Properties

Label 1900.4.c.d.1749.1
Level $1900$
Weight $4$
Character 1900.1749
Analytic conductor $112.104$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1900,4,Mod(1749,1900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1900.1749"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1900, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1900 = 2^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1900.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,-208] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(112.103629011\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 2x^{6} + 92x^{5} + 1602x^{4} + 478x^{3} + 72x^{2} + 6612x + 303601 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 380)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1749.1
Root \(4.98345 - 4.98345i\) of defining polynomial
Character \(\chi\) \(=\) 1900.1749
Dual form 1900.4.c.d.1749.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.96691i q^{3} +1.49735i q^{7} -72.3392 q^{9} -48.4512 q^{11} +61.3319i q^{13} -75.6585i q^{17} +19.0000 q^{19} +14.9240 q^{21} +136.212i q^{23} +451.892i q^{27} -2.11680 q^{29} +78.1380 q^{31} +482.908i q^{33} +295.250i q^{37} +611.289 q^{39} -337.387 q^{41} -517.650i q^{43} -399.581i q^{47} +340.758 q^{49} -754.081 q^{51} +457.884i q^{53} -189.371i q^{57} +305.196 q^{59} -267.687 q^{61} -108.317i q^{63} -493.582i q^{67} +1357.61 q^{69} -127.630 q^{71} -321.806i q^{73} -72.5485i q^{77} +533.196 q^{79} +2550.81 q^{81} +841.170i q^{83} +21.0980i q^{87} +1156.42 q^{89} -91.8354 q^{91} -778.794i q^{93} -374.645i q^{97} +3504.92 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 208 q^{9} - 120 q^{11} + 152 q^{19} - 408 q^{21} + 328 q^{29} - 1512 q^{31} + 1752 q^{39} - 352 q^{41} + 664 q^{49} - 2488 q^{51} + 288 q^{59} - 2072 q^{61} + 3320 q^{69} + 2888 q^{71} + 2112 q^{79}+ \cdots + 8296 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1900\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\) \(951\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 9.96691i − 1.91813i −0.283182 0.959066i \(-0.591390\pi\)
0.283182 0.959066i \(-0.408610\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.49735i 0.0808494i 0.999183 + 0.0404247i \(0.0128711\pi\)
−0.999183 + 0.0404247i \(0.987129\pi\)
\(8\) 0 0
\(9\) −72.3392 −2.67923
\(10\) 0 0
\(11\) −48.4512 −1.32805 −0.664026 0.747709i \(-0.731154\pi\)
−0.664026 + 0.747709i \(0.731154\pi\)
\(12\) 0 0
\(13\) 61.3319i 1.30849i 0.756281 + 0.654246i \(0.227014\pi\)
−0.756281 + 0.654246i \(0.772986\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 75.6585i − 1.07940i −0.841856 0.539702i \(-0.818537\pi\)
0.841856 0.539702i \(-0.181463\pi\)
\(18\) 0 0
\(19\) 19.0000 0.229416
\(20\) 0 0
\(21\) 14.9240 0.155080
\(22\) 0 0
\(23\) 136.212i 1.23487i 0.786620 + 0.617437i \(0.211829\pi\)
−0.786620 + 0.617437i \(0.788171\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 451.892i 3.22099i
\(28\) 0 0
\(29\) −2.11680 −0.0135545 −0.00677724 0.999977i \(-0.502157\pi\)
−0.00677724 + 0.999977i \(0.502157\pi\)
\(30\) 0 0
\(31\) 78.1380 0.452710 0.226355 0.974045i \(-0.427319\pi\)
0.226355 + 0.974045i \(0.427319\pi\)
\(32\) 0 0
\(33\) 482.908i 2.54738i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 295.250i 1.31186i 0.754823 + 0.655929i \(0.227723\pi\)
−0.754823 + 0.655929i \(0.772277\pi\)
\(38\) 0 0
\(39\) 611.289 2.50986
\(40\) 0 0
\(41\) −337.387 −1.28515 −0.642574 0.766224i \(-0.722133\pi\)
−0.642574 + 0.766224i \(0.722133\pi\)
\(42\) 0 0
\(43\) − 517.650i − 1.83583i −0.396771 0.917917i \(-0.629869\pi\)
0.396771 0.917917i \(-0.370131\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 399.581i − 1.24010i −0.784561 0.620052i \(-0.787111\pi\)
0.784561 0.620052i \(-0.212889\pi\)
\(48\) 0 0
\(49\) 340.758 0.993463
\(50\) 0 0
\(51\) −754.081 −2.07044
\(52\) 0 0
\(53\) 457.884i 1.18670i 0.804944 + 0.593351i \(0.202195\pi\)
−0.804944 + 0.593351i \(0.797805\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 189.371i − 0.440050i
\(58\) 0 0
\(59\) 305.196 0.673443 0.336722 0.941604i \(-0.390682\pi\)
0.336722 + 0.941604i \(0.390682\pi\)
\(60\) 0 0
\(61\) −267.687 −0.561866 −0.280933 0.959727i \(-0.590644\pi\)
