Properties

Label 1900.4.c.d.1749.3
Level $1900$
Weight $4$
Character 1900.1749
Analytic conductor $112.104$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1900,4,Mod(1749,1900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1900.1749"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1900, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1900 = 2^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1900.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,-208] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(112.103629011\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 2x^{6} + 92x^{5} + 1602x^{4} + 478x^{3} + 72x^{2} + 6612x + 303601 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 380)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1749.3
Root \(-3.15226 - 3.15226i\) of defining polynomial
Character \(\chi\) \(=\) 1900.1749
Dual form 1900.4.c.d.1749.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.30451i q^{3} +2.36393i q^{7} -12.7469 q^{9} -71.0217 q^{11} +23.8865i q^{13} -102.501i q^{17} +19.0000 q^{19} +14.9035 q^{21} -95.3081i q^{23} -89.8589i q^{27} -168.054 q^{29} -240.783 q^{31} +447.757i q^{33} -354.392i q^{37} +150.593 q^{39} +466.330 q^{41} -269.628i q^{43} +227.729i q^{47} +337.412 q^{49} -646.218 q^{51} +195.612i q^{53} -119.786i q^{57} -324.959 q^{59} -365.892 q^{61} -30.1328i q^{63} +269.909i q^{67} -600.871 q^{69} +864.400 q^{71} +904.206i q^{73} -167.891i q^{77} -96.9592 q^{79} -910.683 q^{81} +1392.15i q^{83} +1059.50i q^{87} +159.411 q^{89} -56.4661 q^{91} +1518.02i q^{93} +1692.58i q^{97} +905.306 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 208 q^{9} - 120 q^{11} + 152 q^{19} - 408 q^{21} + 328 q^{29} - 1512 q^{31} + 1752 q^{39} - 352 q^{41} + 664 q^{49} - 2488 q^{51} + 288 q^{59} - 2072 q^{61} + 3320 q^{69} + 2888 q^{71} + 2112 q^{79}+ \cdots + 8296 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1900\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\) \(951\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 6.30451i − 1.21330i −0.794967 0.606652i \(-0.792512\pi\)
0.794967 0.606652i \(-0.207488\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.36393i 0.127640i 0.997961 + 0.0638202i \(0.0203284\pi\)
−0.997961 + 0.0638202i \(0.979672\pi\)
\(8\) 0 0
\(9\) −12.7469 −0.472107
\(10\) 0 0
\(11\) −71.0217 −1.94671 −0.973357 0.229297i \(-0.926357\pi\)
−0.973357 + 0.229297i \(0.926357\pi\)
\(12\) 0 0
\(13\) 23.8865i 0.509609i 0.966993 + 0.254805i \(0.0820112\pi\)
−0.966993 + 0.254805i \(0.917989\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 102.501i − 1.46236i −0.682185 0.731180i \(-0.738970\pi\)
0.682185 0.731180i \(-0.261030\pi\)
\(18\) 0 0
\(19\) 19.0000 0.229416
\(20\) 0 0
\(21\) 14.9035 0.154867
\(22\) 0 0
\(23\) − 95.3081i − 0.864048i −0.901862 0.432024i \(-0.857800\pi\)
0.901862 0.432024i \(-0.142200\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 89.8589i − 0.640495i
\(28\) 0 0
\(29\) −168.054 −1.07610 −0.538049 0.842913i \(-0.680839\pi\)
−0.538049 + 0.842913i \(0.680839\pi\)
\(30\) 0 0
\(31\) −240.783 −1.39503 −0.697514 0.716571i \(-0.745710\pi\)
−0.697514 + 0.716571i \(0.745710\pi\)
\(32\) 0 0
\(33\) 447.757i 2.36196i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 354.392i − 1.57464i −0.616545 0.787320i \(-0.711468\pi\)
0.616545 0.787320i \(-0.288532\pi\)
\(38\) 0 0
\(39\) 150.593 0.618311
\(40\) 0 0
\(41\) 466.330 1.77631 0.888153 0.459549i \(-0.151989\pi\)
0.888153 + 0.459549i \(0.151989\pi\)
\(42\) 0 0
\(43\) − 269.628i − 0.956231i −0.878297 0.478115i \(-0.841320\pi\)
0.878297 0.478115i \(-0.158680\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 227.729i 0.706759i 0.935480 + 0.353379i \(0.114967\pi\)
−0.935480 + 0.353379i \(0.885033\pi\)
\(48\) 0 0
\(49\) 337.412 0.983708
\(50\) 0 0
\(51\) −646.218 −1.77429
\(52\) 0 0
\(53\) 195.612i 0.506968i 0.967340 + 0.253484i \(0.0815766\pi\)
−0.967340 + 0.253484i \(0.918423\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 119.786i − 0.278351i
\(58\) 0 0
\(59\) −324.959 −0.717052 −0.358526 0.933520i \(-0.616721\pi\)
−0.358526 + 0.933520i \(0.616721\pi\)
\(60\) 0 0
\(61\) −365.892 −0.767996 −0.383998 0.923334i \(-0.625453\pi\)
