pi\)
\(798\) 0 0
\(799\) 32.8202 + 25.6252i 1.16109 + 0.906555i
\(800\) 0 0
\(801\) 71.6191 2.53054
\(802\) 0 0
\(803\) −50.5455 −1.78371
\(804\) 0 0
\(805\) 4.42786i 0.156062i
\(806\) 0 0
\(807\) 44.6444 1.57156
\(808\) 0 0
\(809\) 43.3609i 1.52449i −0.647290 0.762243i \(-0.724098\pi\)
0.647290 0.762243i \(-0.275902\pi\)
\(810\) 0 0
\(811\) 30.9680i 1.08743i −0.839269 0.543717i \(-0.817016\pi\)
0.839269 0.543717i \(-0.182984\pi\)
\(812\) 0 0
\(813\) 69.6723i 2.44352i
\(814\) 0 0
\(815\) 28.6976 1.00523
\(816\) 0 0
\(817\) 20.6470 0.722346
\(818\) 0 0
\(819\) 32.2722i 1.12768i
\(820\) 0 0
\(821\) 4.35451i 0.151973i −0.997109 0.0759866i \(-0.975789\pi\)
0.997109 0.0759866i \(-0.0242106\pi\)
\(822\) 0 0
\(823\) 20.7942i 0.724840i 0.932015 + 0.362420i \(0.118049\pi\)
−0.932015 + 0.362420i \(0.881951\pi\)
\(824\) 0 0
\(825\) 32.3820 1.12740
\(826\) 0 0
\(827\) 44.7244i 1.55522i −0.628747 0.777610i \(-0.716432\pi\)
0.628747 0.777610i \(-0.283568\pi\)
\(828\) 0 0
\(829\) 54.0471 1.87713 0.938567 0.345097i \(-0.112154\pi\)
0.938567 + 0.345097i \(0.112154\pi\)
\(830\) 0 0
\(831\) −28.1732 −0.977317
\(832\) 0 0
\(833\) 3.24985 + 2.53741i 0.112601 + 0.0879160i
\(834\) 0 0
\(835\) 3.10658 0.107507
\(836\) 0 0
\(837\) 39.4676 1.36420
\(838\) 0 0
\(839\) 8.41042i 0.290360i 0.989405 + 0.145180i \(0.0463761\pi\)
−0.989405 + 0.145180i \(0.953624\pi\)
\(840\) 0 0
\(841\) −17.0670 −0.588516
\(842\) 0 0
\(843\) 30.6550i 1.05582i
\(844\) 0 0
\(845\) 19.7094i 0.678024i
\(846\) 0 0
\(847\) 3.52682i 0.121183i
\(848\) 0 0
\(849\) −59.0287 −2.02586
\(850\) 0 0
\(851\) −2.04829 −0.0702144
\(852\) 0 0
\(853\) 19.7360i 0.675748i 0.941191 + 0.337874i \(0.109708\pi\)
−0.941191 + 0.337874i \(0.890292\pi\)
\(854\) 0 0
\(855\) 19.6735i 0.672819i
\(856\) 0 0
\(857\) 51.3663i 1.75464i 0.479907 + 0.877319i \(0.340670\pi\)
−0.479907 + 0.877319i \(0.659330\pi\)
\(858\) 0 0
\(859\) 32.0012 1.09187 0.545934 0.837828i \(-0.316175\pi\)
0.545934 + 0.837828i \(0.316175\pi\)
\(860\) 0 0
\(861\) 36.2432i 1.23516i
\(862\) 0 0
\(863\) 16.6204 0.565764 0.282882 0.959155i \(-0.408710\pi\)
0.282882 + 0.959155i \(0.408710\pi\)
\(864\) 0 0
\(865\) −33.4035 −1.13575
\(866\) 0 0
\(867\) 50.2933 12.5733i 1.70805 0.427013i
\(868\) 0 0
\(869\) −39.8346 −1.35130
\(870\) 0 0
\(871\) −46.8871 −1.58871
\(872\) 0 0
\(873\) 90.2284i 3.05377i
\(874\) 0 0
\(875\) 11.5851 0.391648
\(876\) 0 0
\(877\) 15.3672i 0.518912i 0.965755 + 0.259456i \(0.0835432\pi\)
−0.965755 + 0.259456i \(0.916457\pi\)
\(878\) 0 0
\(879\) 19.3717i 0.653391i
\(880\) 0 0
\(881\) 20.2071i 0.680794i 0.940282 + 0.340397i \(0.110561\pi\)
−0.940282 + 0.340397i \(0.889439\pi\)
\(882\) 0 0
\(883\) 8.88163 0.298891 0.149445 0.988770i \(-0.452251\pi\)
0.149445 + 0.988770i \(0.452251\pi\)
\(884\) 0 0
\(885\) −4.64696 −0.156206
\(886\) 0 0
\(887\) 18.8406i 0.632606i −0.948658 0.316303i \(-0.897558\pi\)
0.948658 0.316303i \(-0.102442\pi\)
\(888\) 0 0
\(889\) 1.37474i 0.0461072i
\(890\) 0 0
\(891\) 44.9122i 1.50461i
\(892\) 0 0
\(893\) −21.1973 −0.709342
\(894\) 0 0
\(895\) 15.4167i 0.515323i
\(896\) 0 0
\(897\) −46.4913 −1.55230
\(898\) 0 0
\(899\) 26.6246 0.887981
\(900\) 0 0
\(901\) 14.0507 + 10.9704i 0.468096 + 0.365478i
\(902\) 0 0
\(903\) −29.9970 −0.998237
\(904\) 0 0
\(905\) 7.83158 0.260331