−0.280933 + 0.959727i \(0.590644\pi\)
\(62\) 0 0
\(63\) − 108.317i − 0.216614i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 493.582i − 0.900010i −0.893026 0.450005i \(-0.851422\pi\)
0.893026 0.450005i \(-0.148578\pi\)
\(68\) 0 0
\(69\) 1357.61 2.36865
\(70\) 0 0
\(71\) −127.630 −0.213336 −0.106668 0.994295i \(-0.534018\pi\)
−0.106668 + 0.994295i \(0.534018\pi\)
\(72\) 0 0
\(73\) − 321.806i − 0.515953i −0.966151 0.257977i \(-0.916944\pi\)
0.966151 0.257977i \(-0.0830557\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 72.5485i − 0.107372i
\(78\) 0 0
\(79\) 533.196 0.759358 0.379679 0.925118i \(-0.376034\pi\)
0.379679 + 0.925118i \(0.376034\pi\)
\(80\) 0 0
\(81\) 2550.81 3.49905
\(82\) 0 0
\(83\) 841.170i 1.11241i 0.831044 + 0.556207i \(0.187744\pi\)
−0.831044 + 0.556207i \(0.812256\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 21.0980i 0.0259993i
\(88\) 0 0
\(89\) 1156.42 1.37730 0.688652 0.725092i \(-0.258203\pi\)
0.688652 + 0.725092i \(0.258203\pi\)
\(90\) 0 0
\(91\) −91.8354 −0.105791
\(92\) 0 0
\(93\) − 778.794i − 0.868357i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 374.645i − 0.392159i −0.980588 0.196080i \(-0.937179\pi\)
0.980588 0.196080i \(-0.0628211\pi\)
\(98\) 0 0
\(99\) 3504.92 3.55816
\(100\) 0 0
\(101\) 1476.58 1.45470 0.727351 0.686266i \(-0.240751\pi\)
0.727351 + 0.686266i \(0.240751\pi\)
\(102\) 0 0
\(103\) − 2023.24i − 1.93550i −0.251919 0.967748i \(-0.581062\pi\)
0.251919 0.967748i \(-0.418938\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 541.583i 0.489316i 0.969609 + 0.244658i \(0.0786757\pi\)
−0.969609 + 0.244658i \(0.921324\pi\)
\(108\) 0 0
\(109\) −1716.60 −1.50844 −0.754222 0.656619i \(-0.771986\pi\)
−0.754222 + 0.656619i \(0.771986\pi\)
\(110\) 0 0
\(111\) 2942.73 2.51632
\(112\) 0 0
\(113\) 915.575i 0.762213i 0.924531 + 0.381106i \(0.124457\pi\)
−0.924531 + 0.381106i \(0.875543\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 4436.70i − 3.50575i
\(118\) 0 0
\(119\) 113.287 0.0872692
\(120\) 0 0
\(121\) 1016.52 0.763724
\(122\) 0 0
\(123\) 3362.71i 2.46508i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 84.3820i − 0.0589582i −0.999565 0.0294791i \(-0.990615\pi\)
0.999565 0.0294791i \(-0.00938485\pi\)
\(128\) 0 0
\(129\) −5159.37 −3.52137
\(130\) 0 0
\(131\) −1932.94 −1.28917 −0.644586 0.764532i \(-0.722970\pi\)
−0.644586 + 0.764532i \(0.722970\pi\)
\(132\) 0 0
\(133\) 28.4497i 0.0185481i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1511.12i 0.942364i 0.882036 + 0.471182i \(0.156173\pi\)
−0.882036 + 0.471182i \(0.843827\pi\)
\(138\) 0 0
\(139\) 2103.82 1.28377 0.641883 0.766803i \(-0.278154\pi\)
0.641883 + 0.766803i \(0.278154\pi\)
\(140\) 0 0
\(141\) −3982.59 −2.37868
\(142\) 0 0
\(143\) − 2971.60i − 1.73775i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 3396.30i − 1.90559i
\(148\) 0 0
\(149\) 526.829 0.289661 0.144831 0.989456i \(-0.453736\pi\)
0.144831 + 0.989456i \(0.453736\pi\)
\(150\) 0 0
\(151\) 693.542 0.373772 0.186886 0.982382i \(-0.440160\pi\)
0.186886 + 0.982382i \(0.440160\pi\)
\(152\) 0 0
\(153\) 5473.08i 2.89197i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1022.47i 0.519759i 0.965641 + 0.259879i \(0.0836828\pi\)
−0.965641 + 0.259879i \(0.916317\pi\)
\(158\) 0 0
\(159\) 4563.68 2.27625
\(160\) 0 0
\(161\) −203.957 −0.0998389
\(162\) 0 0
\(163\) 1555.34i 0.747384i 0.927553 + 0.373692i \(0.121908\pi\)
−0.927553 + 0.373692i \(0.878092\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2339.95i 1.08425i 0.840296 + 0.542127i \(0.182381\pi\)
−0.840296 + 0.542127i \(0.817619\pi\)
\(168\) 0 0
\(169\) −1564.60 −0.712153
\(170\) 0 0
\(171\) −1374.45 −0.614658
\(172\) 0 0
\(173\) − 925.676i − 0.406808i −0.979095 0.203404i \(-0.934799\pi\)
0.979095 0.203404i \(-0.0652005\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 3041.86i − 1.29175i
\(178\) 0 0
\(179\) 2947.07 1.23058 0.615292 0.788300i \(-0.289038\pi\)
0.615292 + 0.788300i \(0.289038\pi\)
\(180\) 0 0
\(181\) −2771.66 −1.13821 −0.569105 0.822265i \(-0.692710\pi\)
−0.569105 + 0.822265i \(0.692710\pi\)
\(182\) 0 0
\(183\) 2668.01i 1.07773i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 3665.74i 1.43351i
\(188\) 0 0
