Properties

Label 1900.4.a.l.1.6
Level $1900$
Weight $4$
Character 1900.1
Self dual yes
Analytic conductor $112.104$
Analytic rank $1$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1900,4,Mod(1,1900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1900.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1900, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1900 = 2^{2} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1900.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(112.103629011\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 158x^{10} + 9117x^{8} - 255920x^{6} + 3734252x^{4} - 26837136x^{2} + 73273600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 380)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-2.64108\) of defining polynomial
Character \(\chi\) \(=\) 1900.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.64108 q^{3} -2.80379 q^{7} -20.0247 q^{9} +15.7130 q^{11} -36.9826 q^{13} -26.1961 q^{17} +19.0000 q^{19} +7.40504 q^{21} +204.806 q^{23} +124.196 q^{27} -103.968 q^{29} +97.5589 q^{31} -41.4993 q^{33} +277.344 q^{37} +97.6741 q^{39} +51.2288 q^{41} -9.31058 q^{43} -15.7447 q^{47} -335.139 q^{49} +69.1860 q^{51} -496.668 q^{53} -50.1805 q^{57} -6.35314 q^{59} +339.061 q^{61} +56.1451 q^{63} +140.091 q^{67} -540.909 q^{69} +114.538 q^{71} -491.107 q^{73} -44.0560 q^{77} -534.706 q^{79} +212.655 q^{81} +755.413 q^{83} +274.589 q^{87} -315.138 q^{89} +103.692 q^{91} -257.661 q^{93} +38.7369 q^{97} -314.648 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 8 q^{9} - 110 q^{11} + 228 q^{19} - 8 q^{21} + 76 q^{29} + 80 q^{31} - 60 q^{39} - 648 q^{41} + 886 q^{49} - 328 q^{51} - 984 q^{59} - 1970 q^{61} - 364 q^{69} - 3060 q^{71} - 552 q^{79} - 3388 q^{81}+ \cdots - 2366 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.64108 −0.508276 −0.254138 0.967168i \(-0.581792\pi\)
−0.254138 + 0.967168i \(0.581792\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.80379 −0.151391 −0.0756953 0.997131i \(-0.524118\pi\)
−0.0756953 + 0.997131i \(0.524118\pi\)
\(8\) 0 0
\(9\) −20.0247 −0.741655
\(10\) 0 0
\(11\) 15.7130 0.430695 0.215348 0.976537i \(-0.430912\pi\)
0.215348 + 0.976537i \(0.430912\pi\)
\(12\) 0 0
\(13\) −36.9826 −0.789010 −0.394505 0.918894i \(-0.629084\pi\)
−0.394505 + 0.918894i \(0.629084\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −26.1961 −0.373734 −0.186867 0.982385i \(-0.559833\pi\)
−0.186867 + 0.982385i \(0.559833\pi\)
\(18\) 0 0
\(19\) 19.0000 0.229416
\(20\) 0 0
\(21\) 7.40504 0.0769482
\(22\) 0 0
\(23\) 204.806 1.85674 0.928369 0.371659i \(-0.121211\pi\)
0.928369 + 0.371659i \(0.121211\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 124.196 0.885242
\(28\) 0 0
\(29\) −103.968 −0.665739 −0.332870 0.942973i \(-0.608017\pi\)
−0.332870 + 0.942973i \(0.608017\pi\)
\(30\) 0 0
\(31\) 97.5589 0.565229 0.282614 0.959234i \(-0.408798\pi\)
0.282614 + 0.959234i \(0.408798\pi\)
\(32\) 0 0
\(33\) −41.4993 −0.218912
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 277.344 1.23230 0.616149 0.787630i \(-0.288692\pi\)
0.616149 + 0.787630i \(0.288692\pi\)
\(38\) 0 0
\(39\) 97.6741 0.401035
\(40\) 0 0
\(41\) 51.2288 0.195136 0.0975682 0.995229i \(-0.468894\pi\)
0.0975682 + 0.995229i \(0.468894\pi\)
\(42\) 0 0
\(43\) −9.31058 −0.0330198 −0.0165099 0.999864i \(-0.505255\pi\)
−0.0165099 + 0.999864i \(0.505255\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −15.7447 −0.0488637 −0.0244318 0.999701i \(-0.507778\pi\)
−0.0244318 + 0.999701i \(0.507778\pi\)
\(48\) 0 0
\(49\) −335.139 −0.977081
\(50\) 0 0
\(51\) 69.1860 0.189960
\(52\) 0 0
\(53\) −496.668 −1.28722 −0.643609 0.765354i \(-0.722564\pi\)
−0.643609 + 0.765354i \(0.722564\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −50.1805 −0.116607
\(58\) 0 0
\(59\) −6.35314 −0.0140188 −0.00700940 0.999975i \(-0.502231\pi\)
−0.00700940 + 0.999975i \(0.502231\pi\)
\(60\) 0 0
\(61\) 339.061 0.711676 0.355838 0.934548i \(-0.384195\pi\)
0.355838 + 0.934548i \(0.384195\pi\)
\(62\) 0 0
\(63\) 56.1451 0.112280
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 140.091 0.255446 0.127723 0.991810i \(-0.459233\pi\)
