Properties

Label 1900.4.c.d.1749.2
Level $1900$
Weight $4$
Character 1900.1749
Analytic conductor $112.104$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1900,4,Mod(1749,1900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1900.1749"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1900, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1900 = 2^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1900.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,-208] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(112.103629011\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 2x^{6} + 92x^{5} + 1602x^{4} + 478x^{3} + 72x^{2} + 6612x + 303601 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 380)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1749.2
Root \(-3.40583 - 3.40583i\) of defining polynomial
Character \(\chi\) \(=\) 1900.1749
Dual form 1900.4.c.d.1749.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-6.81167i q^{3} -31.9765i q^{7} -19.3988 q^{9} +14.6385 q^{11} -7.91818i q^{13} +29.7894i q^{17} +19.0000 q^{19} -217.813 q^{21} +182.077i q^{23} -51.7766i q^{27} +206.266 q^{29} -311.559 q^{31} -99.7130i q^{33} +204.494i q^{37} -53.9360 q^{39} -464.589 q^{41} +221.899i q^{43} +238.121i q^{47} -679.498 q^{49} +202.916 q^{51} +225.336i q^{53} -129.422i q^{57} -696.447 q^{59} -15.8359 q^{61} +620.307i q^{63} +647.975i q^{67} +1240.25 q^{69} -283.587 q^{71} -631.342i q^{73} -468.090i q^{77} -468.447 q^{79} -876.454 q^{81} +189.246i q^{83} -1405.02i q^{87} +247.467 q^{89} -253.196 q^{91} +2122.23i q^{93} -997.674i q^{97} -283.971 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 208 q^{9} - 120 q^{11} + 152 q^{19} - 408 q^{21} + 328 q^{29} - 1512 q^{31} + 1752 q^{39} - 352 q^{41} + 664 q^{49} - 2488 q^{51} + 288 q^{59} - 2072 q^{61} + 3320 q^{69} + 2888 q^{71} + 2112 q^{79}+ \cdots + 8296 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1900\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\) \(951\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 6.81167i − 1.31091i −0.755236 0.655453i \(-0.772478\pi\)
0.755236 0.655453i \(-0.227522\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 31.9765i − 1.72657i −0.504717 0.863285i \(-0.668403\pi\)
0.504717 0.863285i \(-0.331597\pi\)
\(8\) 0 0
\(9\) −19.3988 −0.718475
\(10\) 0 0
\(11\) 14.6385 0.401244 0.200622 0.979669i \(-0.435704\pi\)
0.200622 + 0.979669i \(0.435704\pi\)
\(12\) 0 0
\(13\) − 7.91818i − 0.168931i −0.996426 0.0844657i \(-0.973082\pi\)
0.996426 0.0844657i \(-0.0269183\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 29.7894i 0.424999i 0.977161 + 0.212500i \(0.0681605\pi\)
−0.977161 + 0.212500i \(0.931840\pi\)
\(18\) 0 0
\(19\) 19.0000 0.229416
\(20\) 0 0
\(21\) −217.813 −2.26337
\(22\) 0 0
\(23\) 182.077i 1.65068i 0.564637 + 0.825339i \(0.309016\pi\)
−0.564637 + 0.825339i \(0.690984\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 51.7766i − 0.369052i
\(28\) 0 0
\(29\) 206.266 1.32078 0.660391 0.750922i \(-0.270391\pi\)
0.660391 + 0.750922i \(0.270391\pi\)
\(30\) 0 0
\(31\) −311.559 −1.80508 −0.902542 0.430602i \(-0.858301\pi\)
−0.902542 + 0.430602i \(0.858301\pi\)
\(32\) 0 0
\(33\) − 99.7130i − 0.525994i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 204.494i 0.908610i 0.890846 + 0.454305i \(0.150112\pi\)
−0.890846 + 0.454305i \(0.849888\pi\)
\(38\) 0 0
\(39\) −53.9360 −0.221453
\(40\) 0 0
\(41\) −464.589 −1.76967 −0.884837 0.465900i \(-0.845730\pi\)
−0.884837 + 0.465900i \(0.845730\pi\)
\(42\) 0 0
\(43\) 221.899i 0.786959i 0.919333 + 0.393480i \(0.128729\pi\)
−0.919333 + 0.393480i \(0.871271\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 238.121i 0.739011i 0.929229 + 0.369505i \(0.120473\pi\)
−0.929229 + 0.369505i \(0.879527\pi\)
\(48\) 0 0
\(49\) −679.498 −1.98104
\(50\) 0 0
\(51\) 202.916 0.557135
\(52\) 0 0
\(53\) 225.336i 0.584006i 0.956417 + 0.292003i \(0.0943217\pi\)
−0.956417 + 0.292003i \(0.905678\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 129.422i − 0.300743i
\(58\) 0 0
\(59\) −696.447 −1.53677 −0.768387 0.639985i \(-0.778941\pi\)
−0.768387 + 0.639985i \(0.778941\pi\)
\(60\) 0 0
\(61\) −15.8359 −0.0332391 −0.0166195 0.999862i \(-0.505290\pi\)