\(189\) −676.642 −0.260415
\(190\) 0 0
\(191\) 3979.61 1.50761 0.753807 0.657096i \(-0.228215\pi\)
0.753807 + 0.657096i \(0.228215\pi\)
\(192\) 0 0
\(193\) − 4349.70i − 1.62227i −0.584858 0.811135i \(-0.698850\pi\)
0.584858 0.811135i \(-0.301150\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 138.507i 0.0500924i 0.999686 + 0.0250462i \(0.00797328\pi\)
−0.999686 + 0.0250462i \(0.992027\pi\)
\(198\) 0 0
\(199\) 950.363 0.338540 0.169270 0.985570i \(-0.445859\pi\)
0.169270 + 0.985570i \(0.445859\pi\)
\(200\) 0 0
\(201\) −4919.49 −1.72634
\(202\) 0 0
\(203\) − 3.16960i − 0.00109587i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 9853.46i − 3.30851i
\(208\) 0 0
\(209\) −920.572 −0.304676
\(210\) 0 0
\(211\) 224.573 0.0732714 0.0366357 0.999329i \(-0.488336\pi\)
0.0366357 + 0.999329i \(0.488336\pi\)
\(212\) 0 0
\(213\) 1272.07i 0.409206i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 117.000i 0.0366013i
\(218\) 0 0
\(219\) −3207.41 −0.989666
\(220\) 0 0
\(221\) 4640.28 1.41239
\(222\) 0 0
\(223\) 1323.38i 0.397399i 0.980060 + 0.198699i \(0.0636718\pi\)
−0.980060 + 0.198699i \(0.936328\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3205.58i 0.937277i 0.883390 + 0.468638i \(0.155255\pi\)
−0.883390 + 0.468638i \(0.844745\pi\)
\(228\) 0 0
\(229\) 4464.24 1.28823 0.644117 0.764927i \(-0.277225\pi\)
0.644117 + 0.764927i \(0.277225\pi\)
\(230\) 0 0
\(231\) −723.084 −0.205954
\(232\) 0 0
\(233\) 2540.52i 0.714313i 0.934045 + 0.357156i \(0.116254\pi\)
−0.934045 + 0.357156i \(0.883746\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 5314.32i − 1.45655i
\(238\) 0 0
\(239\) −5229.76 −1.41542 −0.707709 0.706504i \(-0.750271\pi\)
−0.707709 + 0.706504i \(0.750271\pi\)
\(240\) 0 0
\(241\) −2405.13 −0.642856 −0.321428 0.946934i \(-0.604163\pi\)
−0.321428 + 0.946934i \(0.604163\pi\)
\(242\) 0 0
\(243\) − 13222.6i − 3.49065i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1165.31i 0.300189i
\(248\) 0 0
\(249\) 8383.86 2.13376
\(250\) 0 0
\(251\) 1319.69 0.331865 0.165933 0.986137i \(-0.446937\pi\)
0.165933 + 0.986137i \(0.446937\pi\)
\(252\) 0 0
\(253\) − 6599.62i − 1.63998i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4340.90i 1.05361i 0.849986 + 0.526806i \(0.176610\pi\)
−0.849986 + 0.526806i \(0.823390\pi\)
\(258\) 0 0
\(259\) −442.093 −0.106063
\(260\) 0 0
\(261\) 153.128 0.0363156
\(262\) 0 0
\(263\) 3283.43i 0.769828i 0.922952 + 0.384914i \(0.125769\pi\)
−0.922952 + 0.384914i \(0.874231\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 11525.9i − 2.64185i
\(268\) 0 0
\(269\) 5440.61 1.23316 0.616580 0.787293i \(-0.288518\pi\)
0.616580 + 0.787293i \(0.288518\pi\)
\(270\) 0 0
\(271\) 116.693 0.0261572 0.0130786 0.999914i \(-0.495837\pi\)
0.0130786 + 0.999914i \(0.495837\pi\)
\(272\) 0 0
\(273\) 915.315i 0.202921i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 7382.82i − 1.60141i −0.599059 0.800705i \(-0.704458\pi\)
0.599059 0.800705i \(-0.295542\pi\)
\(278\) 0 0
\(279\) −5652.44 −1.21291
\(280\) 0 0
\(281\) −4969.40 −1.05498 −0.527490 0.849561i \(-0.676867\pi\)
−0.527490 + 0.849561i \(0.676867\pi\)
\(282\) 0 0
\(283\) − 4452.88i − 0.935323i −0.883908 0.467661i \(-0.845097\pi\)
0.883908 0.467661i \(-0.154903\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 505.188i − 0.103903i
\(288\) 0 0
\(289\) −811.206 −0.165114
\(290\) 0 0
\(291\) −3734.06 −0.752214
\(292\) 0 0
\(293\) − 2780.68i − 0.554434i −0.960807 0.277217i \(-0.910588\pi\)
0.960807 0.277217i \(-0.0894121\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 21894.7i − 4.27764i
\(298\) 0 0
\(299\) −8354.12 −1.61582
\(300\) 0 0
\(301\) 775.104 0.148426
\(302\) 0 0
\(303\) − 14716.9i − 2.79031i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 6687.50i 1.24324i 0.783317 + 0.621622i \(0.213526\pi\)
−0.783317 + 0.621622i \(0.786474\pi\)
\(308\) 0 0
\(309\) −20165.5 −3.71254
\(310\) 0 0
\(311\) 6748.60 1.23048 0.615238 0.788341i \(-0.289060\pi\)
0.615238 + 0.788341i \(0.289060\pi\)
\(312\) 0 0
\(313\) − 8514.76i − 1.53765i −0.639462 0.768823i \(-0.720843\pi\)
0.639462 0.768823i \(-0.279157\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 2191.06i − 0.388209i −0.980981 0.194105i \(-0.937820\pi\)