−0.383998 + 0.923334i \(0.625453\pi\)
\(62\) 0 0
\(63\) − 30.1328i − 0.0602600i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 269.909i 0.492159i 0.969250 + 0.246079i \(0.0791424\pi\)
−0.969250 + 0.246079i \(0.920858\pi\)
\(68\) 0 0
\(69\) −600.871 −1.04835
\(70\) 0 0
\(71\) 864.400 1.44486 0.722432 0.691442i \(-0.243024\pi\)
0.722432 + 0.691442i \(0.243024\pi\)
\(72\) 0 0
\(73\) 904.206i 1.44972i 0.688898 + 0.724858i \(0.258095\pi\)
−0.688898 + 0.724858i \(0.741905\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 167.891i − 0.248479i
\(78\) 0 0
\(79\) −96.9592 −0.138086 −0.0690428 0.997614i \(-0.521994\pi\)
−0.0690428 + 0.997614i \(0.521994\pi\)
\(80\) 0 0
\(81\) −910.683 −1.24922
\(82\) 0 0
\(83\) 1392.15i 1.84106i 0.390673 + 0.920530i \(0.372242\pi\)
−0.390673 + 0.920530i \(0.627758\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1059.50i 1.30563i
\(88\) 0 0
\(89\) 159.411 0.189860 0.0949301 0.995484i \(-0.469737\pi\)
0.0949301 + 0.995484i \(0.469737\pi\)
\(90\) 0 0
\(91\) −56.4661 −0.0650468
\(92\) 0 0
\(93\) 1518.02i 1.69259i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1692.58i 1.77171i 0.463961 + 0.885855i \(0.346428\pi\)
−0.463961 + 0.885855i \(0.653572\pi\)
\(98\) 0 0
\(99\) 905.306 0.919057
\(100\) 0 0
\(101\) −1433.84 −1.41260 −0.706301 0.707912i \(-0.749637\pi\)
−0.706301 + 0.707912i \(0.749637\pi\)
\(102\) 0 0
\(103\) 1813.28i 1.73464i 0.497751 + 0.867320i \(0.334159\pi\)
−0.497751 + 0.867320i \(0.665841\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 21.8923i 0.0197795i 0.999951 + 0.00988977i \(0.00314806\pi\)
−0.999951 + 0.00988977i \(0.996852\pi\)
\(108\) 0 0
\(109\) 725.107 0.637180 0.318590 0.947893i \(-0.396791\pi\)
0.318590 + 0.947893i \(0.396791\pi\)
\(110\) 0 0
\(111\) −2234.27 −1.91052
\(112\) 0 0
\(113\) − 933.597i − 0.777216i −0.921403 0.388608i \(-0.872956\pi\)
0.921403 0.388608i \(-0.127044\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 304.479i − 0.240590i
\(118\) 0 0
\(119\) 242.305 0.186656
\(120\) 0 0
\(121\) 3713.08 2.78969
\(122\) 0 0
\(123\) − 2939.98i − 2.15520i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 1956.65i − 1.36712i −0.729894 0.683560i \(-0.760431\pi\)
0.729894 0.683560i \(-0.239569\pi\)
\(128\) 0 0
\(129\) −1699.87 −1.16020
\(130\) 0 0
\(131\) −1685.60 −1.12421 −0.562105 0.827066i \(-0.690008\pi\)
−0.562105 + 0.827066i \(0.690008\pi\)
\(132\) 0 0
\(133\) 44.9148i 0.0292827i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1793.02i 1.11816i 0.829113 + 0.559081i \(0.188846\pi\)
−0.829113 + 0.559081i \(0.811154\pi\)
\(138\) 0 0
\(139\) −683.284 −0.416946 −0.208473 0.978028i \(-0.566849\pi\)
−0.208473 + 0.978028i \(0.566849\pi\)
\(140\) 0 0
\(141\) 1435.72 0.857513
\(142\) 0 0
\(143\) − 1696.46i − 0.992063i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 2127.22i − 1.19354i
\(148\) 0 0
\(149\) −2944.72 −1.61907 −0.809534 0.587073i \(-0.800280\pi\)
−0.809534 + 0.587073i \(0.800280\pi\)
\(150\) 0 0
\(151\) 1162.60 0.626561 0.313281 0.949661i \(-0.398572\pi\)
0.313281 + 0.949661i \(0.398572\pi\)
\(152\) 0 0
\(153\) 1306.57i 0.690390i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 7.74394i − 0.00393652i −0.999998 0.00196826i \(-0.999373\pi\)
0.999998 0.00196826i \(-0.000626517\pi\)
\(158\) 0 0
\(159\) 1233.24 0.615107
\(160\) 0 0
\(161\) 225.302 0.110288
\(162\) 0 0
\(163\) 478.327i 0.229850i 0.993374 + 0.114925i \(0.0366627\pi\)
−0.993374 + 0.114925i \(0.963337\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1528.78i 0.708387i 0.935172 + 0.354194i \(0.115245\pi\)
−0.935172 + 0.354194i \(0.884755\pi\)
\(168\) 0 0
\(169\) 1626.44 0.740298
\(170\) 0 0
\(171\) −242.191 −0.108309
\(172\) 0 0
\(173\) 1222.36i 0.537194i 0.963253 + 0.268597i \(0.0865601\pi\)
−0.963253 + 0.268597i \(0.913440\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2048.71i 0.870002i
\(178\) 0 0
\(179\) −2835.03 −1.18380 −0.591899 0.806012i \(-0.701622\pi\)
−0.591899 + 0.806012i \(0.701622\pi\)
\(180\) 0 0
\(181\) 3208.77 1.31771 0.658856 0.752269i \(-0.271041\pi\)
0.658856 + 0.752269i \(0.271041\pi\)
\(182\) 0 0
\(183\) 2306.77i 0.931812i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 7279.78i 2.84679i
\(188\) 0 0