0.127723 + 0.991810i \(0.459233\pi\)
\(68\) 0 0
\(69\) −540.909 −0.943736
\(70\) 0 0
\(71\) 114.538 0.191453 0.0957263 0.995408i \(-0.469483\pi\)
0.0957263 + 0.995408i \(0.469483\pi\)
\(72\) 0 0
\(73\) −491.107 −0.787394 −0.393697 0.919240i \(-0.628804\pi\)
−0.393697 + 0.919240i \(0.628804\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −44.0560 −0.0652032
\(78\) 0 0
\(79\) −534.706 −0.761508 −0.380754 0.924676i \(-0.624335\pi\)
−0.380754 + 0.924676i \(0.624335\pi\)
\(80\) 0 0
\(81\) 212.655 0.291708
\(82\) 0 0
\(83\) 755.413 0.999004 0.499502 0.866313i \(-0.333516\pi\)
0.499502 + 0.866313i \(0.333516\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 274.589 0.338379
\(88\) 0 0
\(89\) −315.138 −0.375332 −0.187666 0.982233i \(-0.560092\pi\)
−0.187666 + 0.982233i \(0.560092\pi\)
\(90\) 0 0
\(91\) 103.692 0.119449
\(92\) 0 0
\(93\) −257.661 −0.287292
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 38.7369 0.0405478 0.0202739 0.999794i \(-0.493546\pi\)
0.0202739 + 0.999794i \(0.493546\pi\)
\(98\) 0 0
\(99\) −314.648 −0.319427
\(100\) 0 0
\(101\) −1198.94 −1.18118 −0.590588 0.806973i \(-0.701104\pi\)
−0.590588 + 0.806973i \(0.701104\pi\)
\(102\) 0 0
\(103\) 318.071 0.304276 0.152138 0.988359i \(-0.451384\pi\)
0.152138 + 0.988359i \(0.451384\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 185.473 0.167574 0.0837868 0.996484i \(-0.473299\pi\)
0.0837868 + 0.996484i \(0.473299\pi\)
\(108\) 0 0
\(109\) 4.01175 0.00352528 0.00176264 0.999998i \(-0.499439\pi\)
0.00176264 + 0.999998i \(0.499439\pi\)
\(110\) 0 0
\(111\) −732.487 −0.626348
\(112\) 0 0
\(113\) 1782.80 1.48417 0.742087 0.670304i \(-0.233836\pi\)
0.742087 + 0.670304i \(0.233836\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 740.566 0.585174
\(118\) 0 0
\(119\) 73.4484 0.0565798
\(120\) 0 0
\(121\) −1084.10 −0.814502
\(122\) 0 0
\(123\) −135.299 −0.0991832
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −358.901 −0.250766 −0.125383 0.992108i \(-0.540016\pi\)
−0.125383 + 0.992108i \(0.540016\pi\)
\(128\) 0 0
\(129\) 24.5900 0.0167832
\(130\) 0 0
\(131\) −1888.31 −1.25941 −0.629703 0.776836i \(-0.716824\pi\)
−0.629703 + 0.776836i \(0.716824\pi\)
\(132\) 0 0
\(133\) −53.2721 −0.0347314
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2027.41 1.26433 0.632164 0.774835i \(-0.282167\pi\)
0.632164 + 0.774835i \(0.282167\pi\)
\(138\) 0 0
\(139\) 1606.99 0.980596 0.490298 0.871555i \(-0.336888\pi\)
0.490298 + 0.871555i \(0.336888\pi\)
\(140\) 0 0
\(141\) 41.5829 0.0248363
\(142\) 0 0
\(143\) −581.108 −0.339823
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 885.129 0.496627
\(148\) 0 0
\(149\) −330.544 −0.181740 −0.0908699 0.995863i \(-0.528965\pi\)
−0.0908699 + 0.995863i \(0.528965\pi\)
\(150\) 0 0
\(151\) −1147.31 −0.618325 −0.309163 0.951009i \(-0.600049\pi\)
−0.309163 + 0.951009i \(0.600049\pi\)
\(152\) 0 0
\(153\) 524.568 0.277182
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −1410.52 −0.717018 −0.358509 0.933526i \(-0.616715\pi\)
−0.358509 + 0.933526i \(0.616715\pi\)
\(158\) 0 0
\(159\) 1311.74 0.654263
\(160\) 0 0
\(161\) −574.233 −0.281093
\(162\) 0 0
\(163\) −2843.93 −1.36659 −0.683293 0.730144i \(-0.739453\pi\)
−0.683293 + 0.730144i \(0.739453\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3450.67 −1.59893 −0.799464 0.600714i \(-0.794883\pi\)
−0.799464 + 0.600714i \(0.794883\pi\)
\(168\) 0 0
\(169\) −829.285 −0.377463
\(170\) 0 0
\(171\) −380.469 −0.170147
\(172\) 0 0
\(173\) 2769.02 1.21691 0.608454 0.793590i \(-0.291790\pi\)
0.608454 + 0.793590i \(0.291790\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 16.7792 0.00712542
\(178\) 0 0
\(179\) 830.302 0.346702 0.173351 0.984860i \(-0.444540\pi\)
0.173351 + 0.984860i \(0.444540\pi\)
\(180\) 0 0
\(181\) −3497.10 −1.43612 −0.718059 0.695982i \(-0.754969\pi\)
−0.718059 + 0.695982i \(0.754969\pi\)
\(182\) 0 0
\(183\) −895.487 −0.361728
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −411.619 −0.160966
\(188\) 0 0
\(189\) −348.220 −0.134017
\(190\) 0 0
\(191\) −3703.44 −1.40299 −0.701496 0.712674i \(-0.747484\pi\)