0.980981 0.194105i \(-0.0621802\pi\)
\(318\) 0 0
\(319\) 102.562 0.0180011
\(320\) 0 0
\(321\) 5397.91 0.938573
\(322\) 0 0
\(323\) − 1437.51i − 0.247632i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 17109.2i 2.89340i
\(328\) 0 0
\(329\) 598.314 0.100262
\(330\) 0 0
\(331\) 1933.10 0.321005 0.160502 0.987035i \(-0.448689\pi\)
0.160502 + 0.987035i \(0.448689\pi\)
\(332\) 0 0
\(333\) − 21358.1i − 3.51477i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 10819.2i 1.74884i 0.485171 + 0.874419i \(0.338757\pi\)
−0.485171 + 0.874419i \(0.661243\pi\)
\(338\) 0 0
\(339\) 9125.45 1.46203
\(340\) 0 0
\(341\) −3785.88 −0.601222
\(342\) 0 0
\(343\) 1023.83i 0.161170i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 1223.35i − 0.189260i −0.995513 0.0946298i \(-0.969833\pi\)
0.995513 0.0946298i \(-0.0301667\pi\)
\(348\) 0 0
\(349\) −8569.30 −1.31434 −0.657169 0.753743i \(-0.728246\pi\)
−0.657169 + 0.753743i \(0.728246\pi\)
\(350\) 0 0
\(351\) −27715.4 −4.21464
\(352\) 0 0
\(353\) 1606.77i 0.242265i 0.992636 + 0.121133i \(0.0386526\pi\)
−0.992636 + 0.121133i \(0.961347\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 1129.12i − 0.167394i
\(358\) 0 0
\(359\) 6351.38 0.933740 0.466870 0.884326i \(-0.345382\pi\)
0.466870 + 0.884326i \(0.345382\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) 0 0
\(363\) − 10131.5i − 1.46492i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 4283.51i − 0.609258i −0.952471 0.304629i \(-0.901468\pi\)
0.952471 0.304629i \(-0.0985324\pi\)
\(368\) 0 0
\(369\) 24406.3 3.44321
\(370\) 0 0
\(371\) −685.613 −0.0959441
\(372\) 0 0
\(373\) − 5445.18i − 0.755873i −0.925832 0.377936i \(-0.876634\pi\)
0.925832 0.377936i \(-0.123366\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 129.827i − 0.0177359i
\(378\) 0 0
\(379\) 5928.19 0.803458 0.401729 0.915759i \(-0.368409\pi\)
0.401729 + 0.915759i \(0.368409\pi\)
\(380\) 0 0
\(381\) −841.028 −0.113090
\(382\) 0 0
\(383\) 423.702i 0.0565279i 0.999600 + 0.0282639i \(0.00899789\pi\)
−0.999600 + 0.0282639i \(0.991002\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 37446.4i 4.91863i
\(388\) 0 0
\(389\) 10967.9 1.42955 0.714775 0.699355i \(-0.246529\pi\)
0.714775 + 0.699355i \(0.246529\pi\)
\(390\) 0 0
\(391\) 10305.6 1.33293
\(392\) 0 0
\(393\) 19265.4i 2.47280i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 8696.10i − 1.09936i −0.835376 0.549679i \(-0.814750\pi\)
0.835376 0.549679i \(-0.185250\pi\)
\(398\) 0 0
\(399\) 283.555 0.0355778
\(400\) 0 0
\(401\) −8952.64 −1.11490 −0.557449 0.830211i \(-0.688220\pi\)
−0.557449 + 0.830211i \(0.688220\pi\)
\(402\) 0 0
\(403\) 4792.35i 0.592367i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 14305.2i − 1.74222i
\(408\) 0 0
\(409\) 6303.71 0.762098 0.381049 0.924555i \(-0.375563\pi\)
0.381049 + 0.924555i \(0.375563\pi\)
\(410\) 0 0
\(411\) 15061.2 1.80758
\(412\) 0 0
\(413\) 456.986i 0.0544475i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 20968.5i − 2.46243i
\(418\) 0 0
\(419\) 6471.76 0.754573 0.377287 0.926097i \(-0.376857\pi\)
0.377287 + 0.926097i \(0.376857\pi\)
\(420\) 0 0
\(421\) −12364.7 −1.43140 −0.715700 0.698408i \(-0.753892\pi\)
−0.715700 + 0.698408i \(0.753892\pi\)
\(422\) 0 0
\(423\) 28905.4i 3.32253i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 400.822i − 0.0454265i
\(428\) 0 0
\(429\) −29617.7 −3.33323
\(430\) 0 0
\(431\) 4698.02 0.525048 0.262524 0.964925i \(-0.415445\pi\)
0.262524 + 0.964925i \(0.415445\pi\)
\(432\) 0 0
\(433\) 16146.8i 1.79207i 0.443982 + 0.896036i \(0.353565\pi\)
−0.443982 + 0.896036i \(0.646435\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2588.02i 0.283300i
\(438\) 0 0
\(439\) 6858.74 0.745671 0.372836 0.927897i \(-0.378385\pi\)
0.372836 + 0.927897i \(0.378385\pi\)
\(440\) 0 0
\(441\) −24650.2 −2.66172
\(442\) 0 0
\(443\) 6414.66i 0.687968i 0.938975 + 0.343984i \(0.111777\pi\)
−0.938975 + 0.343984i \(0.888223\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 5250.86i − 0.555608i
\(448\) 0 0
\(449\) −12839.6 −1.34953 −0.674765 0.738033i \(-0.735755\pi\)
−0.674765 + 0.738033i \(0.735755\pi\)
\(450\) 0 0
\(451\) 16346.8 1.70674
\(452\) 0 0