−0.0166195 + 0.999862i \(0.505290\pi\)
\(62\) 0 0
\(63\) 620.307i 1.24050i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 647.975i 1.18153i 0.806842 + 0.590767i \(0.201175\pi\)
−0.806842 + 0.590767i \(0.798825\pi\)
\(68\) 0 0
\(69\) 1240.25 2.16389
\(70\) 0 0
\(71\) −283.587 −0.474022 −0.237011 0.971507i \(-0.576168\pi\)
−0.237011 + 0.971507i \(0.576168\pi\)
\(72\) 0 0
\(73\) − 631.342i − 1.01223i −0.862465 0.506116i \(-0.831081\pi\)
0.862465 0.506116i \(-0.168919\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 468.090i − 0.692777i
\(78\) 0 0
\(79\) −468.447 −0.667145 −0.333572 0.942724i \(-0.608254\pi\)
−0.333572 + 0.942724i \(0.608254\pi\)
\(80\) 0 0
\(81\) −876.454 −1.20227
\(82\) 0 0
\(83\) 189.246i 0.250270i 0.992140 + 0.125135i \(0.0399364\pi\)
−0.992140 + 0.125135i \(0.960064\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 1405.02i − 1.73142i
\(88\) 0 0
\(89\) 247.467 0.294735 0.147368 0.989082i \(-0.452920\pi\)
0.147368 + 0.989082i \(0.452920\pi\)
\(90\) 0 0
\(91\) −253.196 −0.291672
\(92\) 0 0
\(93\) 2122.23i 2.36630i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 997.674i − 1.04431i −0.852850 0.522157i \(-0.825128\pi\)
0.852850 0.522157i \(-0.174872\pi\)
\(98\) 0 0
\(99\) −283.971 −0.288284
\(100\) 0 0
\(101\) 1963.22 1.93414 0.967070 0.254512i \(-0.0819148\pi\)
0.967070 + 0.254512i \(0.0819148\pi\)
\(102\) 0 0
\(103\) 847.380i 0.810629i 0.914177 + 0.405315i \(0.132838\pi\)
−0.914177 + 0.405315i \(0.867162\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1153.67i 1.04234i 0.853454 + 0.521168i \(0.174503\pi\)
−0.853454 + 0.521168i \(0.825497\pi\)
\(108\) 0 0
\(109\) −1462.58 −1.28522 −0.642612 0.766192i \(-0.722149\pi\)
−0.642612 + 0.766192i \(0.722149\pi\)
\(110\) 0 0
\(111\) 1392.94 1.19110
\(112\) 0 0
\(113\) − 107.523i − 0.0895124i −0.998998 0.0447562i \(-0.985749\pi\)
0.998998 0.0447562i \(-0.0142511\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 153.603i 0.121373i
\(118\) 0 0
\(119\) 952.562 0.733791
\(120\) 0 0
\(121\) −1116.71 −0.839003
\(122\) 0 0
\(123\) 3164.63i 2.31988i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 426.879i 0.298263i 0.988817 + 0.149131i \(0.0476478\pi\)
−0.988817 + 0.149131i \(0.952352\pi\)
\(128\) 0 0
\(129\) 1511.50 1.03163
\(130\) 0 0
\(131\) −947.862 −0.632176 −0.316088 0.948730i \(-0.602370\pi\)
−0.316088 + 0.948730i \(0.602370\pi\)
\(132\) 0 0
\(133\) − 607.554i − 0.396102i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 366.102i 0.228308i 0.993463 + 0.114154i \(0.0364157\pi\)
−0.993463 + 0.114154i \(0.963584\pi\)
\(138\) 0 0
\(139\) −873.537 −0.533039 −0.266519 0.963830i \(-0.585874\pi\)
−0.266519 + 0.963830i \(0.585874\pi\)
\(140\) 0 0
\(141\) 1622.00 0.968774
\(142\) 0 0
\(143\) − 115.911i − 0.0677828i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 4628.52i 2.59696i
\(148\) 0 0
\(149\) −1286.49 −0.707339 −0.353669 0.935371i \(-0.615066\pi\)
−0.353669 + 0.935371i \(0.615066\pi\)
\(150\) 0 0
\(151\) −3568.13 −1.92298 −0.961491 0.274835i \(-0.911377\pi\)
−0.961491 + 0.274835i \(0.911377\pi\)
\(152\) 0 0
\(153\) − 577.880i − 0.305352i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 1502.64i − 0.763843i −0.924195 0.381922i \(-0.875262\pi\)
0.924195 0.381922i \(-0.124738\pi\)
\(158\) 0 0
\(159\) 1534.92 0.765577
\(160\) 0 0
\(161\) 5822.18 2.85001
\(162\) 0 0
\(163\) 426.394i 0.204894i 0.994738 + 0.102447i \(0.0326672\pi\)
−0.994738 + 0.102447i \(0.967333\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 242.170i − 0.112213i −0.998425 0.0561067i \(-0.982131\pi\)
0.998425 0.0561067i \(-0.0178687\pi\)
\(168\) 0 0
\(169\) 2134.30 0.971462
\(170\) 0 0
\(171\) −368.578 −0.164830
\(172\) 0 0
\(173\) − 3764.36i − 1.65433i −0.561960 0.827164i \(-0.689953\pi\)
0.561960 0.827164i \(-0.310047\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 4743.97i 2.01457i
\(178\) 0 0
\(179\) 1392.73 0.581551 0.290775 0.956791i \(-0.406087\pi\)
0.290775 + 0.956791i \(0.406087\pi\)
\(180\) 0 0
\(181\) 1581.95 0.649644 0.324822 0.945775i \(-0.394696\pi\)
0.324822 + 0.945775i \(0.394696\pi\)
\(182\) 0 0
\(183\) 107.869i 0.0435733i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 436.074i 0.170529i