−0.701496 + 0.712674i \(0.747484\pi\)
\(192\) 0 0
\(193\) −3419.00 −1.27516 −0.637578 0.770386i \(-0.720063\pi\)
−0.637578 + 0.770386i \(0.720063\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1155.99 0.418076 0.209038 0.977908i \(-0.432967\pi\)
0.209038 + 0.977908i \(0.432967\pi\)
\(198\) 0 0
\(199\) 763.802 0.272083 0.136041 0.990703i \(-0.456562\pi\)
0.136041 + 0.990703i \(0.456562\pi\)
\(200\) 0 0
\(201\) −369.993 −0.129837
\(202\) 0 0
\(203\) 291.506 0.100787
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −4101.18 −1.37706
\(208\) 0 0
\(209\) 298.547 0.0988083
\(210\) 0 0
\(211\) −5515.79 −1.79963 −0.899816 0.436269i \(-0.856299\pi\)
−0.899816 + 0.436269i \(0.856299\pi\)
\(212\) 0 0
\(213\) −302.504 −0.0973108
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −273.535 −0.0855703
\(218\) 0 0
\(219\) 1297.05 0.400214
\(220\) 0 0
\(221\) 968.800 0.294880
\(222\) 0 0
\(223\) 6391.64 1.91935 0.959677 0.281106i \(-0.0907013\pi\)
0.959677 + 0.281106i \(0.0907013\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4365.76 1.27650 0.638250 0.769829i \(-0.279659\pi\)
0.638250 + 0.769829i \(0.279659\pi\)
\(228\) 0 0
\(229\) 1203.88 0.347401 0.173701 0.984799i \(-0.444427\pi\)
0.173701 + 0.984799i \(0.444427\pi\)
\(230\) 0 0
\(231\) 116.355 0.0331412
\(232\) 0 0
\(233\) 4240.55 1.19231 0.596154 0.802870i \(-0.296695\pi\)
0.596154 + 0.802870i \(0.296695\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 1412.20 0.387056
\(238\) 0 0
\(239\) 285.645 0.0773090 0.0386545 0.999253i \(-0.487693\pi\)
0.0386545 + 0.999253i \(0.487693\pi\)
\(240\) 0 0
\(241\) −1537.73 −0.411012 −0.205506 0.978656i \(-0.565884\pi\)
−0.205506 + 0.978656i \(0.565884\pi\)
\(242\) 0 0
\(243\) −3914.93 −1.03351
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −702.670 −0.181011
\(248\) 0 0
\(249\) −1995.11 −0.507770
\(250\) 0 0
\(251\) −1527.59 −0.384147 −0.192073 0.981381i \(-0.561521\pi\)
−0.192073 + 0.981381i \(0.561521\pi\)
\(252\) 0 0
\(253\) 3218.12 0.799689
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4175.82 −1.01354 −0.506772 0.862080i \(-0.669161\pi\)
−0.506772 + 0.862080i \(0.669161\pi\)
\(258\) 0 0
\(259\) −777.614 −0.186558
\(260\) 0 0
\(261\) 2081.93 0.493749
\(262\) 0 0
\(263\) −6977.87 −1.63602 −0.818011 0.575203i \(-0.804923\pi\)
−0.818011 + 0.575203i \(0.804923\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 832.305 0.190772
\(268\) 0 0
\(269\) −7020.19 −1.59118 −0.795592 0.605832i \(-0.792840\pi\)
−0.795592 + 0.605832i \(0.792840\pi\)
\(270\) 0 0
\(271\) −5481.46 −1.22869 −0.614345 0.789037i \(-0.710580\pi\)
−0.614345 + 0.789037i \(0.710580\pi\)
\(272\) 0 0
\(273\) −273.858 −0.0607130
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −4019.52 −0.871875 −0.435937 0.899977i \(-0.643583\pi\)
−0.435937 + 0.899977i \(0.643583\pi\)
\(278\) 0 0
\(279\) −1953.59 −0.419205
\(280\) 0 0
\(281\) 2778.19 0.589798 0.294899 0.955528i \(-0.404714\pi\)
0.294899 + 0.955528i \(0.404714\pi\)
\(282\) 0 0
\(283\) 3560.40 0.747857 0.373929 0.927457i \(-0.378011\pi\)
0.373929 + 0.927457i \(0.378011\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −143.635 −0.0295418
\(288\) 0 0
\(289\) −4226.77 −0.860323
\(290\) 0 0
\(291\) −102.307 −0.0206095
\(292\) 0 0
\(293\) −5175.66 −1.03196 −0.515981 0.856600i \(-0.672573\pi\)
−0.515981 + 0.856600i \(0.672573\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1951.49 0.381270
\(298\) 0 0
\(299\) −7574.26 −1.46499
\(300\) 0 0
\(301\) 26.1049 0.00499888
\(302\) 0 0
\(303\) 3166.49 0.600364
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 243.963 0.0453541 0.0226771 0.999743i \(-0.492781\pi\)
0.0226771 + 0.999743i \(0.492781\pi\)
\(308\) 0 0
\(309\) −840.050 −0.154656
\(310\) 0 0
\(311\) 3072.67 0.560242 0.280121 0.959965i \(-0.409625\pi\)
0.280121 + 0.959965i \(0.409625\pi\)
\(312\) 0 0
\(313\) −6417.23 −1.15886 −0.579430 0.815022i \(-0.696725\pi\)
−0.579430 + 0.815022i \(0.696725\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2486.50 0.440554 0.220277 0.975437i \(-0.429304\pi\)
0.220277 + 0.975437i \(0.429304\pi\)
\(318\) 0 0
\(319\) −1633.65 −0.286731
\(320\) 0 0