\(453\) − 6912.47i − 0.716945i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 7033.72i − 0.719964i −0.932959 0.359982i \(-0.882783\pi\)
0.932959 0.359982i \(-0.117217\pi\)
\(458\) 0 0
\(459\) 34189.5 3.47675
\(460\) 0 0
\(461\) 7472.59 0.754953 0.377477 0.926019i \(-0.376792\pi\)
0.377477 + 0.926019i \(0.376792\pi\)
\(462\) 0 0
\(463\) − 15219.6i − 1.52768i −0.645406 0.763840i \(-0.723312\pi\)
0.645406 0.763840i \(-0.276688\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 18895.9i 1.87237i 0.351503 + 0.936187i \(0.385671\pi\)
−0.351503 + 0.936187i \(0.614329\pi\)
\(468\) 0 0
\(469\) 739.066 0.0727653
\(470\) 0 0
\(471\) 10190.9 0.996966
\(472\) 0 0
\(473\) 25080.8i 2.43809i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 33123.0i − 3.17945i
\(478\) 0 0
\(479\) −14765.4 −1.40845 −0.704224 0.709977i \(-0.748705\pi\)
−0.704224 + 0.709977i \(0.748705\pi\)
\(480\) 0 0
\(481\) −18108.2 −1.71656
\(482\) 0 0
\(483\) 2032.82i 0.191504i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 7099.78i − 0.660619i −0.943873 0.330310i \(-0.892847\pi\)
0.943873 0.330310i \(-0.107153\pi\)
\(488\) 0 0
\(489\) 15501.9 1.43358
\(490\) 0 0
\(491\) 561.486 0.0516080 0.0258040 0.999667i \(-0.491785\pi\)
0.0258040 + 0.999667i \(0.491785\pi\)
\(492\) 0 0
\(493\) 160.154i 0.0146308i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 191.106i − 0.0172481i
\(498\) 0 0
\(499\) 5679.69 0.509535 0.254767 0.967002i \(-0.418001\pi\)
0.254767 + 0.967002i \(0.418001\pi\)
\(500\) 0 0
\(501\) 23322.0 2.07974
\(502\) 0 0
\(503\) 9243.46i 0.819375i 0.912226 + 0.409688i \(0.134362\pi\)
−0.912226 + 0.409688i \(0.865638\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 15594.2i 1.36600i
\(508\) 0 0
\(509\) 11154.6 0.971353 0.485676 0.874139i \(-0.338573\pi\)
0.485676 + 0.874139i \(0.338573\pi\)
\(510\) 0 0
\(511\) 481.857 0.0417145
\(512\) 0 0
\(513\) 8585.95i 0.738945i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 19360.2i 1.64692i
\(518\) 0 0
\(519\) −9226.12 −0.780312
\(520\) 0 0
\(521\) 6969.02 0.586024 0.293012 0.956109i \(-0.405342\pi\)
0.293012 + 0.956109i \(0.405342\pi\)
\(522\) 0 0
\(523\) 18107.3i 1.51391i 0.653466 + 0.756956i \(0.273314\pi\)
−0.653466 + 0.756956i \(0.726686\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 5911.80i − 0.488657i
\(528\) 0 0
\(529\) −6386.64 −0.524915
\(530\) 0 0
\(531\) −22077.7 −1.80431
\(532\) 0 0
\(533\) − 20692.6i − 1.68161i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 29373.2i − 2.36042i
\(538\) 0 0
\(539\) −16510.1 −1.31937
\(540\) 0 0
\(541\) 12301.8 0.977629 0.488815 0.872388i \(-0.337429\pi\)
0.488815 + 0.872388i \(0.337429\pi\)
\(542\) 0 0
\(543\) 27624.9i 2.18324i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 9010.92i 0.704350i 0.935934 + 0.352175i \(0.114558\pi\)
−0.935934 + 0.352175i \(0.885442\pi\)
\(548\) 0 0
\(549\) 19364.3 1.50537
\(550\) 0 0
\(551\) −40.2192 −0.00310961
\(552\) 0 0
\(553\) 798.382i 0.0613936i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 23216.7i − 1.76611i −0.469270 0.883055i \(-0.655483\pi\)
0.469270 0.883055i \(-0.344517\pi\)
\(558\) 0 0
\(559\) 31748.5 2.40218
\(560\) 0 0
\(561\) 36536.1 2.74965
\(562\) 0 0
\(563\) − 8237.79i − 0.616664i −0.951279 0.308332i \(-0.900229\pi\)
0.951279 0.308332i \(-0.0997707\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3819.46i 0.282896i
\(568\) 0 0
\(569\) 1168.46 0.0860886 0.0430443 0.999073i \(-0.486294\pi\)
0.0430443 + 0.999073i \(0.486294\pi\)
\(570\) 0 0
\(571\) 18890.0 1.38445 0.692227 0.721680i \(-0.256630\pi\)
0.692227 + 0.721680i \(0.256630\pi\)
\(572\) 0 0
\(573\) − 39664.4i − 2.89180i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 15149.9i 1.09307i 0.837437 + 0.546534i \(0.184053\pi\)
−0.837437 + 0.546534i \(0.815947\pi\)
\(578\) 0 0
\(579\) −43353.1 −3.11173
\(580\) 0 0
\(581\) −1259.53 −0.0899381
\(582\) 0 0
\(583\) − 22185.0i − 1.57600i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 25778.5i − 1.81260i −0.422640 0.906298i \(-0.638897\pi\)
0.422640 0.906298i \(-0.361103\pi\)
\(588\) 0 0
\(589\) 1484.62 0.103859
\(590\) 0 0
\(591\) 1380.48 0.0960838
\(592\) 0 0
\(593\) 2121.28i 0.146898i 0.997299 + 0.0734490i \(0.0234006\pi\)