\(188\) 0 0
\(189\) −1655.64 −0.637195
\(190\) 0 0
\(191\) −4295.69 −1.62736 −0.813678 0.581316i \(-0.802538\pi\)
−0.813678 + 0.581316i \(0.802538\pi\)
\(192\) 0 0
\(193\) − 4238.41i − 1.58076i −0.612615 0.790382i \(-0.709882\pi\)
0.612615 0.790382i \(-0.290118\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1646.93i 0.595627i 0.954624 + 0.297814i \(0.0962574\pi\)
−0.954624 + 0.297814i \(0.903743\pi\)
\(198\) 0 0
\(199\) −1414.24 −0.503782 −0.251891 0.967756i \(-0.581052\pi\)
−0.251891 + 0.967756i \(0.581052\pi\)
\(200\) 0 0
\(201\) 4413.79 1.54888
\(202\) 0 0
\(203\) − 6595.68i − 2.28042i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 3532.08i − 1.18597i
\(208\) 0 0
\(209\) 278.132 0.0920518
\(210\) 0 0
\(211\) −3885.88 −1.26784 −0.633922 0.773397i \(-0.718556\pi\)
−0.633922 + 0.773397i \(0.718556\pi\)
\(212\) 0 0
\(213\) 1931.70i 0.621399i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 9962.57i 3.11660i
\(218\) 0 0
\(219\) −4300.49 −1.32694
\(220\) 0 0
\(221\) 235.878 0.0717957
\(222\) 0 0
\(223\) 4163.11i 1.25015i 0.780566 + 0.625073i \(0.214931\pi\)
−0.780566 + 0.625073i \(0.785069\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 711.305i 0.207978i 0.994578 + 0.103989i \(0.0331606\pi\)
−0.994578 + 0.103989i \(0.966839\pi\)
\(228\) 0 0
\(229\) 5100.38 1.47180 0.735900 0.677090i \(-0.236759\pi\)
0.735900 + 0.677090i \(0.236759\pi\)
\(230\) 0 0
\(231\) −3188.47 −0.908165
\(232\) 0 0
\(233\) 1717.10i 0.482794i 0.970426 + 0.241397i \(0.0776056\pi\)
−0.970426 + 0.241397i \(0.922394\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 3190.91i 0.874564i
\(238\) 0 0
\(239\) 5152.34 1.39446 0.697232 0.716846i \(-0.254415\pi\)
0.697232 + 0.716846i \(0.254415\pi\)
\(240\) 0 0
\(241\) −1319.27 −0.352622 −0.176311 0.984335i \(-0.556416\pi\)
−0.176311 + 0.984335i \(0.556416\pi\)
\(242\) 0 0
\(243\) 4572.14i 1.20701i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 150.445i − 0.0387555i
\(248\) 0 0
\(249\) 1289.08 0.328081
\(250\) 0 0
\(251\) 4115.65 1.03497 0.517486 0.855692i \(-0.326868\pi\)
0.517486 + 0.855692i \(0.326868\pi\)
\(252\) 0 0
\(253\) 2665.34i 0.662326i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 908.155i 0.220425i 0.993908 + 0.110212i \(0.0351531\pi\)
−0.993908 + 0.110212i \(0.964847\pi\)
\(258\) 0 0
\(259\) 6539.00 1.56878
\(260\) 0 0
\(261\) −4001.32 −0.948949
\(262\) 0 0
\(263\) − 3489.71i − 0.818192i −0.912491 0.409096i \(-0.865844\pi\)
0.912491 0.409096i \(-0.134156\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 1685.66i − 0.386370i
\(268\) 0 0
\(269\) 5222.40 1.18370 0.591851 0.806048i \(-0.298398\pi\)
0.591851 + 0.806048i \(0.298398\pi\)
\(270\) 0 0
\(271\) −5379.46 −1.20583 −0.602913 0.797807i \(-0.705993\pi\)
−0.602913 + 0.797807i \(0.705993\pi\)
\(272\) 0 0
\(273\) 1724.69i 0.382354i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 341.942i 0.0741707i 0.999312 + 0.0370853i \(0.0118073\pi\)
−0.999312 + 0.0370853i \(0.988193\pi\)
\(278\) 0 0
\(279\) 6043.88 1.29691
\(280\) 0 0
\(281\) −1283.14 −0.272406 −0.136203 0.990681i \(-0.543490\pi\)
−0.136203 + 0.990681i \(0.543490\pi\)
\(282\) 0 0
\(283\) 6307.15i 1.32481i 0.749146 + 0.662405i \(0.230464\pi\)
−0.749146 + 0.662405i \(0.769536\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 14855.9i 3.05547i
\(288\) 0 0
\(289\) 4025.59 0.819375
\(290\) 0 0
\(291\) −6795.82 −1.36900
\(292\) 0 0
\(293\) − 2296.22i − 0.457838i −0.973446 0.228919i \(-0.926481\pi\)
0.973446 0.228919i \(-0.0735190\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 757.935i − 0.148080i
\(298\) 0 0
\(299\) 1441.72 0.278851
\(300\) 0 0
\(301\) 7095.55 1.35874
\(302\) 0 0
\(303\) − 13372.8i − 2.53548i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 1669.11i − 0.310297i −0.987891 0.155148i \(-0.950414\pi\)
0.987891 0.155148i \(-0.0495856\pi\)
\(308\) 0 0
\(309\) 5772.07 1.06266
\(310\) 0 0
\(311\) −1012.63 −0.184633 −0.0923165 0.995730i \(-0.529427\pi\)
−0.0923165 + 0.995730i \(0.529427\pi\)
\(312\) 0 0
\(313\) 8009.89i 1.44647i 0.690601 + 0.723236i \(0.257346\pi\)
−0.690601 + 0.723236i \(0.742654\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 4150.59i − 0.735395i −0.929945 0.367697i \(-0.880146\pi\)