\(321\) −489.850 −0.0851737
\(322\) 0 0
\(323\) −497.725 −0.0857405
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −10.5954 −0.00179182
\(328\) 0 0
\(329\) 44.1447 0.00739750
\(330\) 0 0
\(331\) −10978.2 −1.82302 −0.911509 0.411281i \(-0.865081\pi\)
−0.911509 + 0.411281i \(0.865081\pi\)
\(332\) 0 0
\(333\) −5553.72 −0.913940
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 822.597 0.132966 0.0664832 0.997788i \(-0.478822\pi\)
0.0664832 + 0.997788i \(0.478822\pi\)
\(338\) 0 0
\(339\) −4708.52 −0.754370
\(340\) 0 0
\(341\) 1532.94 0.243441
\(342\) 0 0
\(343\) 1901.36 0.299311
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6067.83 −0.938727 −0.469363 0.883005i \(-0.655517\pi\)
−0.469363 + 0.883005i \(0.655517\pi\)
\(348\) 0 0
\(349\) 1517.92 0.232815 0.116407 0.993202i \(-0.462862\pi\)
0.116407 + 0.993202i \(0.462862\pi\)
\(350\) 0 0
\(351\) −4593.10 −0.698465
\(352\) 0 0
\(353\) −11.9177 −0.00179693 −0.000898467 1.00000i \(-0.500286\pi\)
−0.000898467 1.00000i \(0.500286\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −193.983 −0.0287582
\(358\) 0 0
\(359\) −2994.81 −0.440278 −0.220139 0.975468i \(-0.570651\pi\)
−0.220139 + 0.975468i \(0.570651\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) 0 0
\(363\) 2863.20 0.413992
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −1119.41 −0.159217 −0.0796087 0.996826i \(-0.525367\pi\)
−0.0796087 + 0.996826i \(0.525367\pi\)
\(368\) 0 0
\(369\) −1025.84 −0.144724
\(370\) 0 0
\(371\) 1392.55 0.194873
\(372\) 0 0
\(373\) 9031.40 1.25370 0.626848 0.779142i \(-0.284345\pi\)
0.626848 + 0.779142i \(0.284345\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3845.02 0.525275
\(378\) 0 0
\(379\) 448.079 0.0607290 0.0303645 0.999539i \(-0.490333\pi\)
0.0303645 + 0.999539i \(0.490333\pi\)
\(380\) 0 0
\(381\) 947.887 0.127459
\(382\) 0 0
\(383\) −10925.1 −1.45757 −0.728783 0.684745i \(-0.759914\pi\)
−0.728783 + 0.684745i \(0.759914\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 186.442 0.0244893
\(388\) 0 0
\(389\) −6071.65 −0.791375 −0.395688 0.918385i \(-0.629494\pi\)
−0.395688 + 0.918385i \(0.629494\pi\)
\(390\) 0 0
\(391\) −5365.11 −0.693927
\(392\) 0 0
\(393\) 4987.18 0.640127
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 8500.97 1.07469 0.537345 0.843363i \(-0.319427\pi\)
0.537345 + 0.843363i \(0.319427\pi\)
\(398\) 0 0
\(399\) 140.696 0.0176531
\(400\) 0 0
\(401\) −5471.73 −0.681410 −0.340705 0.940170i \(-0.610666\pi\)
−0.340705 + 0.940170i \(0.610666\pi\)
\(402\) 0 0
\(403\) −3607.98 −0.445971
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4357.90 0.530745
\(408\) 0 0
\(409\) 10339.8 1.25005 0.625024 0.780605i \(-0.285089\pi\)
0.625024 + 0.780605i \(0.285089\pi\)
\(410\) 0 0
\(411\) −5354.54 −0.642628
\(412\) 0 0
\(413\) 17.8129 0.00212231
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −4244.18 −0.498414
\(418\) 0 0
\(419\) −8994.38 −1.04870 −0.524349 0.851504i \(-0.675691\pi\)
−0.524349 + 0.851504i \(0.675691\pi\)
\(420\) 0 0
\(421\) −782.094 −0.0905390 −0.0452695 0.998975i \(-0.514415\pi\)
−0.0452695 + 0.998975i \(0.514415\pi\)
\(422\) 0 0
\(423\) 315.282 0.0362400
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −950.656 −0.107741
\(428\) 0 0
\(429\) 1534.75 0.172724
\(430\) 0 0
\(431\) 7304.49 0.816345 0.408173 0.912905i \(-0.366166\pi\)
0.408173 + 0.912905i \(0.366166\pi\)
\(432\) 0 0
\(433\) 3763.24 0.417667 0.208833 0.977951i \(-0.433033\pi\)
0.208833 + 0.977951i \(0.433033\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3891.31 0.425965
\(438\) 0 0
\(439\) −1.31513 −0.000142979 0 −7.14894e−5 1.00000i \(-0.500023\pi\)
−7.14894e−5 1.00000i \(0.500023\pi\)
\(440\) 0 0
\(441\) 6711.05 0.724657
\(442\) 0 0
\(443\) −8098.13 −0.868518 −0.434259 0.900788i \(-0.642990\pi\)
−0.434259 + 0.900788i \(0.642990\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 872.994 0.0923741
\(448\) 0 0
\(449\) 15697.2 1.64988 0.824939 0.565222i \(-0.191209\pi\)
0.824939 + 0.565222i \(0.191209\pi\)
\(450\) 0 0
\(451\) 804.958 0.0840443
\(452\) 0 0
\(453\) 3030.15 0.314280