\(906\) 0 0
\(907\) 28.5882i 0.949255i −0.880187 0.474627i \(-0.842583\pi\)
0.880187 0.474627i \(-0.157417\pi\)
\(908\) 0 0
\(909\) −4.24621 −0.140838
\(910\) 0 0
\(911\) 27.3644i 0.906624i 0.891352 + 0.453312i \(0.149758\pi\)
−0.891352 + 0.453312i \(0.850242\pi\)
\(912\) 0 0
\(913\) 14.0954i 0.466490i
\(914\) 0 0
\(915\) 19.1518i 0.633140i
\(916\) 0 0
\(917\) −15.4342 −0.509683
\(918\) 0 0
\(919\) 18.9327 0.624533 0.312267 0.949994i \(-0.398912\pi\)
0.312267 + 0.949994i \(0.398912\pi\)
\(920\) 0 0
\(921\) 5.03143i 0.165791i
\(922\) 0 0
\(923\) 17.5461i 0.577536i
\(924\) 0 0
\(925\) 1.91766i 0.0630521i
\(926\) 0 0
\(927\) 107.085 3.51713
\(928\) 0 0
\(929\) 44.5697i 1.46228i −0.682225 0.731142i \(-0.738988\pi\)
0.682225 0.731142i \(-0.261012\pi\)
\(930\) 0 0
\(931\) −2.09896 −0.0687907
\(932\) 0 0
\(933\) 7.55666 0.247394
\(934\) 0 0
\(935\) 18.4303 + 14.3899i 0.602734 + 0.470600i
\(936\) 0 0
\(937\) −19.4026 −0.633854 −0.316927 0.948450i \(-0.602651\pi\)
−0.316927 + 0.948450i \(0.602651\pi\)
\(938\) 0 0
\(939\) −40.0094 −1.30566
\(940\) 0 0
\(941\) 34.6143i 1.12840i −0.825640 0.564198i \(-0.809186\pi\)
0.825640 0.564198i \(-0.190814\pi\)
\(942\) 0 0
\(943\) −35.3682 −1.15175
\(944\) 0 0
\(945\) 14.9704i 0.486988i
\(946\) 0 0
\(947\) 54.1656i 1.76014i 0.474840 + 0.880072i \(0.342506\pi\)
−0.474840 + 0.880072i \(0.657494\pi\)
\(948\) 0 0
\(949\) 67.9408i 2.20545i
\(950\) 0 0
\(951\) −45.7725 −1.48427
\(952\) 0 0
\(953\) 15.3760 0.498076 0.249038 0.968494i \(-0.419886\pi\)
0.249038 + 0.968494i \(0.419886\pi\)
\(954\) 0 0
\(955\) 29.6822i 0.960494i
\(956\) 0 0
\(957\) 78.8871i 2.55006i
\(958\) 0 0
\(959\) 14.0323i 0.453126i
\(960\) 0 0
\(961\) 15.6122 0.503618
\(962\) 0 0
\(963\) 35.9846i 1.15959i
\(964\) 0 0
\(965\) −9.07482 −0.292129
\(966\) 0 0
\(967\) −52.6593 −1.69341 −0.846704 0.532064i \(-0.821417\pi\)
−0.846704 + 0.532064i \(0.821417\pi\)
\(968\) 0 0
\(969\) −16.2413 + 20.8015i −0.521746 + 0.668240i
\(970\) 0 0
\(971\) 5.75023 0.184534 0.0922669 0.995734i \(-0.470589\pi\)
0.0922669 + 0.995734i \(0.470589\pi\)
\(972\) 0 0
\(973\) 14.3328 0.459489
\(974\) 0 0
\(975\) 43.5262i 1.39396i
\(976\) 0 0
\(977\) −10.9221 −0.349431 −0.174715 0.984619i \(-0.555900\pi\)
−0.174715 + 0.984619i \(0.555900\pi\)
\(978\) 0 0
\(979\) 43.3331i 1.38493i
\(980\) 0 0
\(981\) 24.9369i 0.796174i
\(982\) 0 0
\(983\) 13.4539i 0.429112i 0.976712 + 0.214556i \(0.0688304\pi\)
−0.976712 + 0.214556i \(0.931170\pi\)
\(984\) 0 0
\(985\) −9.31864 −0.296917
\(986\) 0 0
\(987\) 30.7966 0.980266
\(988\) 0 0
\(989\) 29.2727i 0.930819i
\(990\) 0 0
\(991\) 34.1461i 1.08469i −0.840157 0.542343i \(-0.817537\pi\)
0.840157 0.542343i \(-0.182463\pi\)
\(992\) 0 0
\(993\) 67.6829i 2.14785i
\(994\) 0 0
\(995\) −10.6943 −0.339033
\(996\) 0 0
\(997\) 38.7664i 1.22774i 0.789406 + 0.613871i \(0.210389\pi\)
−0.789406 + 0.613871i \(0.789611\pi\)
\(998\) 0 0
\(999\) −6.92518 −0.219103
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1904.2.c.g.1121.1 8
4.3 odd 2 952.2.c.d.169.8 yes 8
17.16 even 2 inner 1904.2.c.g.1121.8 8
68.67 odd 2 952.2.c.d.169.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
952.2.c.d.169.1 8 68.67 odd 2
952.2.c.d.169.8 yes 8 4.3 odd 2
1904.2.c.g.1121.1 8 1.1 even 1 trivial
1904.2.c.g.1121.8 8 17.16 even 2 inner