0.929945 0.367697i \(-0.119854\pi\)
\(318\) 0 0
\(319\) 3019.44 0.529956
\(320\) 0 0
\(321\) 7858.45 1.36640
\(322\) 0 0
\(323\) 565.999i 0.0975016i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 9962.58i 1.68481i
\(328\) 0 0
\(329\) 7614.28 1.27595
\(330\) 0 0
\(331\) 8764.01 1.45533 0.727664 0.685934i \(-0.240606\pi\)
0.727664 + 0.685934i \(0.240606\pi\)
\(332\) 0 0
\(333\) − 3966.94i − 0.652814i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 4814.14i − 0.778169i −0.921202 0.389084i \(-0.872791\pi\)
0.921202 0.389084i \(-0.127209\pi\)
\(338\) 0 0
\(339\) −732.411 −0.117342
\(340\) 0 0
\(341\) −4560.77 −0.724280
\(342\) 0 0
\(343\) 10760.0i 1.69384i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5210.58i 0.806106i 0.915177 + 0.403053i \(0.132051\pi\)
−0.915177 + 0.403053i \(0.867949\pi\)
\(348\) 0 0
\(349\) −9425.26 −1.44562 −0.722812 0.691045i \(-0.757151\pi\)
−0.722812 + 0.691045i \(0.757151\pi\)
\(350\) 0 0
\(351\) −409.977 −0.0623445
\(352\) 0 0
\(353\) − 11426.8i − 1.72291i −0.507836 0.861454i \(-0.669554\pi\)
0.507836 0.861454i \(-0.330446\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 6488.53i − 0.961932i
\(358\) 0 0
\(359\) 11364.9 1.67080 0.835399 0.549645i \(-0.185237\pi\)
0.835399 + 0.549645i \(0.185237\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) 0 0
\(363\) 7606.68i 1.09985i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 10840.4i − 1.54187i −0.636915 0.770934i \(-0.719790\pi\)
0.636915 0.770934i \(-0.280210\pi\)
\(368\) 0 0
\(369\) 9012.49 1.27147
\(370\) 0 0
\(371\) 7205.47 1.00833
\(372\) 0 0
\(373\) − 9658.31i − 1.34072i −0.742037 0.670359i \(-0.766140\pi\)
0.742037 0.670359i \(-0.233860\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 1633.25i − 0.223121i
\(378\) 0 0
\(379\) −2901.55 −0.393253 −0.196626 0.980478i \(-0.562999\pi\)
−0.196626 + 0.980478i \(0.562999\pi\)
\(380\) 0 0
\(381\) 2907.76 0.390995
\(382\) 0 0
\(383\) 1832.81i 0.244522i 0.992498 + 0.122261i \(0.0390145\pi\)
−0.992498 + 0.122261i \(0.960985\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 4304.58i − 0.565411i
\(388\) 0 0
\(389\) −7372.36 −0.960909 −0.480455 0.877020i \(-0.659528\pi\)
−0.480455 + 0.877020i \(0.659528\pi\)
\(390\) 0 0
\(391\) −5423.96 −0.701538
\(392\) 0 0
\(393\) 6456.52i 0.828724i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 4041.80i 0.510963i 0.966814 + 0.255481i \(0.0822339\pi\)
−0.966814 + 0.255481i \(0.917766\pi\)
\(398\) 0 0
\(399\) −4138.46 −0.519253
\(400\) 0 0
\(401\) −5112.15 −0.636630 −0.318315 0.947985i \(-0.603117\pi\)
−0.318315 + 0.947985i \(0.603117\pi\)
\(402\) 0 0
\(403\) 2466.98i 0.304935i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2993.49i 0.364575i
\(408\) 0 0
\(409\) 3391.26 0.409992 0.204996 0.978763i \(-0.434282\pi\)
0.204996 + 0.978763i \(0.434282\pi\)
\(410\) 0 0
\(411\) 2493.76 0.299290
\(412\) 0 0
\(413\) 22270.0i 2.65335i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 5950.24i 0.698764i
\(418\) 0 0
\(419\) 15057.1 1.75558 0.877791 0.479044i \(-0.159017\pi\)
0.877791 + 0.479044i \(0.159017\pi\)
\(420\) 0 0
\(421\) 3581.77 0.414643 0.207322 0.978273i \(-0.433525\pi\)
0.207322 + 0.978273i \(0.433525\pi\)
\(422\) 0 0
\(423\) − 4619.27i − 0.530961i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 506.378i 0.0573896i
\(428\) 0 0
\(429\) −789.545 −0.0888568
\(430\) 0 0
\(431\) −959.700 −0.107255 −0.0536277 0.998561i \(-0.517078\pi\)
−0.0536277 + 0.998561i \(0.517078\pi\)
\(432\) 0 0
\(433\) 2273.23i 0.252297i 0.992011 + 0.126148i \(0.0402615\pi\)
−0.992011 + 0.126148i \(0.959738\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3459.46i 0.378692i
\(438\) 0 0
\(439\) −2185.56 −0.237611 −0.118805 0.992918i \(-0.537906\pi\)
−0.118805 + 0.992918i \(0.537906\pi\)
\(440\) 0 0
\(441\) 13181.5 1.42333
\(442\) 0 0
\(443\) − 14688.9i − 1.57537i −0.616078 0.787686i \(-0.711279\pi\)
0.616078 0.787686i \(-0.288721\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 8763.15i 0.927255i
\(448\) 0 0
\(449\) −3375.36 −0.354773 −0.177387 0.984141i \(-0.556764\pi\)
−0.177387 + 0.984141i \(0.556764\pi\)
\(450\) 0 0
\(451\) −6800.91 −0.710072
\(452\) 0 0