\(189\) 212.421 0.0817531
\(190\) 0 0
\(191\) −3376.35 −1.27908 −0.639540 0.768758i \(-0.720875\pi\)
−0.639540 + 0.768758i \(0.720875\pi\)
\(192\) 0 0
\(193\) − 2893.76i − 1.07926i −0.841902 0.539631i \(-0.818564\pi\)
0.841902 0.539631i \(-0.181436\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1295.88i 0.468668i 0.972156 + 0.234334i \(0.0752910\pi\)
−0.972156 + 0.234334i \(0.924709\pi\)
\(198\) 0 0
\(199\) 2203.78 0.785033 0.392517 0.919745i \(-0.371605\pi\)
0.392517 + 0.919745i \(0.371605\pi\)
\(200\) 0 0
\(201\) 1701.65 0.597138
\(202\) 0 0
\(203\) − 397.269i − 0.137354i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1214.88i 0.407923i
\(208\) 0 0
\(209\) −1349.41 −0.446607
\(210\) 0 0
\(211\) 219.761 0.0717014 0.0358507 0.999357i \(-0.488586\pi\)
0.0358507 + 0.999357i \(0.488586\pi\)
\(212\) 0 0
\(213\) − 5449.62i − 1.75306i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 569.195i − 0.178062i
\(218\) 0 0
\(219\) 5700.58 1.75895
\(220\) 0 0
\(221\) 2448.39 0.745232
\(222\) 0 0
\(223\) 957.362i 0.287487i 0.989615 + 0.143744i \(0.0459141\pi\)
−0.989615 + 0.143744i \(0.954086\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3875.01i 1.13301i 0.824058 + 0.566506i \(0.191705\pi\)
−0.824058 + 0.566506i \(0.808295\pi\)
\(228\) 0 0
\(229\) 4515.86 1.30313 0.651564 0.758594i \(-0.274113\pi\)
0.651564 + 0.758594i \(0.274113\pi\)
\(230\) 0 0
\(231\) −1058.47 −0.301481
\(232\) 0 0
\(233\) − 3593.62i − 1.01041i −0.862999 0.505206i \(-0.831417\pi\)
0.862999 0.505206i \(-0.168583\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 611.280i 0.167540i
\(238\) 0 0
\(239\) 3637.90 0.984585 0.492293 0.870430i \(-0.336159\pi\)
0.492293 + 0.870430i \(0.336159\pi\)
\(240\) 0 0
\(241\) −302.100 −0.0807467 −0.0403734 0.999185i \(-0.512855\pi\)
−0.0403734 + 0.999185i \(0.512855\pi\)
\(242\) 0 0
\(243\) 3315.22i 0.875191i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 453.844i 0.116912i
\(248\) 0 0
\(249\) 8776.80 2.23376
\(250\) 0 0
\(251\) −5361.70 −1.34832 −0.674158 0.738587i \(-0.735494\pi\)
−0.674158 + 0.738587i \(0.735494\pi\)
\(252\) 0 0
\(253\) 6768.94i 1.68205i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3845.53i 0.933376i 0.884422 + 0.466688i \(0.154553\pi\)
−0.884422 + 0.466688i \(0.845447\pi\)
\(258\) 0 0
\(259\) 837.759 0.200988
\(260\) 0 0
\(261\) 2142.17 0.508034
\(262\) 0 0
\(263\) − 34.6476i − 0.00812343i −0.999992 0.00406172i \(-0.998707\pi\)
0.999992 0.00406172i \(-0.00129289\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 1005.01i − 0.230358i
\(268\) 0 0
\(269\) 6566.14 1.48827 0.744135 0.668030i \(-0.232862\pi\)
0.744135 + 0.668030i \(0.232862\pi\)
\(270\) 0 0
\(271\) −6197.27 −1.38914 −0.694571 0.719424i \(-0.744406\pi\)
−0.694571 + 0.719424i \(0.744406\pi\)
\(272\) 0 0
\(273\) 355.991i 0.0789215i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 3224.93i 0.699521i 0.936839 + 0.349761i \(0.113737\pi\)
−0.936839 + 0.349761i \(0.886263\pi\)
\(278\) 0 0
\(279\) 3069.23 0.658602
\(280\) 0 0
\(281\) −4859.78 −1.03171 −0.515854 0.856677i \(-0.672525\pi\)
−0.515854 + 0.856677i \(0.672525\pi\)
\(282\) 0 0
\(283\) 6136.80i 1.28903i 0.764592 + 0.644514i \(0.222940\pi\)
−0.764592 + 0.644514i \(0.777060\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1102.37i 0.226728i
\(288\) 0 0
\(289\) −5593.43 −1.13850
\(290\) 0 0
\(291\) 10670.9 2.14962
\(292\) 0 0
\(293\) − 8952.76i − 1.78507i −0.450976 0.892536i \(-0.648924\pi\)
0.450976 0.892536i \(-0.351076\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 6381.93i 1.24686i
\(298\) 0 0
\(299\) 2276.58 0.440327
\(300\) 0 0
\(301\) 637.384 0.122054
\(302\) 0 0
\(303\) 9039.69i 1.71392i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 6931.29i 1.28857i 0.764787 + 0.644283i \(0.222844\pi\)
−0.764787 + 0.644283i \(0.777156\pi\)
\(308\) 0 0
\(309\) 11431.9 2.10465
\(310\) 0 0
\(311\) −5360.65 −0.977410 −0.488705 0.872449i \(-0.662531\pi\)
−0.488705 + 0.872449i \(0.662531\pi\)
\(312\) 0 0
\(313\) − 2057.51i − 0.371557i −0.982592 0.185778i \(-0.940519\pi\)
0.982592 0.185778i \(-0.0594807\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1903.50i 0.337259i 0.985680 + 0.168629i \(0.0539341\pi\)
−0.985680 + 0.168629i \(0.946066\pi\)