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −17279.6 −1.76872 −0.884362 0.466802i \(-0.845406\pi\)
−0.884362 + 0.466802i \(0.845406\pi\)
\(458\) 0 0
\(459\) −3253.45 −0.330845
\(460\) 0 0
\(461\) −4204.09 −0.424738 −0.212369 0.977190i \(-0.568118\pi\)
−0.212369 + 0.977190i \(0.568118\pi\)
\(462\) 0 0
\(463\) −6582.02 −0.660675 −0.330337 0.943863i \(-0.607163\pi\)
−0.330337 + 0.943863i \(0.607163\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −5162.51 −0.511547 −0.255774 0.966737i \(-0.582330\pi\)
−0.255774 + 0.966737i \(0.582330\pi\)
\(468\) 0 0
\(469\) −392.787 −0.0386721
\(470\) 0 0
\(471\) 3725.30 0.364443
\(472\) 0 0
\(473\) −146.297 −0.0142215
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 9945.62 0.954672
\(478\) 0 0
\(479\) −2068.94 −0.197354 −0.0986768 0.995120i \(-0.531461\pi\)
−0.0986768 + 0.995120i \(0.531461\pi\)
\(480\) 0 0
\(481\) −10256.9 −0.972296
\(482\) 0 0
\(483\) 1516.60 0.142873
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −7366.54 −0.685441 −0.342720 0.939437i \(-0.611348\pi\)
−0.342720 + 0.939437i \(0.611348\pi\)
\(488\) 0 0
\(489\) 7511.04 0.694603
\(490\) 0 0
\(491\) −4604.18 −0.423185 −0.211592 0.977358i \(-0.567865\pi\)
−0.211592 + 0.977358i \(0.567865\pi\)
\(492\) 0 0
\(493\) 2723.56 0.248809
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −321.140 −0.0289841
\(498\) 0 0
\(499\) 10912.7 0.978996 0.489498 0.872004i \(-0.337180\pi\)
0.489498 + 0.872004i \(0.337180\pi\)
\(500\) 0 0
\(501\) 9113.50 0.812697
\(502\) 0 0
\(503\) 16722.4 1.48233 0.741167 0.671320i \(-0.234272\pi\)
0.741167 + 0.671320i \(0.234272\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 2190.21 0.191855
\(508\) 0 0
\(509\) −12980.5 −1.13035 −0.565175 0.824971i \(-0.691191\pi\)
−0.565175 + 0.824971i \(0.691191\pi\)
\(510\) 0 0
\(511\) 1376.96 0.119204
\(512\) 0 0
\(513\) 2359.72 0.203088
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −247.396 −0.0210454
\(518\) 0 0
\(519\) −7313.21 −0.618525
\(520\) 0 0
\(521\) −13033.9 −1.09602 −0.548010 0.836472i \(-0.684614\pi\)
−0.548010 + 0.836472i \(0.684614\pi\)
\(522\) 0 0
\(523\) −134.248 −0.0112242 −0.00561208 0.999984i \(-0.501786\pi\)
−0.00561208 + 0.999984i \(0.501786\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2555.66 −0.211245
\(528\) 0 0
\(529\) 29778.5 2.44748
\(530\) 0 0
\(531\) 127.220 0.0103971
\(532\) 0 0
\(533\) −1894.57 −0.153965
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −2192.90 −0.176221
\(538\) 0 0
\(539\) −5266.03 −0.420824
\(540\) 0 0
\(541\) −7526.09 −0.598100 −0.299050 0.954238i \(-0.596670\pi\)
−0.299050 + 0.954238i \(0.596670\pi\)
\(542\) 0 0
\(543\) 9236.13 0.729945
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 21280.4 1.66341 0.831704 0.555220i \(-0.187366\pi\)
0.831704 + 0.555220i \(0.187366\pi\)
\(548\) 0 0
\(549\) −6789.58 −0.527818
\(550\) 0 0
\(551\) −1975.40 −0.152731
\(552\) 0 0
\(553\) 1499.20 0.115285
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8335.03 0.634051 0.317026 0.948417i \(-0.397316\pi\)
0.317026 + 0.948417i \(0.397316\pi\)
\(558\) 0 0
\(559\) 344.330 0.0260529
\(560\) 0 0
\(561\) 1087.12 0.0818150
\(562\) 0 0
\(563\) 6696.25 0.501267 0.250633 0.968082i \(-0.419361\pi\)
0.250633 + 0.968082i \(0.419361\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −596.240 −0.0441618
\(568\) 0 0
\(569\) 22543.7 1.66095 0.830476 0.557055i \(-0.188069\pi\)
0.830476 + 0.557055i \(0.188069\pi\)
\(570\) 0 0
\(571\) −4166.28 −0.305347 −0.152674 0.988277i \(-0.548788\pi\)
−0.152674 + 0.988277i \(0.548788\pi\)
\(572\) 0 0
\(573\) 9781.08 0.713107
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −5629.47 −0.406166 −0.203083 0.979162i \(-0.565096\pi\)
−0.203083 + 0.979162i \(0.565096\pi\)
\(578\) 0 0
\(579\) 9029.86 0.648131
\(580\) 0 0
\(581\) −2118.02 −0.151240
\(582\) 0 0
\(583\) −7804.14 −0.554399
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 69.9606 0.00491922 0.00245961 0.999997i \(-0.499217\pi\)
0.00245961 + 0.999997i \(0.499217\pi\)
\(588\) 0 0
\(589\) 1853.62 0.129672
\(590\) 0 0
\(591\) −3053.06 −0.212498
\(592\) 0 0
\(593\) 2172.73 0.150461 0.0752306 0.997166i \(-0.476031\pi\)