\(453\) 24304.9i 2.52085i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 2448.93i − 0.250670i −0.992114 0.125335i \(-0.959999\pi\)
0.992114 0.125335i \(-0.0400006\pi\)
\(458\) 0 0
\(459\) 1542.39 0.156847
\(460\) 0 0
\(461\) 5710.76 0.576956 0.288478 0.957487i \(-0.406851\pi\)
0.288478 + 0.957487i \(0.406851\pi\)
\(462\) 0 0
\(463\) − 11404.1i − 1.14470i −0.820010 0.572349i \(-0.806032\pi\)
0.820010 0.572349i \(-0.193968\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 37.4330i 0.00370920i 0.999998 + 0.00185460i \(0.000590337\pi\)
−0.999998 + 0.00185460i \(0.999410\pi\)
\(468\) 0 0
\(469\) 20720.0 2.04000
\(470\) 0 0
\(471\) −10235.5 −1.00133
\(472\) 0 0
\(473\) 3248.28i 0.315763i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 4371.26i − 0.419594i
\(478\) 0 0
\(479\) −6620.24 −0.631496 −0.315748 0.948843i \(-0.602255\pi\)
−0.315748 + 0.948843i \(0.602255\pi\)
\(480\) 0 0
\(481\) 1619.22 0.153493
\(482\) 0 0
\(483\) − 39658.8i − 3.73610i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 13877.3i 1.29125i 0.763654 + 0.645626i \(0.223404\pi\)
−0.763654 + 0.645626i \(0.776596\pi\)
\(488\) 0 0
\(489\) 2904.45 0.268597
\(490\) 0 0
\(491\) −19304.1 −1.77430 −0.887150 0.461481i \(-0.847318\pi\)
−0.887150 + 0.461481i \(0.847318\pi\)
\(492\) 0 0
\(493\) 6144.55i 0.561332i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 9068.13i 0.818433i
\(498\) 0 0
\(499\) −9124.18 −0.818546 −0.409273 0.912412i \(-0.634218\pi\)
−0.409273 + 0.912412i \(0.634218\pi\)
\(500\) 0 0
\(501\) −1649.58 −0.147101
\(502\) 0 0
\(503\) 1223.67i 0.108471i 0.998528 + 0.0542353i \(0.0172721\pi\)
−0.998528 + 0.0542353i \(0.982728\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 14538.2i − 1.27350i
\(508\) 0 0
\(509\) −14494.0 −1.26215 −0.631074 0.775722i \(-0.717386\pi\)
−0.631074 + 0.775722i \(0.717386\pi\)
\(510\) 0 0
\(511\) −20188.1 −1.74769
\(512\) 0 0
\(513\) − 983.756i − 0.0846664i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 3485.74i 0.296524i
\(518\) 0 0
\(519\) −25641.6 −2.16867
\(520\) 0 0
\(521\) 8128.22 0.683501 0.341750 0.939791i \(-0.388980\pi\)
0.341750 + 0.939791i \(0.388980\pi\)
\(522\) 0 0
\(523\) 18389.3i 1.53749i 0.639553 + 0.768747i \(0.279119\pi\)
−0.639553 + 0.768747i \(0.720881\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 9281.15i − 0.767160i
\(528\) 0 0
\(529\) −20984.9 −1.72474
\(530\) 0 0
\(531\) 13510.3 1.10413
\(532\) 0 0
\(533\) 3678.70i 0.298953i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 9486.82i − 0.762358i
\(538\) 0 0
\(539\) −9946.87 −0.794883
\(540\) 0 0
\(541\) −5025.77 −0.399399 −0.199699 0.979857i \(-0.563997\pi\)
−0.199699 + 0.979857i \(0.563997\pi\)
\(542\) 0 0
\(543\) − 10775.7i − 0.851623i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 12216.2i − 0.954891i −0.878661 0.477445i \(-0.841563\pi\)
0.878661 0.477445i \(-0.158437\pi\)
\(548\) 0 0
\(549\) 307.199 0.0238815
\(550\) 0 0
\(551\) 3919.06 0.303008
\(552\) 0 0
\(553\) 14979.3i 1.15187i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 4377.09i − 0.332968i −0.986044 0.166484i \(-0.946759\pi\)
0.986044 0.166484i \(-0.0532415\pi\)
\(558\) 0 0
\(559\) 1757.03 0.132942
\(560\) 0 0
\(561\) 2970.39 0.223547
\(562\) 0 0
\(563\) − 2452.77i − 0.183609i −0.995777 0.0918045i \(-0.970737\pi\)
0.995777 0.0918045i \(-0.0292635\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 28025.9i 2.07580i
\(568\) 0 0
\(569\) −15130.0 −1.11473 −0.557366 0.830267i \(-0.688188\pi\)
−0.557366 + 0.830267i \(0.688188\pi\)
\(570\) 0 0
\(571\) −23717.3 −1.73824 −0.869122 0.494597i \(-0.835316\pi\)
−0.869122 + 0.494597i \(0.835316\pi\)
\(572\) 0 0
\(573\) 29260.8i 2.13331i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 14138.3i − 1.02008i −0.860150 0.510041i \(-0.829630\pi\)
0.860150 0.510041i \(-0.170370\pi\)
\(578\) 0 0
\(579\) −28870.6 −2.07223
\(580\) 0 0
\(581\) 6051.42 0.432109
\(582\) 0 0
\(583\) 3298.60i 0.234329i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 23783.2i 1.67230i 0.548502 + 0.836149i \(0.315198\pi\)
−0.548502 + 0.836149i \(0.684802\pi\)
\(588\) 0 0
\(589\) −5919.62 −0.414115
\(590\) 0 0
\(591\) 11218.3 0.780811
\(592\) 0 0
\(593\) − 19528.9i − 1.35237i −0.736731 0.676186i \(-0.763632\pi\)