\(318\) 0 0
\(319\) 11935.5 2.09486
\(320\) 0 0
\(321\) 138.021 0.0239986
\(322\) 0 0
\(323\) − 1947.52i − 0.335488i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 4571.45i − 0.773094i
\(328\) 0 0
\(329\) −538.336 −0.0902110
\(330\) 0 0
\(331\) 871.868 0.144780 0.0723901 0.997376i \(-0.476937\pi\)
0.0723901 + 0.997376i \(0.476937\pi\)
\(332\) 0 0
\(333\) 4517.39i 0.743398i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 7801.47i − 1.26105i −0.776170 0.630524i \(-0.782840\pi\)
0.776170 0.630524i \(-0.217160\pi\)
\(338\) 0 0
\(339\) −5885.88 −0.943000
\(340\) 0 0
\(341\) 17100.8 2.71572
\(342\) 0 0
\(343\) 1608.45i 0.253201i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 12554.0i − 1.94217i −0.238743 0.971083i \(-0.576735\pi\)
0.238743 0.971083i \(-0.423265\pi\)
\(348\) 0 0
\(349\) 2561.47 0.392872 0.196436 0.980517i \(-0.437063\pi\)
0.196436 + 0.980517i \(0.437063\pi\)
\(350\) 0 0
\(351\) 2146.42 0.326402
\(352\) 0 0
\(353\) − 3225.71i − 0.486366i −0.969980 0.243183i \(-0.921809\pi\)
0.969980 0.243183i \(-0.0781915\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 1527.62i − 0.226471i
\(358\) 0 0
\(359\) 3557.82 0.523049 0.261524 0.965197i \(-0.415775\pi\)
0.261524 + 0.965197i \(0.415775\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) 0 0
\(363\) − 23409.2i − 3.38474i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 533.130i 0.0758287i 0.999281 + 0.0379144i \(0.0120714\pi\)
−0.999281 + 0.0379144i \(0.987929\pi\)
\(368\) 0 0
\(369\) −5944.26 −0.838606
\(370\) 0 0
\(371\) −462.413 −0.0647097
\(372\) 0 0
\(373\) 12023.0i 1.66897i 0.551030 + 0.834485i \(0.314235\pi\)
−0.551030 + 0.834485i \(0.685765\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 4014.22i − 0.548390i
\(378\) 0 0
\(379\) −1087.45 −0.147383 −0.0736917 0.997281i \(-0.523478\pi\)
−0.0736917 + 0.997281i \(0.523478\pi\)
\(380\) 0 0
\(381\) −12335.7 −1.65873
\(382\) 0 0
\(383\) 3136.55i 0.418460i 0.977866 + 0.209230i \(0.0670957\pi\)
−0.977866 + 0.209230i \(0.932904\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 3436.92i 0.451443i
\(388\) 0 0
\(389\) 11874.3 1.54769 0.773846 0.633374i \(-0.218330\pi\)
0.773846 + 0.633374i \(0.218330\pi\)
\(390\) 0 0
\(391\) −9769.16 −1.26355
\(392\) 0 0
\(393\) 10626.9i 1.36401i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 1842.00i − 0.232865i −0.993199 0.116433i \(-0.962854\pi\)
0.993199 0.116433i \(-0.0371459\pi\)
\(398\) 0 0
\(399\) 283.166 0.0355289
\(400\) 0 0
\(401\) −6946.08 −0.865015 −0.432507 0.901630i \(-0.642371\pi\)
−0.432507 + 0.901630i \(0.642371\pi\)
\(402\) 0 0
\(403\) − 5751.46i − 0.710919i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 25169.5i 3.06537i
\(408\) 0 0
\(409\) −8473.65 −1.02444 −0.512219 0.858855i \(-0.671176\pi\)
−0.512219 + 0.858855i \(0.671176\pi\)
\(410\) 0 0
\(411\) 11304.1 1.35667
\(412\) 0 0
\(413\) − 768.182i − 0.0915249i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 4307.78i 0.505882i
\(418\) 0 0
\(419\) −5811.67 −0.677610 −0.338805 0.940857i \(-0.610023\pi\)
−0.338805 + 0.940857i \(0.610023\pi\)
\(420\) 0 0
\(421\) −3107.46 −0.359735 −0.179867 0.983691i \(-0.557567\pi\)
−0.179867 + 0.983691i \(0.557567\pi\)
\(422\) 0 0
\(423\) − 2902.83i − 0.333666i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 864.946i − 0.0980273i
\(428\) 0 0
\(429\) −10695.4 −1.20367
\(430\) 0 0
\(431\) 1371.57 0.153286 0.0766430 0.997059i \(-0.475580\pi\)
0.0766430 + 0.997059i \(0.475580\pi\)
\(432\) 0 0
\(433\) − 3102.80i − 0.344368i −0.985065 0.172184i \(-0.944918\pi\)
0.985065 0.172184i \(-0.0550823\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 1810.85i − 0.198226i
\(438\) 0 0
\(439\) 8445.75 0.918209 0.459104 0.888382i \(-0.348170\pi\)
0.459104 + 0.888382i \(0.348170\pi\)
\(440\) 0 0
\(441\) −4300.95 −0.464415
\(442\) 0 0
\(443\) 7881.39i 0.845273i 0.906299 + 0.422637i \(0.138895\pi\)
−0.906299 + 0.422637i \(0.861105\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 18565.0i 1.96442i
\(448\) 0 0
\(449\) 4284.49 0.450329 0.225164 0.974321i \(-0.427708\pi\)
0.225164 + 0.974321i \(0.427708\pi\)
\(450\) 0 0
\(451\) −33119.5 −3.45796
\(452\) 0 0