−0.997299 + 0.0734490i \(0.976599\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 9472.18i − 0.649365i
\(598\) 0 0
\(599\) −7269.05 −0.495836 −0.247918 0.968781i \(-0.579746\pi\)
−0.247918 + 0.968781i \(0.579746\pi\)
\(600\) 0 0
\(601\) −907.680 −0.0616057 −0.0308029 0.999525i \(-0.509806\pi\)
−0.0308029 + 0.999525i \(0.509806\pi\)
\(602\) 0 0
\(603\) 35705.4i 2.41134i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 11320.3i 0.756966i 0.925608 + 0.378483i \(0.123554\pi\)
−0.925608 + 0.378483i \(0.876446\pi\)
\(608\) 0 0
\(609\) −31.5911 −0.00210203
\(610\) 0 0
\(611\) 24507.1 1.62267
\(612\) 0 0
\(613\) 14556.7i 0.959117i 0.877510 + 0.479558i \(0.159203\pi\)
−0.877510 + 0.479558i \(0.840797\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 3907.72i − 0.254974i −0.991840 0.127487i \(-0.959309\pi\)
0.991840 0.127487i \(-0.0406911\pi\)
\(618\) 0 0
\(619\) 25484.0 1.65475 0.827375 0.561650i \(-0.189833\pi\)
0.827375 + 0.561650i \(0.189833\pi\)
\(620\) 0 0
\(621\) −61553.0 −3.97752
\(622\) 0 0
\(623\) 1731.57i 0.111354i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 9175.26i 0.584409i
\(628\) 0 0
\(629\) 22338.1 1.41603
\(630\) 0 0
\(631\) −14851.8 −0.936992 −0.468496 0.883466i \(-0.655204\pi\)
−0.468496 + 0.883466i \(0.655204\pi\)
\(632\) 0 0
\(633\) − 2238.30i − 0.140544i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 20899.3i 1.29994i
\(638\) 0 0
\(639\) 9232.63 0.571576
\(640\) 0 0
\(641\) 19959.4 1.22987 0.614937 0.788576i \(-0.289181\pi\)
0.614937 + 0.788576i \(0.289181\pi\)
\(642\) 0 0
\(643\) 27074.1i 1.66050i 0.557393 + 0.830249i \(0.311802\pi\)
−0.557393 + 0.830249i \(0.688198\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6870.00i 0.417446i 0.977975 + 0.208723i \(0.0669307\pi\)
−0.977975 + 0.208723i \(0.933069\pi\)
\(648\) 0 0
\(649\) −14787.1 −0.894368
\(650\) 0 0
\(651\) 1166.13 0.0702062
\(652\) 0 0
\(653\) − 20974.4i − 1.25696i −0.777827 0.628479i \(-0.783678\pi\)
0.777827 0.628479i \(-0.216322\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 23279.2i 1.38236i
\(658\) 0 0
\(659\) −19828.8 −1.17211 −0.586054 0.810272i \(-0.699319\pi\)
−0.586054 + 0.810272i \(0.699319\pi\)
\(660\) 0 0
\(661\) 17849.1 1.05030 0.525150 0.851010i \(-0.324009\pi\)
0.525150 + 0.851010i \(0.324009\pi\)
\(662\) 0 0
\(663\) − 46249.2i − 2.70916i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 288.333i − 0.0167381i
\(668\) 0 0
\(669\) 13190.0 0.762264
\(670\) 0 0
\(671\) 12969.8 0.746188
\(672\) 0 0
\(673\) − 16613.9i − 0.951590i −0.879556 0.475795i \(-0.842160\pi\)
0.879556 0.475795i \(-0.157840\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 28743.9i 1.63178i 0.578204 + 0.815892i \(0.303754\pi\)
−0.578204 + 0.815892i \(0.696246\pi\)
\(678\) 0 0
\(679\) 560.976 0.0317059
\(680\) 0 0
\(681\) 31949.7 1.79782
\(682\) 0 0
\(683\) 28596.8i 1.60209i 0.598605 + 0.801045i \(0.295722\pi\)
−0.598605 + 0.801045i \(0.704278\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 44494.7i − 2.47100i
\(688\) 0 0
\(689\) −28082.9 −1.55279
\(690\) 0 0
\(691\) 8506.40 0.468305 0.234152 0.972200i \(-0.424769\pi\)
0.234152 + 0.972200i \(0.424769\pi\)
\(692\) 0 0
\(693\) 5248.10i 0.287675i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 25526.2i 1.38719i
\(698\) 0 0
\(699\) 25321.1 1.37015
\(700\) 0 0
\(701\) 16521.5 0.890172 0.445086 0.895488i \(-0.353173\pi\)
0.445086 + 0.895488i \(0.353173\pi\)
\(702\) 0 0
\(703\) 5609.74i 0.300961i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2210.96i 0.117612i
\(708\) 0 0
\(709\) 137.576 0.00728742 0.00364371 0.999993i \(-0.498840\pi\)
0.00364371 + 0.999993i \(0.498840\pi\)
\(710\) 0 0
\(711\) −38571.0 −2.03449
\(712\) 0 0
\(713\) 10643.3i 0.559040i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 52124.5i 2.71496i
\(718\) 0 0
\(719\) 1636.71 0.0848944 0.0424472 0.999099i \(-0.486485\pi\)
0.0424472 + 0.999099i \(0.486485\pi\)
\(720\) 0 0
\(721\) 3029.51 0.156484
\(722\) 0 0
\(723\) 23971.7i 1.23308i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 38694.7i 1.97401i 0.160683 + 0.987006i \(0.448630\pi\)
−0.160683 + 0.987006i \(0.551370\pi\)
\(728\) 0 0
\(729\) −62916.4 −3.19648
\(730\) 0 0
\(731\) −39164.6 −1.98161
\(732\) 0 0