0.736731 0.676186i \(-0.236368\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 9633.31i 0.660411i
\(598\) 0 0
\(599\) 10823.7 0.738303 0.369151 0.929369i \(-0.379648\pi\)
0.369151 + 0.929369i \(0.379648\pi\)
\(600\) 0 0
\(601\) −8575.23 −0.582015 −0.291007 0.956721i \(-0.593990\pi\)
−0.291007 + 0.956721i \(0.593990\pi\)
\(602\) 0 0
\(603\) − 12570.0i − 0.848903i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 976.558i 0.0653003i 0.999467 + 0.0326502i \(0.0103947\pi\)
−0.999467 + 0.0326502i \(0.989605\pi\)
\(608\) 0 0
\(609\) −44927.6 −2.98942
\(610\) 0 0
\(611\) 1885.48 0.124842
\(612\) 0 0
\(613\) − 1469.78i − 0.0968413i −0.998827 0.0484207i \(-0.984581\pi\)
0.998827 0.0484207i \(-0.0154188\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 2057.79i − 0.134268i −0.997744 0.0671341i \(-0.978614\pi\)
0.997744 0.0671341i \(-0.0213855\pi\)
\(618\) 0 0
\(619\) 18583.0 1.20665 0.603323 0.797497i \(-0.293843\pi\)
0.603323 + 0.797497i \(0.293843\pi\)
\(620\) 0 0
\(621\) 9427.32 0.609187
\(622\) 0 0
\(623\) − 7913.13i − 0.508881i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 1894.55i − 0.120671i
\(628\) 0 0
\(629\) −6091.75 −0.386159
\(630\) 0 0
\(631\) −20172.8 −1.27269 −0.636345 0.771405i \(-0.719554\pi\)
−0.636345 + 0.771405i \(0.719554\pi\)
\(632\) 0 0
\(633\) 26469.3i 1.66203i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 5380.39i 0.334660i
\(638\) 0 0
\(639\) 5501.26 0.340573
\(640\) 0 0
\(641\) −19883.1 −1.22517 −0.612585 0.790404i \(-0.709870\pi\)
−0.612585 + 0.790404i \(0.709870\pi\)
\(642\) 0 0
\(643\) − 21729.3i − 1.33269i −0.745643 0.666346i \(-0.767858\pi\)
0.745643 0.666346i \(-0.232142\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 18968.7i 1.15260i 0.817237 + 0.576302i \(0.195505\pi\)
−0.817237 + 0.576302i \(0.804495\pi\)
\(648\) 0 0
\(649\) −10195.0 −0.616622
\(650\) 0 0
\(651\) 67861.7 4.08558
\(652\) 0 0
\(653\) 8314.64i 0.498280i 0.968467 + 0.249140i \(0.0801480\pi\)
−0.968467 + 0.249140i \(0.919852\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 12247.3i 0.727264i
\(658\) 0 0
\(659\) 695.894 0.0411353 0.0205677 0.999788i \(-0.493453\pi\)
0.0205677 + 0.999788i \(0.493453\pi\)
\(660\) 0 0
\(661\) −31763.8 −1.86909 −0.934546 0.355844i \(-0.884194\pi\)
−0.934546 + 0.355844i \(0.884194\pi\)
\(662\) 0 0
\(663\) − 1606.72i − 0.0941175i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 37556.3i 2.18019i
\(668\) 0 0
\(669\) 28357.7 1.63882
\(670\) 0 0
\(671\) −231.815 −0.0133370
\(672\) 0 0
\(673\) 15204.8i 0.870878i 0.900218 + 0.435439i \(0.143407\pi\)
−0.900218 + 0.435439i \(0.856593\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 8507.78i 0.482985i 0.970403 + 0.241492i \(0.0776368\pi\)
−0.970403 + 0.241492i \(0.922363\pi\)
\(678\) 0 0
\(679\) −31902.1 −1.80308
\(680\) 0 0
\(681\) 4845.17 0.272639
\(682\) 0 0
\(683\) 22495.3i 1.26026i 0.776489 + 0.630131i \(0.216999\pi\)
−0.776489 + 0.630131i \(0.783001\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 34742.1i − 1.92939i
\(688\) 0 0
\(689\) 1784.25 0.0986569
\(690\) 0 0
\(691\) −4729.40 −0.260369 −0.130184 0.991490i \(-0.541557\pi\)
−0.130184 + 0.991490i \(0.541557\pi\)
\(692\) 0 0
\(693\) 9080.40i 0.497743i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 13839.8i − 0.752111i
\(698\) 0 0
\(699\) 11696.3 0.632898
\(700\) 0 0
\(701\) 3185.96 0.171658 0.0858289 0.996310i \(-0.472646\pi\)
0.0858289 + 0.996310i \(0.472646\pi\)
\(702\) 0 0
\(703\) 3885.38i 0.208450i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 62777.1i − 3.33943i
\(708\) 0 0
\(709\) 15222.4 0.806329 0.403165 0.915127i \(-0.367910\pi\)
0.403165 + 0.915127i \(0.367910\pi\)
\(710\) 0 0
\(711\) 9087.33 0.479327
\(712\) 0 0
\(713\) − 56727.6i − 2.97961i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 35096.0i − 1.82801i
\(718\) 0 0
\(719\) −12520.3 −0.649413 −0.324707 0.945815i \(-0.605266\pi\)
−0.324707 + 0.945815i \(0.605266\pi\)
\(720\) 0 0
\(721\) 27096.3 1.39961
\(722\) 0 0
\(723\) 8986.46i 0.462254i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 29136.7i − 1.48641i −0.669064 0.743204i \(-0.733305\pi\)
0.669064 0.743204i \(-0.266695\pi\)
\(728\) 0 0
\(729\) 7479.68 0.380007
\(730\) 0 0
\(731\) −6610.23 −0.334457