\(453\) − 7329.61i − 0.760210i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 2802.70i 0.286882i 0.989659 + 0.143441i \(0.0458167\pi\)
−0.989659 + 0.143441i \(0.954183\pi\)
\(458\) 0 0
\(459\) −9210.62 −0.936634
\(460\) 0 0
\(461\) 14035.5 1.41801 0.709003 0.705206i \(-0.249145\pi\)
0.709003 + 0.705206i \(0.249145\pi\)
\(462\) 0 0
\(463\) 11778.4i 1.18227i 0.806574 + 0.591133i \(0.201319\pi\)
−0.806574 + 0.591133i \(0.798681\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 9235.51i − 0.915136i −0.889175 0.457568i \(-0.848721\pi\)
0.889175 0.457568i \(-0.151279\pi\)
\(468\) 0 0
\(469\) −638.047 −0.0628194
\(470\) 0 0
\(471\) −48.8218 −0.00477620
\(472\) 0 0
\(473\) 19149.5i 1.86151i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 2493.44i − 0.239343i
\(478\) 0 0
\(479\) 2304.13 0.219788 0.109894 0.993943i \(-0.464949\pi\)
0.109894 + 0.993943i \(0.464949\pi\)
\(480\) 0 0
\(481\) 8465.18 0.802451
\(482\) 0 0
\(483\) − 1420.42i − 0.133812i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 2092.35i 0.194689i 0.995251 + 0.0973445i \(0.0310349\pi\)
−0.995251 + 0.0973445i \(0.968965\pi\)
\(488\) 0 0
\(489\) 3015.62 0.278878
\(490\) 0 0
\(491\) 3305.32 0.303803 0.151901 0.988396i \(-0.451460\pi\)
0.151901 + 0.988396i \(0.451460\pi\)
\(492\) 0 0
\(493\) 17225.7i 1.57364i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2043.38i 0.184423i
\(498\) 0 0
\(499\) −10747.6 −0.964188 −0.482094 0.876119i \(-0.660124\pi\)
−0.482094 + 0.876119i \(0.660124\pi\)
\(500\) 0 0
\(501\) 9638.23 0.859489
\(502\) 0 0
\(503\) − 22508.8i − 1.99526i −0.0687746 0.997632i \(-0.521909\pi\)
0.0687746 0.997632i \(-0.478091\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 10253.9i − 0.898207i
\(508\) 0 0
\(509\) 17948.5 1.56297 0.781486 0.623923i \(-0.214462\pi\)
0.781486 + 0.623923i \(0.214462\pi\)
\(510\) 0 0
\(511\) −2137.48 −0.185043
\(512\) 0 0
\(513\) − 1707.32i − 0.146940i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 16173.7i − 1.37586i
\(518\) 0 0
\(519\) 7706.41 0.651780
\(520\) 0 0
\(521\) −16358.0 −1.37554 −0.687771 0.725928i \(-0.741411\pi\)
−0.687771 + 0.725928i \(0.741411\pi\)
\(522\) 0 0
\(523\) 3325.32i 0.278023i 0.990291 + 0.139012i \(0.0443925\pi\)
−0.990291 + 0.139012i \(0.955607\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 24680.4i 2.04003i
\(528\) 0 0
\(529\) 3083.37 0.253420
\(530\) 0 0
\(531\) 4142.22 0.338525
\(532\) 0 0
\(533\) 11139.0i 0.905222i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 17873.5i 1.43631i
\(538\) 0 0
\(539\) −23963.6 −1.91500
\(540\) 0 0
\(541\) 11036.4 0.877064 0.438532 0.898716i \(-0.355499\pi\)
0.438532 + 0.898716i \(0.355499\pi\)
\(542\) 0 0
\(543\) − 20229.7i − 1.59878i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 7211.25i − 0.563676i −0.959462 0.281838i \(-0.909056\pi\)
0.959462 0.281838i \(-0.0909441\pi\)
\(548\) 0 0
\(549\) 4663.99 0.362576
\(550\) 0 0
\(551\) −3193.03 −0.246874
\(552\) 0 0
\(553\) − 229.205i − 0.0176253i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 3869.01i − 0.294318i −0.989113 0.147159i \(-0.952987\pi\)
0.989113 0.147159i \(-0.0470129\pi\)
\(558\) 0 0
\(559\) 6440.48 0.487304
\(560\) 0 0
\(561\) 45895.5 3.45403
\(562\) 0 0
\(563\) 6419.61i 0.480558i 0.970704 + 0.240279i \(0.0772390\pi\)
−0.970704 + 0.240279i \(0.922761\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 2152.79i − 0.159451i
\(568\) 0 0
\(569\) −24618.1 −1.81378 −0.906892 0.421363i \(-0.861552\pi\)
−0.906892 + 0.421363i \(0.861552\pi\)
\(570\) 0 0
\(571\) −17703.2 −1.29747 −0.648735 0.761014i \(-0.724702\pi\)
−0.648735 + 0.761014i \(0.724702\pi\)
\(572\) 0 0
\(573\) 21286.2i 1.55191i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 11277.4i 0.813668i 0.913502 + 0.406834i \(0.133367\pi\)
−0.913502 + 0.406834i \(0.866633\pi\)
\(578\) 0 0
\(579\) −18243.8 −1.30947
\(580\) 0 0
\(581\) −3290.94 −0.234994
\(582\) 0 0
\(583\) − 13892.7i − 0.986922i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 14416.7i − 1.01369i −0.862036 0.506847i \(-0.830811\pi\)
0.862036 0.506847i \(-0.169189\pi\)
\(588\) 0 0
\(589\) −4574.87 −0.320041
\(590\) 0 0
\(591\) 8169.90 0.568637
\(592\) 0 0
\(593\) − 5188.47i − 0.359300i −0.983731 0.179650i \(-0.942503\pi\)