\(733\) 8097.37i 0.408026i 0.978968 + 0.204013i \(0.0653985\pi\)
−0.978968 + 0.204013i \(0.934601\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 23914.6i 1.19526i
\(738\) 0 0
\(739\) 32818.8 1.63364 0.816821 0.576892i \(-0.195735\pi\)
0.816821 + 0.576892i \(0.195735\pi\)
\(740\) 0 0
\(741\) 11614.5 0.575802
\(742\) 0 0
\(743\) 27374.0i 1.35162i 0.737075 + 0.675811i \(0.236207\pi\)
−0.737075 + 0.675811i \(0.763793\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 60849.6i − 2.98042i
\(748\) 0 0
\(749\) −810.940 −0.0395609
\(750\) 0 0
\(751\) 7836.90 0.380789 0.190395 0.981708i \(-0.439023\pi\)
0.190395 + 0.981708i \(0.439023\pi\)
\(752\) 0 0
\(753\) − 13153.2i − 0.636561i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 34474.9i 1.65523i 0.561293 + 0.827617i \(0.310304\pi\)
−0.561293 + 0.827617i \(0.689696\pi\)
\(758\) 0 0
\(759\) −65777.8 −3.14570
\(760\) 0 0
\(761\) 3521.23 0.167733 0.0838664 0.996477i \(-0.473273\pi\)
0.0838664 + 0.996477i \(0.473273\pi\)
\(762\) 0 0
\(763\) − 2570.35i − 0.121957i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 18718.3i 0.881196i
\(768\) 0 0
\(769\) −10693.7 −0.501463 −0.250731 0.968057i \(-0.580671\pi\)
−0.250731 + 0.968057i \(0.580671\pi\)
\(770\) 0 0
\(771\) 43265.4 2.02097
\(772\) 0 0
\(773\) 6642.81i 0.309088i 0.987986 + 0.154544i \(0.0493909\pi\)
−0.987986 + 0.154544i \(0.950609\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 4406.30i 0.203443i
\(778\) 0 0
\(779\) −6410.36 −0.294833
\(780\) 0 0
\(781\) 6183.80 0.283321
\(782\) 0 0
\(783\) − 956.566i − 0.0436588i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 15297.6i − 0.692886i −0.938071 0.346443i \(-0.887389\pi\)
0.938071 0.346443i \(-0.112611\pi\)
\(788\) 0 0
\(789\) 32725.6 1.47663
\(790\) 0 0
\(791\) −1370.94 −0.0616245
\(792\) 0 0
\(793\) − 16417.8i − 0.735198i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 18020.7i 0.800910i 0.916316 + 0.400455i \(0.131148\pi\)
−0.916316 + 0.400455i \(0.868852\pi\)
\(798\) 0 0
\(799\) −30231.7 −1.33857
\(800\) 0 0
\(801\) −83654.4 −3.69012
\(802\) 0 0
\(803\) 15591.9i 0.685213i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 54226.1i − 2.36536i
\(808\) 0 0
\(809\) 36204.2 1.57339 0.786695 0.617342i \(-0.211790\pi\)
0.786695 + 0.617342i \(0.211790\pi\)
\(810\) 0 0
\(811\) −9798.47 −0.424255 −0.212128 0.977242i \(-0.568039\pi\)
−0.212128 + 0.977242i \(0.568039\pi\)
\(812\) 0 0
\(813\) − 1163.07i − 0.0501729i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 9835.35i − 0.421169i
\(818\) 0 0
\(819\) 6643.31 0.283438
\(820\) 0 0
\(821\) −2690.03 −0.114351 −0.0571757 0.998364i \(-0.518210\pi\)
−0.0571757 + 0.998364i \(0.518210\pi\)
\(822\) 0 0
\(823\) − 16582.9i − 0.702361i −0.936308 0.351180i \(-0.885780\pi\)
0.936308 0.351180i \(-0.114220\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2306.52i 0.0969837i 0.998824 + 0.0484919i \(0.0154415\pi\)
−0.998824 + 0.0484919i \(0.984559\pi\)
\(828\) 0 0
\(829\) −21059.0 −0.882278 −0.441139 0.897439i \(-0.645425\pi\)
−0.441139 + 0.897439i \(0.645425\pi\)
\(830\) 0 0
\(831\) −73583.9 −3.07172
\(832\) 0 0
\(833\) − 25781.2i − 1.07235i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 35309.9i 1.45817i
\(838\) 0 0
\(839\) 36496.4 1.50178 0.750891 0.660426i \(-0.229624\pi\)
0.750891 + 0.660426i \(0.229624\pi\)
\(840\) 0 0
\(841\) −24384.5 −0.999816
\(842\) 0 0
\(843\) 49529.5i 2.02359i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 1522.08i 0.0617466i
\(848\) 0 0
\(849\) −44381.5 −1.79407
\(850\) 0 0
\(851\) −40216.5 −1.61998
\(852\) 0 0
\(853\) − 37876.2i − 1.52035i −0.649721 0.760173i \(-0.725114\pi\)
0.649721 0.760173i \(-0.274886\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 12040.9i − 0.479939i −0.970780 0.239969i \(-0.922863\pi\)
0.970780 0.239969i \(-0.0771374\pi\)
\(858\) 0 0
\(859\) −6165.58 −0.244898 −0.122449 0.992475i \(-0.539075\pi\)
−0.122449 + 0.992475i \(0.539075\pi\)
\(860\) 0 0
\(861\) −5035.16 −0.199300
\(862\) 0 0
\(863\) − 14478.7i − 0.571103i −0.958363 0.285552i \(-0.907823\pi\)
0.958363 0.285552i \(-0.0921768\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 8085.22i 0.316711i
\(868\) 0 0
\(869\) −25834.0 −1.00847
\(870\) 0 0
\(871\) 30272.3 1.17766