\(732\) 0 0
\(733\) − 11257.4i − 0.567261i −0.958934 0.283631i \(-0.908461\pi\)
0.958934 0.283631i \(-0.0915389\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 9485.42i 0.474084i
\(738\) 0 0
\(739\) 28012.1 1.39437 0.697186 0.716891i \(-0.254435\pi\)
0.697186 + 0.716891i \(0.254435\pi\)
\(740\) 0 0
\(741\) −1024.78 −0.0508048
\(742\) 0 0
\(743\) − 19728.6i − 0.974119i −0.873369 0.487059i \(-0.838069\pi\)
0.873369 0.487059i \(-0.161931\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 3671.15i − 0.179813i
\(748\) 0 0
\(749\) 36890.5 1.79966
\(750\) 0 0
\(751\) −27864.0 −1.35389 −0.676946 0.736033i \(-0.736697\pi\)
−0.676946 + 0.736033i \(0.736697\pi\)
\(752\) 0 0
\(753\) − 28034.5i − 1.35675i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 28073.3i − 1.34788i −0.738788 0.673938i \(-0.764601\pi\)
0.738788 0.673938i \(-0.235399\pi\)
\(758\) 0 0
\(759\) 18155.4 0.868247
\(760\) 0 0
\(761\) −6364.06 −0.303150 −0.151575 0.988446i \(-0.548434\pi\)
−0.151575 + 0.988446i \(0.548434\pi\)
\(762\) 0 0
\(763\) 46768.1i 2.21903i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 5514.59i 0.259609i
\(768\) 0 0
\(769\) −29420.5 −1.37963 −0.689813 0.723988i \(-0.742307\pi\)
−0.689813 + 0.723988i \(0.742307\pi\)
\(770\) 0 0
\(771\) 6186.05 0.288956
\(772\) 0 0
\(773\) − 15358.7i − 0.714636i −0.933983 0.357318i \(-0.883691\pi\)
0.933983 0.357318i \(-0.116309\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 44541.5i − 2.05652i
\(778\) 0 0
\(779\) −8827.20 −0.405991
\(780\) 0 0
\(781\) −4151.30 −0.190199
\(782\) 0 0
\(783\) − 10679.8i − 0.487438i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 36923.7i − 1.67241i −0.548417 0.836205i \(-0.684769\pi\)
0.548417 0.836205i \(-0.315231\pi\)
\(788\) 0 0
\(789\) −23770.7 −1.07257
\(790\) 0 0
\(791\) −3438.21 −0.154549
\(792\) 0 0
\(793\) 125.392i 0.00561512i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 32199.5i − 1.43107i −0.698576 0.715536i \(-0.746183\pi\)
0.698576 0.715536i \(-0.253817\pi\)
\(798\) 0 0
\(799\) −7093.48 −0.314079
\(800\) 0 0
\(801\) −4800.57 −0.211760
\(802\) 0 0
\(803\) − 9241.92i − 0.406152i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 35573.3i − 1.55172i
\(808\) 0 0
\(809\) −21103.2 −0.917118 −0.458559 0.888664i \(-0.651634\pi\)
−0.458559 + 0.888664i \(0.651634\pi\)
\(810\) 0 0
\(811\) 40963.8 1.77366 0.886828 0.462100i \(-0.152904\pi\)
0.886828 + 0.462100i \(0.152904\pi\)
\(812\) 0 0
\(813\) 36643.1i 1.58073i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 4216.08i 0.180541i
\(818\) 0 0
\(819\) 4911.70 0.209559
\(820\) 0 0
\(821\) −29667.8 −1.26116 −0.630580 0.776124i \(-0.717183\pi\)
−0.630580 + 0.776124i \(0.717183\pi\)
\(822\) 0 0
\(823\) 38960.0i 1.65013i 0.565036 + 0.825066i \(0.308862\pi\)
−0.565036 + 0.825066i \(0.691138\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 13349.6i − 0.561320i −0.959807 0.280660i \(-0.909447\pi\)
0.959807 0.280660i \(-0.0905533\pi\)
\(828\) 0 0
\(829\) 34207.3 1.43313 0.716567 0.697518i \(-0.245712\pi\)
0.716567 + 0.697518i \(0.245712\pi\)
\(830\) 0 0
\(831\) 2329.19 0.0972308
\(832\) 0 0
\(833\) − 20241.8i − 0.841943i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 16131.5i 0.666171i
\(838\) 0 0
\(839\) 12722.3 0.523508 0.261754 0.965135i \(-0.415699\pi\)
0.261754 + 0.965135i \(0.415699\pi\)
\(840\) 0 0
\(841\) 18156.8 0.744465
\(842\) 0 0
\(843\) 8740.35i 0.357098i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 35708.6i 1.44860i
\(848\) 0 0
\(849\) 42962.2 1.73670
\(850\) 0 0
\(851\) −37233.6 −1.49982
\(852\) 0 0
\(853\) − 35044.9i − 1.40670i −0.710844 0.703350i \(-0.751687\pi\)
0.710844 0.703350i \(-0.248313\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 23765.5i − 0.947276i −0.880720 0.473638i \(-0.842941\pi\)
0.880720 0.473638i \(-0.157059\pi\)
\(858\) 0 0
\(859\) −868.267 −0.0344876 −0.0172438 0.999851i \(-0.505489\pi\)
−0.0172438 + 0.999851i \(0.505489\pi\)
\(860\) 0 0
\(861\) 101194. 4.00543
\(862\) 0 0
\(863\) − 42333.1i − 1.66980i −0.550405 0.834898i \(-0.685527\pi\)
0.550405 0.834898i \(-0.314473\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 27421.0i − 1.07412i
\(868\) 0 0
\(869\) −6857.39 −0.267688
\(870\) 0 0