0.0752306 + 0.997166i \(0.476031\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −2017.26 −0.138293
\(598\) 0 0
\(599\) −9736.23 −0.664126 −0.332063 0.943257i \(-0.607745\pi\)
−0.332063 + 0.943257i \(0.607745\pi\)
\(600\) 0 0
\(601\) −25060.2 −1.70088 −0.850439 0.526074i \(-0.823664\pi\)
−0.850439 + 0.526074i \(0.823664\pi\)
\(602\) 0 0
\(603\) −2805.29 −0.189453
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 14464.8 0.967230 0.483615 0.875281i \(-0.339324\pi\)
0.483615 + 0.875281i \(0.339324\pi\)
\(608\) 0 0
\(609\) −769.890 −0.0512275
\(610\) 0 0
\(611\) 582.279 0.0385540
\(612\) 0 0
\(613\) −24069.6 −1.58591 −0.792956 0.609279i \(-0.791459\pi\)
−0.792956 + 0.609279i \(0.791459\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −5258.43 −0.343106 −0.171553 0.985175i \(-0.554878\pi\)
−0.171553 + 0.985175i \(0.554878\pi\)
\(618\) 0 0
\(619\) 12110.3 0.786353 0.393177 0.919463i \(-0.371376\pi\)
0.393177 + 0.919463i \(0.371376\pi\)
\(620\) 0 0
\(621\) 25436.1 1.64366
\(622\) 0 0
\(623\) 883.582 0.0568217
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −788.487 −0.0502219
\(628\) 0 0
\(629\) −7265.32 −0.460552
\(630\) 0 0
\(631\) 13737.8 0.866710 0.433355 0.901223i \(-0.357330\pi\)
0.433355 + 0.901223i \(0.357330\pi\)
\(632\) 0 0
\(633\) 14567.6 0.914710
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 12394.3 0.770927
\(638\) 0 0
\(639\) −2293.58 −0.141992
\(640\) 0 0
\(641\) −3604.21 −0.222087 −0.111043 0.993816i \(-0.535419\pi\)
−0.111043 + 0.993816i \(0.535419\pi\)
\(642\) 0 0
\(643\) 15515.2 0.951567 0.475784 0.879562i \(-0.342164\pi\)
0.475784 + 0.879562i \(0.342164\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 26283.6 1.59709 0.798544 0.601936i \(-0.205604\pi\)
0.798544 + 0.601936i \(0.205604\pi\)
\(648\) 0 0
\(649\) −99.8269 −0.00603783
\(650\) 0 0
\(651\) 722.428 0.0434934
\(652\) 0 0
\(653\) −16344.2 −0.979477 −0.489739 0.871869i \(-0.662908\pi\)
−0.489739 + 0.871869i \(0.662908\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 9834.27 0.583975
\(658\) 0 0
\(659\) −21530.5 −1.27270 −0.636349 0.771401i \(-0.719556\pi\)
−0.636349 + 0.771401i \(0.719556\pi\)
\(660\) 0 0
\(661\) 21799.0 1.28273 0.641364 0.767237i \(-0.278369\pi\)
0.641364 + 0.767237i \(0.278369\pi\)
\(662\) 0 0
\(663\) −2558.68 −0.149881
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −21293.3 −1.23610
\(668\) 0 0
\(669\) −16880.8 −0.975562
\(670\) 0 0
\(671\) 5327.66 0.306516
\(672\) 0 0
\(673\) −16189.5 −0.927280 −0.463640 0.886024i \(-0.653457\pi\)
−0.463640 + 0.886024i \(0.653457\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −14467.0 −0.821289 −0.410644 0.911796i \(-0.634696\pi\)
−0.410644 + 0.911796i \(0.634696\pi\)
\(678\) 0 0
\(679\) −108.610 −0.00613855
\(680\) 0 0
\(681\) −11530.3 −0.648815
\(682\) 0 0
\(683\) −17336.3 −0.971240 −0.485620 0.874170i \(-0.661406\pi\)
−0.485620 + 0.874170i \(0.661406\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −3179.56 −0.176576
\(688\) 0 0
\(689\) 18368.1 1.01563
\(690\) 0 0
\(691\) 22585.3 1.24339 0.621696 0.783258i \(-0.286444\pi\)
0.621696 + 0.783258i \(0.286444\pi\)
\(692\) 0 0
\(693\) 882.208 0.0483583
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −1341.99 −0.0729291
\(698\) 0 0
\(699\) −11199.6 −0.606022
\(700\) 0 0
\(701\) 19433.5 1.04707 0.523533 0.852006i \(-0.324614\pi\)
0.523533 + 0.852006i \(0.324614\pi\)
\(702\) 0 0
\(703\) 5269.53 0.282709
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3361.57 0.178819
\(708\) 0 0
\(709\) 11765.3 0.623209 0.311604 0.950212i \(-0.399134\pi\)
0.311604 + 0.950212i \(0.399134\pi\)
\(710\) 0 0
\(711\) 10707.3 0.564776
\(712\) 0 0
\(713\) 19980.6 1.04948
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −754.412 −0.0392943
\(718\) 0 0
\(719\) 801.432 0.0415693 0.0207847 0.999784i \(-0.493384\pi\)
0.0207847 + 0.999784i \(0.493384\pi\)
\(720\) 0 0
\(721\) −891.804 −0.0460645
\(722\) 0 0
\(723\) 4061.26 0.208907
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −16487.4 −0.841106 −0.420553 0.907268i \(-0.638164\pi\)
−0.420553 + 0.907268i \(0.638164\pi\)
\(728\) 0 0
\(729\) 4597.97 0.233601