0.983731 0.179650i \(-0.0574966\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 13893.7i − 0.952484i
\(598\) 0 0
\(599\) −16360.7 −1.11599 −0.557997 0.829843i \(-0.688430\pi\)
−0.557997 + 0.829843i \(0.688430\pi\)
\(600\) 0 0
\(601\) 6711.38 0.455512 0.227756 0.973718i \(-0.426861\pi\)
0.227756 + 0.973718i \(0.426861\pi\)
\(602\) 0 0
\(603\) − 3440.50i − 0.232352i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 14253.3i − 0.953089i −0.879150 0.476544i \(-0.841889\pi\)
0.879150 0.476544i \(-0.158111\pi\)
\(608\) 0 0
\(609\) −2504.59 −0.166652
\(610\) 0 0
\(611\) −5439.64 −0.360171
\(612\) 0 0
\(613\) − 1718.21i − 0.113210i −0.998397 0.0566051i \(-0.981972\pi\)
0.998397 0.0566051i \(-0.0180276\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4129.02i 0.269414i 0.990885 + 0.134707i \(0.0430093\pi\)
−0.990885 + 0.134707i \(0.956991\pi\)
\(618\) 0 0
\(619\) −14248.7 −0.925205 −0.462602 0.886566i \(-0.653084\pi\)
−0.462602 + 0.886566i \(0.653084\pi\)
\(620\) 0 0
\(621\) −8564.28 −0.553418
\(622\) 0 0
\(623\) 376.838i 0.0242339i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 8507.39i 0.541870i
\(628\) 0 0
\(629\) −36325.5 −2.30269
\(630\) 0 0
\(631\) −13858.8 −0.874339 −0.437170 0.899379i \(-0.644019\pi\)
−0.437170 + 0.899379i \(0.644019\pi\)
\(632\) 0 0
\(633\) − 1385.49i − 0.0869956i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 8059.59i 0.501307i
\(638\) 0 0
\(639\) −11018.4 −0.682130
\(640\) 0 0
\(641\) −7216.21 −0.444654 −0.222327 0.974972i \(-0.571365\pi\)
−0.222327 + 0.974972i \(0.571365\pi\)
\(642\) 0 0
\(643\) 24050.7i 1.47507i 0.675310 + 0.737534i \(0.264010\pi\)
−0.675310 + 0.737534i \(0.735990\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 3306.55i − 0.200918i −0.994941 0.100459i \(-0.967969\pi\)
0.994941 0.100459i \(-0.0320311\pi\)
\(648\) 0 0
\(649\) 23079.1 1.39589
\(650\) 0 0
\(651\) −3588.50 −0.216043
\(652\) 0 0
\(653\) − 9127.27i − 0.546980i −0.961875 0.273490i \(-0.911822\pi\)
0.961875 0.273490i \(-0.0881780\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 11525.8i − 0.684421i
\(658\) 0 0
\(659\) 1197.51 0.0707865 0.0353933 0.999373i \(-0.488732\pi\)
0.0353933 + 0.999373i \(0.488732\pi\)
\(660\) 0 0
\(661\) 5949.19 0.350071 0.175035 0.984562i \(-0.443996\pi\)
0.175035 + 0.984562i \(0.443996\pi\)
\(662\) 0 0
\(663\) − 15435.9i − 0.904193i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 16016.9i 0.929801i
\(668\) 0 0
\(669\) 6035.70 0.348810
\(670\) 0 0
\(671\) 25986.3 1.49507
\(672\) 0 0
\(673\) − 4918.69i − 0.281726i −0.990029 0.140863i \(-0.955012\pi\)
0.990029 0.140863i \(-0.0449877\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 16866.2i 0.957492i 0.877953 + 0.478746i \(0.158909\pi\)
−0.877953 + 0.478746i \(0.841091\pi\)
\(678\) 0 0
\(679\) −4001.16 −0.226142
\(680\) 0 0
\(681\) 24430.1 1.37469
\(682\) 0 0
\(683\) − 24571.6i − 1.37658i −0.725434 0.688292i \(-0.758361\pi\)
0.725434 0.688292i \(-0.241639\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 28470.3i − 1.58109i
\(688\) 0 0
\(689\) −4672.48 −0.258356
\(690\) 0 0
\(691\) −19987.2 −1.10036 −0.550181 0.835045i \(-0.685441\pi\)
−0.550181 + 0.835045i \(0.685441\pi\)
\(692\) 0 0
\(693\) 2140.08i 0.117309i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 47799.2i − 2.59760i
\(698\) 0 0
\(699\) −22656.0 −1.22594
\(700\) 0 0
\(701\) −13759.4 −0.741349 −0.370674 0.928763i \(-0.620873\pi\)
−0.370674 + 0.928763i \(0.620873\pi\)
\(702\) 0 0
\(703\) − 6733.45i − 0.361247i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 3389.51i − 0.180305i
\(708\) 0 0
\(709\) −12974.7 −0.687273 −0.343636 0.939103i \(-0.611659\pi\)
−0.343636 + 0.939103i \(0.611659\pi\)
\(710\) 0 0
\(711\) 1235.93 0.0651912
\(712\) 0 0
\(713\) 22948.5i 1.20537i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 22935.2i − 1.19460i
\(718\) 0 0
\(719\) −22316.8 −1.15755 −0.578774 0.815488i \(-0.696469\pi\)
−0.578774 + 0.815488i \(0.696469\pi\)
\(720\) 0 0
\(721\) −4286.48 −0.221410
\(722\) 0 0
\(723\) 1904.59i 0.0979703i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 3452.80i − 0.176145i −0.996114 0.0880724i \(-0.971929\pi\)
0.996114 0.0880724i \(-0.0280707\pi\)
\(728\) 0 0
\(729\) −3687.58 −0.187349
\(730\) 0 0
\(731\) −27637.1 −1.39835
\(732\) 0 0