\(872\) 0 0
\(873\) 27101.6i 1.05069i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 17745.5i − 0.683265i −0.939834 0.341633i \(-0.889020\pi\)
0.939834 0.341633i \(-0.110980\pi\)
\(878\) 0 0
\(879\) −27714.8 −1.06348
\(880\) 0 0
\(881\) −37497.1 −1.43395 −0.716974 0.697100i \(-0.754473\pi\)
−0.716974 + 0.697100i \(0.754473\pi\)
\(882\) 0 0
\(883\) 19972.6i 0.761190i 0.924742 + 0.380595i \(0.124281\pi\)
−0.924742 + 0.380595i \(0.875719\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 27566.7i 1.04352i 0.853094 + 0.521758i \(0.174724\pi\)
−0.853094 + 0.521758i \(0.825276\pi\)
\(888\) 0 0
\(889\) 126.350 0.00476674
\(890\) 0 0
\(891\) −123590. −4.64692
\(892\) 0 0
\(893\) − 7592.04i − 0.284499i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 83264.8i 3.09936i
\(898\) 0 0
\(899\) −165.403 −0.00613625
\(900\) 0 0
\(901\) 34642.8 1.28093
\(902\) 0 0
\(903\) − 7725.39i − 0.284701i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 18665.0i − 0.683309i −0.939826 0.341654i \(-0.889013\pi\)
0.939826 0.341654i \(-0.110987\pi\)
\(908\) 0 0
\(909\) −106814. −3.89748
\(910\) 0 0
\(911\) 41576.9 1.51208 0.756039 0.654526i \(-0.227132\pi\)
0.756039 + 0.654526i \(0.227132\pi\)
\(912\) 0 0
\(913\) − 40755.7i − 1.47735i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 2894.29i − 0.104229i
\(918\) 0 0
\(919\) 26761.7 0.960595 0.480298 0.877106i \(-0.340529\pi\)
0.480298 + 0.877106i \(0.340529\pi\)
\(920\) 0 0
\(921\) 66653.7 2.38471
\(922\) 0 0
\(923\) − 7827.76i − 0.279148i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 146360.i 5.18564i
\(928\) 0 0
\(929\) 6900.64 0.243706 0.121853 0.992548i \(-0.461116\pi\)
0.121853 + 0.992548i \(0.461116\pi\)
\(930\) 0 0
\(931\) 6474.40 0.227916
\(932\) 0 0
\(933\) − 67262.7i − 2.36022i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 9239.89i − 0.322149i −0.986942 0.161075i \(-0.948504\pi\)
0.986942 0.161075i \(-0.0514960\pi\)
\(938\) 0 0
\(939\) −84865.9 −2.94941
\(940\) 0 0
\(941\) 22807.3 0.790113 0.395056 0.918657i \(-0.370725\pi\)
0.395056 + 0.918657i \(0.370725\pi\)
\(942\) 0 0
\(943\) − 45956.1i − 1.58700i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5222.47i 0.179205i 0.995978 + 0.0896027i \(0.0285597\pi\)
−0.995978 + 0.0896027i \(0.971440\pi\)
\(948\) 0 0
\(949\) 19737.0 0.675121
\(950\) 0 0
\(951\) −21838.1 −0.744637
\(952\) 0 0
\(953\) 10078.8i 0.342585i 0.985220 + 0.171293i \(0.0547944\pi\)
−0.985220 + 0.171293i \(0.945206\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 1022.22i − 0.0345284i
\(958\) 0 0
\(959\) −2262.68 −0.0761896
\(960\) 0 0
\(961\) −23685.5 −0.795054
\(962\) 0 0
\(963\) − 39177.7i − 1.31099i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 28446.6i − 0.945998i −0.881063 0.472999i \(-0.843171\pi\)
0.881063 0.472999i \(-0.156829\pi\)
\(968\) 0 0
\(969\) −14327.5 −0.474992
\(970\) 0 0
\(971\) 54767.7 1.81007 0.905035 0.425336i \(-0.139844\pi\)
0.905035 + 0.425336i \(0.139844\pi\)
\(972\) 0 0
\(973\) 3150.15i 0.103792i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 34932.4i − 1.14390i −0.820289 0.571949i \(-0.806188\pi\)
0.820289 0.571949i \(-0.193812\pi\)
\(978\) 0 0
\(979\) −56029.8 −1.82913
\(980\) 0 0
\(981\) 124178. 4.04147
\(982\) 0 0
\(983\) − 40302.3i − 1.30767i −0.756635 0.653837i \(-0.773158\pi\)
0.756635 0.653837i \(-0.226842\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 5963.34i − 0.192315i
\(988\) 0 0
\(989\) 70510.0 2.26703
\(990\) 0 0
\(991\) −40726.0 −1.30545 −0.652727 0.757593i \(-0.726375\pi\)
−0.652727 + 0.757593i \(0.726375\pi\)
\(992\) 0 0
\(993\) − 19267.0i − 0.615730i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 15904.3i 0.505210i 0.967570 + 0.252605i \(0.0812873\pi\)
−0.967570 + 0.252605i \(0.918713\pi\)
\(998\) 0 0
\(999\) −133421. −4.22548
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1900.4.c.d.1749.1 8
5.2 odd 4 380.4.a.c.1.1 4
5.3 odd 4 1900.4.a.e.1.4 4
5.4 even 2 inner 1900.4.c.d.1749.8 8
20.7 even 4 1520.4.a.s.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
380.4.a.c.1.1 4 5.2 odd 4
1520.4.a.s.1.4 4 20.7 even 4
1900.4.a.e.1.4 4 5.3 odd 4
1900.4.c.d.1749.1 8 1.1 even 1 trivial
1900.4.c.d.1749.8 8 5.4 even 2 inner