\(730\) 0 0
\(731\) 243.901 0.0123406
\(732\) 0 0
\(733\) 32237.6 1.62445 0.812227 0.583342i \(-0.198255\pi\)
0.812227 + 0.583342i \(0.198255\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2201.25 0.110019
\(738\) 0 0
\(739\) −20124.5 −1.00175 −0.500873 0.865521i \(-0.666988\pi\)
−0.500873 + 0.865521i \(0.666988\pi\)
\(740\) 0 0
\(741\) 1855.81 0.0920038
\(742\) 0 0
\(743\) −10623.3 −0.524536 −0.262268 0.964995i \(-0.584470\pi\)
−0.262268 + 0.964995i \(0.584470\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −15126.9 −0.740916
\(748\) 0 0
\(749\) −520.029 −0.0253691
\(750\) 0 0
\(751\) 5960.18 0.289600 0.144800 0.989461i \(-0.453746\pi\)
0.144800 + 0.989461i \(0.453746\pi\)
\(752\) 0 0
\(753\) 4034.50 0.195253
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −17526.5 −0.841495 −0.420747 0.907178i \(-0.638232\pi\)
−0.420747 + 0.907178i \(0.638232\pi\)
\(758\) 0 0
\(759\) −8499.31 −0.406463
\(760\) 0 0
\(761\) 25844.4 1.23109 0.615545 0.788102i \(-0.288936\pi\)
0.615545 + 0.788102i \(0.288936\pi\)
\(762\) 0 0
\(763\) −11.2481 −0.000533695 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 234.956 0.0110610
\(768\) 0 0
\(769\) 28361.0 1.32994 0.664970 0.746870i \(-0.268444\pi\)
0.664970 + 0.746870i \(0.268444\pi\)
\(770\) 0 0
\(771\) 11028.7 0.515160
\(772\) 0 0
\(773\) −21479.4 −0.999430 −0.499715 0.866190i \(-0.666562\pi\)
−0.499715 + 0.866190i \(0.666562\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 2053.74 0.0948232
\(778\) 0 0
\(779\) 973.347 0.0447674
\(780\) 0 0
\(781\) 1799.73 0.0824577
\(782\) 0 0
\(783\) −12912.5 −0.589340
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −4347.40 −0.196910 −0.0984551 0.995141i \(-0.531390\pi\)
−0.0984551 + 0.995141i \(0.531390\pi\)
\(788\) 0 0
\(789\) 18429.1 0.831551
\(790\) 0 0
\(791\) −4998.60 −0.224690
\(792\) 0 0
\(793\) −12539.4 −0.561520
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −31172.1 −1.38541 −0.692706 0.721220i \(-0.743582\pi\)
−0.692706 + 0.721220i \(0.743582\pi\)
\(798\) 0 0
\(799\) 412.448 0.0182620
\(800\) 0 0
\(801\) 6310.54 0.278367
\(802\) 0 0
\(803\) −7716.77 −0.339127
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 18540.9 0.808761
\(808\) 0 0
\(809\) 19641.6 0.853601 0.426800 0.904346i \(-0.359641\pi\)
0.426800 + 0.904346i \(0.359641\pi\)
\(810\) 0 0
\(811\) 42726.3 1.84996 0.924982 0.380010i \(-0.124079\pi\)
0.924982 + 0.380010i \(0.124079\pi\)
\(812\) 0 0
\(813\) 14477.0 0.624514
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −176.901 −0.00757526
\(818\) 0 0
\(819\) −2076.39 −0.0885898
\(820\) 0 0
\(821\) 40929.7 1.73990 0.869950 0.493140i \(-0.164151\pi\)
0.869950 + 0.493140i \(0.164151\pi\)
\(822\) 0 0
\(823\) −32450.5 −1.37443 −0.687213 0.726456i \(-0.741166\pi\)
−0.687213 + 0.726456i \(0.741166\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 10197.9 0.428798 0.214399 0.976746i \(-0.431221\pi\)
0.214399 + 0.976746i \(0.431221\pi\)
\(828\) 0 0
\(829\) 32760.9 1.37254 0.686268 0.727349i \(-0.259248\pi\)
0.686268 + 0.727349i \(0.259248\pi\)
\(830\) 0 0
\(831\) 10615.9 0.443153
\(832\) 0 0
\(833\) 8779.32 0.365169
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 12116.4 0.500364
\(838\) 0 0
\(839\) −42309.2 −1.74097 −0.870485 0.492194i \(-0.836195\pi\)
−0.870485 + 0.492194i \(0.836195\pi\)
\(840\) 0 0
\(841\) −13579.6 −0.556791
\(842\) 0 0
\(843\) −7337.43 −0.299780
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 3039.60 0.123308
\(848\) 0 0
\(849\) −9403.30 −0.380118
\(850\) 0 0
\(851\) 56801.7 2.28806
\(852\) 0 0
\(853\) −13240.6 −0.531475 −0.265737 0.964045i \(-0.585615\pi\)
−0.265737 + 0.964045i \(0.585615\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 14609.4 0.582319 0.291160 0.956674i \(-0.405959\pi\)
0.291160 + 0.956674i \(0.405959\pi\)
\(858\) 0 0
\(859\) −25437.6 −1.01039 −0.505193 0.863007i \(-0.668579\pi\)
−0.505193 + 0.863007i \(0.668579\pi\)
\(860\) 0 0
\(861\) 379.351 0.0150154
\(862\) 0 0
\(863\) 25010.3 0.986513 0.493256 0.869884i \(-0.335806\pi\)
0.493256 + 0.869884i \(0.335806\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 11163.2 0.437282
