Properties

Label 1904.2.c.g
Level $1904$
Weight $2$
Character orbit 1904.c
Analytic conductor $15.204$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1904,2,Mod(1121,1904)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1904.1121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1904, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1904 = 2^{4} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1904.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.2035165449\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.6179217664.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 13x^{6} + 40x^{4} + 13x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 952)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{6} - \beta_{5}) q^{3} + (\beta_{7} + \beta_{5}) q^{5} - \beta_{5} q^{7} + (\beta_{3} + \beta_1 - 1) q^{9} + ( - \beta_{7} + \beta_{6} + \cdots + \beta_{4}) q^{11} + (2 \beta_{2} + 2 \beta_1 - 2) q^{13}+ \cdots + (\beta_{7} - 5 \beta_{6} + \cdots - \beta_{4}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{9} - 8 q^{13} + 16 q^{15} - 20 q^{19} - 6 q^{21} + 2 q^{25} + 8 q^{33} + 10 q^{35} + 14 q^{43} - 44 q^{47} - 8 q^{49} - 34 q^{51} + 6 q^{53} + 32 q^{55} - 12 q^{59} + 58 q^{67} + 32 q^{69} - 12 q^{77}+ \cdots - 64 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 13x^{6} + 40x^{4} + 13x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -3\nu^{6} - 40\nu^{4} - 128\nu^{2} - 31 ) / 8 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -5\nu^{6} - 64\nu^{4} - 184\nu^{2} - 17 ) / 8 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -3\nu^{6} - 38\nu^{4} - 110\nu^{2} - 19 ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{7} + 13\nu^{5} + 40\nu^{3} + 14\nu \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 5\nu^{7} + 64\nu^{5} + 188\nu^{3} + 33\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 13\nu^{7} + 168\nu^{5} + 504\nu^{3} + 105\nu ) / 8 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 15\nu^{7} + 192\nu^{5} + 560\nu^{3} + 75\nu ) / 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{7} - \beta_{6} - \beta_{5} + \beta_{4} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{3} + 3\beta_{2} - \beta _1 - 7 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -5\beta_{7} + 3\beta_{6} + 6\beta_{5} - 3\beta_{4} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 11\beta_{3} - 27\beta_{2} + \beta _1 + 51 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 83\beta_{7} - 35\beta_{6} - 115\beta_{5} + 45\beta_{4} ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -52\beta_{3} + 116\beta_{2} + 12\beta _1 - 201 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -693\beta_{7} + 229\beta_{6} + 1029\beta_{5} - 357\beta_{4} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1904\mathbb{Z}\right)^\times\).

\(n\) \(239\) \(785\) \(1361\) \(1429\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1121.1
0.344151i
2.04948i
0.487928i
2.90570i
2.90570i
0.487928i
2.04948i
0.344151i
0 3.04948i 0 1.48793i 0 1.00000i 0 −6.29934 0
1121.2 0 1.90570i 0 0.655849i 0 1.00000i 0 −0.631706 0
1121.3 0 1.34415i 0 3.90570i 0 1.00000i 0 1.19326 0
1121.4 0 0.512072i 0 1.04948i 0 1.00000i 0 2.73778 0
1121.5 0 0.512072i 0 1.04948i 0 1.00000i 0 2.73778 0
1121.6 0 1.34415i 0 3.90570i 0 1.00000i 0 1.19326 0
1121.7 0 1.90570i 0 0.655849i 0 1.00000i 0 −0.631706 0
1121.8 0 3.04948i 0 1.48793i 0 1.00000i 0 −6.29934 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1121.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1904.2.c.g 8
4.b odd 2 1 952.2.c.d 8
17.b even 2 1 inner 1904.2.c.g 8
68.d odd 2 1 952.2.c.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
952.2.c.d 8 4.b odd 2 1
952.2.c.d 8 68.d odd 2 1
1904.2.c.g 8 1.a even 1 1 trivial
1904.2.c.g 8 17.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} + 15T_{3}^{6} + 61T_{3}^{4} + 76T_{3}^{2} + 16 \) acting on \(S_{2}^{\mathrm{new}}(1904, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} + 15 T^{6} + \cdots + 16 \) Copy content Toggle raw display
$5$ \( T^{8} + 19 T^{6} + \cdots + 16 \) Copy content Toggle raw display
$7$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$11$ \( T^{8} + 60 T^{6} + \cdots + 4096 \) Copy content Toggle raw display
$13$ \( (T^{2} + 2 T - 16)^{4} \) Copy content Toggle raw display
$17$ \( T^{8} + 510 T^{4} + 83521 \) Copy content Toggle raw display
$19$ \( (T^{4} + 10 T^{3} + \cdots - 64)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} + 76 T^{6} + \cdots + 4096 \) Copy content Toggle raw display
$29$ \( T^{8} + 72 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$31$ \( T^{8} + 151 T^{6} + \cdots + 4096 \) Copy content Toggle raw display
$37$ \( T^{8} + 52 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$41$ \( T^{8} + 239 T^{6} + \cdots + 2611456 \) Copy content Toggle raw display
$43$ \( (T^{4} - 7 T^{3} + \cdots + 208)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} + 22 T^{3} + \cdots + 64)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} - 3 T^{3} - 37 T^{2} + \cdots - 4)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} + 6 T^{3} - 12 T^{2} + \cdots - 64)^{2} \) Copy content Toggle raw display
$61$ \( T^{8} + 427 T^{6} + \cdots + 18905104 \) Copy content Toggle raw display
$67$ \( (T^{4} - 29 T^{3} + \cdots - 6736)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} + 288 T^{6} + \cdots + 65536 \) Copy content Toggle raw display
$73$ \( T^{8} + 375 T^{6} + \cdots + 14622976 \) Copy content Toggle raw display
$79$ \( T^{8} + 376 T^{6} + \cdots + 41783296 \) Copy content Toggle raw display
$83$ \( (T^{4} - 4 T^{3} + \cdots - 3008)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 2 T - 152)^{4} \) Copy content Toggle raw display
$97$ \( T^{8} + 423 T^{6} + \cdots + 9339136 \) Copy content Toggle raw display
show more
show less