\(871\) 5130.78 0.199598
\(872\) 0 0
\(873\) 19353.7i 0.750313i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 10340.9i 0.398161i 0.979983 + 0.199081i \(0.0637956\pi\)
−0.979983 + 0.199081i \(0.936204\pi\)
\(878\) 0 0
\(879\) −15641.1 −0.600182
\(880\) 0 0
\(881\) −10277.7 −0.393036 −0.196518 0.980500i \(-0.562963\pi\)
−0.196518 + 0.980500i \(0.562963\pi\)
\(882\) 0 0
\(883\) − 26761.7i − 1.01994i −0.860193 0.509968i \(-0.829657\pi\)
0.860193 0.509968i \(-0.170343\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 12470.6i 0.472067i 0.971745 + 0.236033i \(0.0758475\pi\)
−0.971745 + 0.236033i \(0.924153\pi\)
\(888\) 0 0
\(889\) 13650.1 0.514972
\(890\) 0 0
\(891\) −12830.0 −0.482404
\(892\) 0 0
\(893\) 4524.30i 0.169541i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 9820.49i − 0.365548i
\(898\) 0 0
\(899\) −64264.0 −2.38412
\(900\) 0 0
\(901\) −6712.63 −0.248202
\(902\) 0 0
\(903\) − 48332.5i − 1.78118i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 33385.7i 1.22222i 0.791545 + 0.611111i \(0.209277\pi\)
−0.791545 + 0.611111i \(0.790723\pi\)
\(908\) 0 0
\(909\) −38084.3 −1.38963
\(910\) 0 0
\(911\) −13763.8 −0.500565 −0.250282 0.968173i \(-0.580523\pi\)
−0.250282 + 0.968173i \(0.580523\pi\)
\(912\) 0 0
\(913\) 2770.28i 0.100420i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 30309.3i 1.09150i
\(918\) 0 0
\(919\) 155.072 0.00556621 0.00278310 0.999996i \(-0.499114\pi\)
0.00278310 + 0.999996i \(0.499114\pi\)
\(920\) 0 0
\(921\) −11369.4 −0.406770
\(922\) 0 0
\(923\) 2245.49i 0.0800772i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 16438.2i − 0.582417i
\(928\) 0 0
\(929\) 9104.53 0.321539 0.160770 0.986992i \(-0.448602\pi\)
0.160770 + 0.986992i \(0.448602\pi\)
\(930\) 0 0
\(931\) −12910.5 −0.454483
\(932\) 0 0
\(933\) 6897.69i 0.242037i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 33827.8i 1.17941i 0.807619 + 0.589705i \(0.200756\pi\)
−0.807619 + 0.589705i \(0.799244\pi\)
\(938\) 0 0
\(939\) 54560.7 1.89619
\(940\) 0 0
\(941\) −8399.15 −0.290972 −0.145486 0.989360i \(-0.546475\pi\)
−0.145486 + 0.989360i \(0.546475\pi\)
\(942\) 0 0
\(943\) − 84590.9i − 2.92116i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 13075.6i − 0.448679i −0.974511 0.224340i \(-0.927977\pi\)
0.974511 0.224340i \(-0.0720225\pi\)
\(948\) 0 0
\(949\) −4999.07 −0.170998
\(950\) 0 0
\(951\) −28272.4 −0.964034
\(952\) 0 0
\(953\) 45819.4i 1.55744i 0.627374 + 0.778718i \(0.284130\pi\)
−0.627374 + 0.778718i \(0.715870\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 20567.4i − 0.694723i
\(958\) 0 0
\(959\) 11706.7 0.394189
\(960\) 0 0
\(961\) 67277.8 2.25833
\(962\) 0 0
\(963\) − 22379.9i − 0.748892i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 36703.4i − 1.22058i −0.792177 0.610291i \(-0.791052\pi\)
0.792177 0.610291i \(-0.208948\pi\)
\(968\) 0 0
\(969\) 3855.40 0.127815
\(970\) 0 0
\(971\) −24412.1 −0.806819 −0.403409 0.915020i \(-0.632175\pi\)
−0.403409 + 0.915020i \(0.632175\pi\)
\(972\) 0 0
\(973\) 27932.7i 0.920329i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 32264.8i 1.05654i 0.849075 + 0.528272i \(0.177160\pi\)
−0.849075 + 0.528272i \(0.822840\pi\)
\(978\) 0 0
\(979\) 3622.56 0.118261
\(980\) 0 0
\(981\) 28372.3 0.923401
\(982\) 0 0
\(983\) − 19591.4i − 0.635676i −0.948145 0.317838i \(-0.897043\pi\)
0.948145 0.317838i \(-0.102957\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 51865.9i − 1.67266i
\(988\) 0 0
\(989\) −40402.6 −1.29902
\(990\) 0 0
\(991\) 20684.3 0.663026 0.331513 0.943451i \(-0.392441\pi\)
0.331513 + 0.943451i \(0.392441\pi\)
\(992\) 0 0
\(993\) − 59697.6i − 1.90780i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 2597.95i 0.0825255i 0.999148 + 0.0412627i \(0.0131381\pi\)
−0.999148 + 0.0412627i \(0.986862\pi\)
\(998\) 0 0
\(999\) 10588.0 0.335325
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1900.4.c.d.1749.2 8
5.2 odd 4 1900.4.a.e.1.1 4
5.3 odd 4 380.4.a.c.1.4 4
5.4 even 2 inner 1900.4.c.d.1749.7 8
20.3 even 4 1520.4.a.s.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
380.4.a.c.1.4 4 5.3 odd 4
1520.4.a.s.1.1 4 20.3 even 4
1900.4.a.e.1.1 4 5.2 odd 4
1900.4.c.d.1749.2 8 1.1 even 1 trivial
1900.4.c.d.1749.7 8 5.4 even 2 inner