\(733\) − 15659.5i − 0.789080i −0.918879 0.394540i \(-0.870904\pi\)
0.918879 0.394540i \(-0.129096\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 19169.4i − 0.958092i
\(738\) 0 0
\(739\) 13622.7 0.678105 0.339053 0.940767i \(-0.389893\pi\)
0.339053 + 0.940767i \(0.389893\pi\)
\(740\) 0 0
\(741\) 2861.26 0.141850
\(742\) 0 0
\(743\) 1798.53i 0.0888046i 0.999014 + 0.0444023i \(0.0141383\pi\)
−0.999014 + 0.0444023i \(0.985862\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 17745.5i − 0.869177i
\(748\) 0 0
\(749\) −51.7520 −0.00252467
\(750\) 0 0
\(751\) −16836.8 −0.818085 −0.409042 0.912515i \(-0.634137\pi\)
−0.409042 + 0.912515i \(0.634137\pi\)
\(752\) 0 0
\(753\) 33802.9i 1.63592i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 9512.94i 0.456742i 0.973574 + 0.228371i \(0.0733399\pi\)
−0.973574 + 0.228371i \(0.926660\pi\)
\(758\) 0 0
\(759\) 42674.9 2.04084
\(760\) 0 0
\(761\) 23379.8 1.11369 0.556844 0.830617i \(-0.312012\pi\)
0.556844 + 0.830617i \(0.312012\pi\)
\(762\) 0 0
\(763\) 1714.11i 0.0813300i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 7762.14i − 0.365417i
\(768\) 0 0
\(769\) −1328.80 −0.0623115 −0.0311558 0.999515i \(-0.509919\pi\)
−0.0311558 + 0.999515i \(0.509919\pi\)
\(770\) 0 0
\(771\) 24244.2 1.13247
\(772\) 0 0
\(773\) 17594.1i 0.818651i 0.912389 + 0.409325i \(0.134236\pi\)
−0.912389 + 0.409325i \(0.865764\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 5281.66i − 0.243859i
\(778\) 0 0
\(779\) 8860.27 0.407512
\(780\) 0 0
\(781\) −61391.1 −2.81274
\(782\) 0 0
\(783\) 15101.2i 0.689235i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 5903.55i − 0.267394i −0.991022 0.133697i \(-0.957315\pi\)
0.991022 0.133697i \(-0.0426848\pi\)
\(788\) 0 0
\(789\) −218.436 −0.00985619
\(790\) 0 0
\(791\) 2206.96 0.0992042
\(792\) 0 0
\(793\) − 8739.89i − 0.391378i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 2690.65i − 0.119583i −0.998211 0.0597916i \(-0.980956\pi\)
0.998211 0.0597916i \(-0.0190436\pi\)
\(798\) 0 0
\(799\) 23342.4 1.03354
\(800\) 0 0
\(801\) −2032.00 −0.0896344
\(802\) 0 0
\(803\) − 64218.2i − 2.82218i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 41396.3i − 1.80572i
\(808\) 0 0
\(809\) 20516.0 0.891600 0.445800 0.895133i \(-0.352919\pi\)
0.445800 + 0.895133i \(0.352919\pi\)
\(810\) 0 0
\(811\) 4815.53 0.208503 0.104252 0.994551i \(-0.466755\pi\)
0.104252 + 0.994551i \(0.466755\pi\)
\(812\) 0 0
\(813\) 39070.8i 1.68545i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 5122.94i − 0.219374i
\(818\) 0 0
\(819\) 719.767 0.0307090
\(820\) 0 0
\(821\) −20633.8 −0.877133 −0.438566 0.898699i \(-0.644514\pi\)
−0.438566 + 0.898699i \(0.644514\pi\)
\(822\) 0 0
\(823\) − 25993.1i − 1.10093i −0.834860 0.550463i \(-0.814451\pi\)
0.834860 0.550463i \(-0.185549\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 29216.8i − 1.22850i −0.789112 0.614249i \(-0.789459\pi\)
0.789112 0.614249i \(-0.210541\pi\)
\(828\) 0 0
\(829\) −44420.7 −1.86103 −0.930517 0.366250i \(-0.880642\pi\)
−0.930517 + 0.366250i \(0.880642\pi\)
\(830\) 0 0
\(831\) 20331.6 0.848732
\(832\) 0 0
\(833\) − 34585.0i − 1.43853i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 21636.5i 0.893508i
\(838\) 0 0
\(839\) 35397.5 1.45657 0.728283 0.685277i \(-0.240319\pi\)
0.728283 + 0.685277i \(0.240319\pi\)
\(840\) 0 0
\(841\) 3853.17 0.157988
\(842\) 0 0
\(843\) 30638.5i 1.25178i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 8777.48i 0.356078i
\(848\) 0 0
\(849\) 38689.6 1.56398
\(850\) 0 0
\(851\) −33776.4 −1.36056
\(852\) 0 0
\(853\) 15232.6i 0.611435i 0.952122 + 0.305718i \(0.0988964\pi\)
−0.952122 + 0.305718i \(0.901104\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 44107.4i 1.75809i 0.476742 + 0.879043i \(0.341818\pi\)
−0.476742 + 0.879043i \(0.658182\pi\)
\(858\) 0 0
\(859\) 42023.7 1.66918 0.834592 0.550869i \(-0.185704\pi\)
0.834592 + 0.550869i \(0.185704\pi\)
\(860\) 0 0
\(861\) 6949.93 0.275091
\(862\) 0 0
\(863\) − 14537.5i − 0.573419i −0.958017 0.286710i \(-0.907438\pi\)
0.958017 0.286710i \(-0.0925615\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 35263.8i 1.38134i
\(868\) 0 0
\(869\) 6886.20 0.268813
\(870\) 0 0
\(871\) −6447.18 −0.250809
