Properties

Label 1900.4
Level 1900
Weight 4
Dimension 172531
Nonzero newspaces 36
Sturm bound 864000
Trace bound 7

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1900 = 2^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 36 \)
Sturm bound: \(864000\)
Trace bound: \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1900))\).

Total New Old
Modular forms 326520 173927 152593
Cusp forms 321480 172531 148949
Eisenstein series 5040 1396 3644

Trace form

\( 172531 q - 105 q^{2} + 16 q^{3} - 97 q^{4} - 218 q^{5} - 121 q^{6} - 64 q^{7} - 273 q^{8} - 630 q^{9} - 272 q^{10} - 80 q^{11} - 417 q^{12} + 174 q^{13} - 97 q^{14} + 344 q^{15} + 583 q^{16} + 126 q^{17}+ \cdots - 24505 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1900))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1900.4.a \(\chi_{1900}(1, \cdot)\) 1900.4.a.a 1 1
1900.4.a.b 2
1900.4.a.c 3
1900.4.a.d 4
1900.4.a.e 4
1900.4.a.f 4
1900.4.a.g 5
1900.4.a.h 9
1900.4.a.i 9
1900.4.a.j 9
1900.4.a.k 9
1900.4.a.l 12
1900.4.a.m 14
1900.4.c \(\chi_{1900}(1749, \cdot)\) 1900.4.c.a 2 1
1900.4.c.b 4
1900.4.c.c 6
1900.4.c.d 8
1900.4.c.e 8
1900.4.c.f 8
1900.4.c.g 10
1900.4.c.h 18
1900.4.c.i 18
1900.4.d \(\chi_{1900}(1899, \cdot)\) n/a 536 1
1900.4.f \(\chi_{1900}(151, \cdot)\) n/a 564 1
1900.4.i \(\chi_{1900}(201, \cdot)\) n/a 190 2
1900.4.k \(\chi_{1900}(343, \cdot)\) n/a 972 2
1900.4.l \(\chi_{1900}(493, \cdot)\) n/a 180 2
1900.4.n \(\chi_{1900}(381, \cdot)\) n/a 544 4
1900.4.o \(\chi_{1900}(1551, \cdot)\) n/a 1128 2
1900.4.s \(\chi_{1900}(49, \cdot)\) n/a 180 2
1900.4.t \(\chi_{1900}(1399, \cdot)\) n/a 1072 2
1900.4.v \(\chi_{1900}(101, \cdot)\) n/a 570 6
1900.4.x \(\chi_{1900}(531, \cdot)\) n/a 3584 4
1900.4.z \(\chi_{1900}(229, \cdot)\) n/a 536 4
1900.4.bc \(\chi_{1900}(379, \cdot)\) n/a 3584 4
1900.4.bd \(\chi_{1900}(7, \cdot)\) n/a 2144 4
1900.4.bg \(\chi_{1900}(293, \cdot)\) n/a 360 4
1900.4.bh \(\chi_{1900}(121, \cdot)\) n/a 1200 8
1900.4.bk \(\chi_{1900}(299, \cdot)\) n/a 3216 6
1900.4.bm \(\chi_{1900}(149, \cdot)\) n/a 540 6
1900.4.bn \(\chi_{1900}(51, \cdot)\) n/a 3384 6
1900.4.bq \(\chi_{1900}(37, \cdot)\) n/a 1200 8
1900.4.br \(\chi_{1900}(267, \cdot)\) n/a 6480 8
1900.4.bt \(\chi_{1900}(429, \cdot)\) n/a 1200 8
1900.4.bw \(\chi_{1900}(179, \cdot)\) n/a 7168 8
1900.4.by \(\chi_{1900}(31, \cdot)\) n/a 7168 8
1900.4.cb \(\chi_{1900}(193, \cdot)\) n/a 1080 12
1900.4.cd \(\chi_{1900}(43, \cdot)\) n/a 6432 12
1900.4.ce \(\chi_{1900}(61, \cdot)\) n/a 3600 24
1900.4.cf \(\chi_{1900}(217, \cdot)\) n/a 2400 16
1900.4.ci \(\chi_{1900}(83, \cdot)\) n/a 14336 16
1900.4.cj \(\chi_{1900}(59, \cdot)\) n/a 21504 24
1900.4.cn \(\chi_{1900}(71, \cdot)\) n/a 21504 24
1900.4.co \(\chi_{1900}(9, \cdot)\) n/a 3600 24
1900.4.cq \(\chi_{1900}(23, \cdot)\) n/a 43008 48
1900.4.cs \(\chi_{1900}(13, \cdot)\) n/a 7200 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1900))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(1900)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 18}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(38))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(76))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(95))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(190))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(380))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(475))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(950))\)\(^{\oplus 2}\)