\(872\) 0 0
\(873\) − 21575.2i − 0.836437i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 10217.5i − 0.393411i −0.980463 0.196705i \(-0.936976\pi\)
0.980463 0.196705i \(-0.0630243\pi\)
\(878\) 0 0
\(879\) −56442.8 −2.16583
\(880\) 0 0
\(881\) 22938.9 0.877219 0.438609 0.898678i \(-0.355471\pi\)
0.438609 + 0.898678i \(0.355471\pi\)
\(882\) 0 0
\(883\) − 13588.0i − 0.517862i −0.965896 0.258931i \(-0.916630\pi\)
0.965896 0.258931i \(-0.0833702\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 14461.3i − 0.547423i −0.961812 0.273712i \(-0.911749\pi\)
0.961812 0.273712i \(-0.0882514\pi\)
\(888\) 0 0
\(889\) 4625.38 0.174500
\(890\) 0 0
\(891\) 64678.2 2.43188
\(892\) 0 0
\(893\) 4326.85i 0.162142i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 14352.7i − 0.534251i
\(898\) 0 0
\(899\) 40464.5 1.50119
\(900\) 0 0
\(901\) 20050.4 0.741370
\(902\) 0 0
\(903\) − 4018.39i − 0.148088i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 13449.2i − 0.492362i −0.969224 0.246181i \(-0.920824\pi\)
0.969224 0.246181i \(-0.0791758\pi\)
\(908\) 0 0
\(909\) 18277.0 0.666899
\(910\) 0 0
\(911\) −3924.01 −0.142709 −0.0713547 0.997451i \(-0.522732\pi\)
−0.0713547 + 0.997451i \(0.522732\pi\)
\(912\) 0 0
\(913\) − 98872.6i − 3.58401i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 3984.65i − 0.143495i
\(918\) 0 0
\(919\) 6652.79 0.238798 0.119399 0.992846i \(-0.461903\pi\)
0.119399 + 0.992846i \(0.461903\pi\)
\(920\) 0 0
\(921\) 43698.4 1.56342
\(922\) 0 0
\(923\) 20647.5i 0.736316i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 23113.7i − 0.818936i
\(928\) 0 0
\(929\) −24802.0 −0.875918 −0.437959 0.898995i \(-0.644298\pi\)
−0.437959 + 0.898995i \(0.644298\pi\)
\(930\) 0 0
\(931\) 6410.82 0.225678
\(932\) 0 0
\(933\) 33796.3i 1.18590i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 33062.5i 1.15273i 0.817193 + 0.576364i \(0.195529\pi\)
−0.817193 + 0.576364i \(0.804471\pi\)
\(938\) 0 0
\(939\) −12971.6 −0.450811
\(940\) 0 0
\(941\) −41837.8 −1.44939 −0.724694 0.689071i \(-0.758019\pi\)
−0.724694 + 0.689071i \(0.758019\pi\)
\(942\) 0 0
\(943\) − 44445.0i − 1.53481i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 20581.0i 0.706222i 0.935581 + 0.353111i \(0.114876\pi\)
−0.935581 + 0.353111i \(0.885124\pi\)
\(948\) 0 0
\(949\) −21598.3 −0.738789
\(950\) 0 0
\(951\) 12000.6 0.409197
\(952\) 0 0
\(953\) 10663.8i 0.362470i 0.983440 + 0.181235i \(0.0580095\pi\)
−0.983440 + 0.181235i \(0.941990\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 75247.4i − 2.54170i
\(958\) 0 0
\(959\) −4238.59 −0.142723
\(960\) 0 0
\(961\) 28185.3 0.946103
\(962\) 0 0
\(963\) − 279.059i − 0.00933806i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 18383.1i 0.611335i 0.952138 + 0.305668i \(0.0988796\pi\)
−0.952138 + 0.305668i \(0.901120\pi\)
\(968\) 0 0
\(969\) −12278.1 −0.407049
\(970\) 0 0
\(971\) −13158.9 −0.434900 −0.217450 0.976071i \(-0.569774\pi\)
−0.217450 + 0.976071i \(0.569774\pi\)
\(972\) 0 0
\(973\) − 1615.24i − 0.0532191i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 256.157i − 0.00838810i −0.999991 0.00419405i \(-0.998665\pi\)
0.999991 0.00419405i \(-0.00133501\pi\)
\(978\) 0 0
\(979\) −11321.7 −0.369603
\(980\) 0 0
\(981\) −9242.86 −0.300817
\(982\) 0 0
\(983\) − 22447.7i − 0.728353i −0.931330 0.364176i \(-0.881351\pi\)
0.931330 0.364176i \(-0.118649\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 3393.95i 0.109453i
\(988\) 0 0
\(989\) −25697.8 −0.826230
\(990\) 0 0
\(991\) 10208.4 0.327226 0.163613 0.986525i \(-0.447685\pi\)
0.163613 + 0.986525i \(0.447685\pi\)
\(992\) 0 0
\(993\) − 5496.71i − 0.175662i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 43204.8i − 1.37243i −0.727400 0.686214i \(-0.759271\pi\)
0.727400 0.686214i \(-0.240729\pi\)
\(998\) 0 0
\(999\) −31845.3 −1.00855
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1900.4.c.d.1749.3 8
5.2 odd 4 1900.4.a.e.1.2 4
5.3 odd 4 380.4.a.c.1.3 4
5.4 even 2 inner 1900.4.c.d.1749.6 8
20.3 even 4 1520.4.a.s.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
380.4.a.c.1.3 4 5.3 odd 4
1520.4.a.s.1.2 4 20.3 even 4
1900.4.a.e.1.2 4 5.2 odd 4
1900.4.c.d.1749.3 8 1.1 even 1 trivial
1900.4.c.d.1749.6 8 5.4 even 2 inner