\(868\) 0 0
\(869\) −8401.83 −0.327978
\(870\) 0 0
\(871\) −5180.95 −0.201550
\(872\) 0 0
\(873\) −775.694 −0.0300725
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 17530.7 0.674994 0.337497 0.941327i \(-0.390420\pi\)
0.337497 + 0.941327i \(0.390420\pi\)
\(878\) 0 0
\(879\) 13669.3 0.524522
\(880\) 0 0
\(881\) 18030.5 0.689516 0.344758 0.938692i \(-0.387961\pi\)
0.344758 + 0.938692i \(0.387961\pi\)
\(882\) 0 0
\(883\) 1786.25 0.0680769 0.0340385 0.999421i \(-0.489163\pi\)
0.0340385 + 0.999421i \(0.489163\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −14135.9 −0.535104 −0.267552 0.963543i \(-0.586215\pi\)
−0.267552 + 0.963543i \(0.586215\pi\)
\(888\) 0 0
\(889\) 1006.28 0.0379637
\(890\) 0 0
\(891\) 3341.44 0.125637
\(892\) 0 0
\(893\) −299.148 −0.0112101
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 20004.2 0.744618
\(898\) 0 0
\(899\) −10143.0 −0.376295
\(900\) 0 0
\(901\) 13010.8 0.481078
\(902\) 0 0
\(903\) −68.9453 −0.00254081
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1816.18 −0.0664887 −0.0332444 0.999447i \(-0.510584\pi\)
−0.0332444 + 0.999447i \(0.510584\pi\)
\(908\) 0 0
\(909\) 24008.4 0.876025
\(910\) 0 0
\(911\) 27773.9 1.01009 0.505043 0.863094i \(-0.331477\pi\)
0.505043 + 0.863094i \(0.331477\pi\)
\(912\) 0 0
\(913\) 11869.8 0.430266
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5294.43 0.190662
\(918\) 0 0
\(919\) −14210.2 −0.510068 −0.255034 0.966932i \(-0.582087\pi\)
−0.255034 + 0.966932i \(0.582087\pi\)
\(920\) 0 0
\(921\) −644.327 −0.0230524
\(922\) 0 0
\(923\) −4235.91 −0.151058
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −6369.27 −0.225668
\(928\) 0 0
\(929\) −11420.1 −0.403316 −0.201658 0.979456i \(-0.564633\pi\)
−0.201658 + 0.979456i \(0.564633\pi\)
\(930\) 0 0
\(931\) −6367.64 −0.224158
\(932\) 0 0
\(933\) −8115.18 −0.284758
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 23134.0 0.806570 0.403285 0.915074i \(-0.367868\pi\)
0.403285 + 0.915074i \(0.367868\pi\)
\(938\) 0 0
\(939\) 16948.4 0.589021
\(940\) 0 0
\(941\) −11078.8 −0.383803 −0.191901 0.981414i \(-0.561465\pi\)
−0.191901 + 0.981414i \(0.561465\pi\)
\(942\) 0 0
\(943\) 10492.0 0.362317
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −6730.30 −0.230946 −0.115473 0.993311i \(-0.536838\pi\)
−0.115473 + 0.993311i \(0.536838\pi\)
\(948\) 0 0
\(949\) 18162.4 0.621262
\(950\) 0 0
\(951\) −6567.05 −0.223923
\(952\) 0 0
\(953\) −21372.4 −0.726464 −0.363232 0.931699i \(-0.618327\pi\)
−0.363232 + 0.931699i \(0.618327\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 4314.61 0.145738
\(958\) 0 0
\(959\) −5684.43 −0.191407
\(960\) 0 0
\(961\) −20273.3 −0.680516
\(962\) 0 0
\(963\) −3714.05 −0.124282
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1549.89 0.0515418 0.0257709 0.999668i \(-0.491796\pi\)
0.0257709 + 0.999668i \(0.491796\pi\)
\(968\) 0 0
\(969\) 1314.53 0.0435799
\(970\) 0 0
\(971\) −33222.8 −1.09801 −0.549006 0.835819i \(-0.684993\pi\)
−0.549006 + 0.835819i \(0.684993\pi\)
\(972\) 0 0
\(973\) −4505.66 −0.148453
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −53383.0 −1.74808 −0.874040 0.485854i \(-0.838509\pi\)
−0.874040 + 0.485854i \(0.838509\pi\)
\(978\) 0 0
\(979\) −4951.76 −0.161654
\(980\) 0 0
\(981\) −80.3340 −0.00261455
\(982\) 0 0
\(983\) −3934.88 −0.127674 −0.0638368 0.997960i \(-0.520334\pi\)
−0.0638368 + 0.997960i \(0.520334\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −116.590 −0.00375998
\(988\) 0 0
\(989\) −1906.86 −0.0613091
\(990\) 0 0
\(991\) 40122.9 1.28612 0.643060 0.765816i \(-0.277665\pi\)
0.643060 + 0.765816i \(0.277665\pi\)
\(992\) 0 0
\(993\) 28994.4 0.926596
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −55361.4 −1.75859 −0.879295 0.476278i \(-0.841986\pi\)
−0.879295 + 0.476278i \(0.841986\pi\)
\(998\) 0 0
\(999\) 34445.0 1.09088
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1900.4.a.l.1.6 12
5.2 odd 4 380.4.c.a.229.7 yes 12
5.3 odd 4 380.4.c.a.229.6 12
5.4 even 2 inner 1900.4.a.l.1.7 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
380.4.c.a.229.6 12 5.3 odd 4
380.4.c.a.229.7 yes 12 5.2 odd 4
1900.4.a.l.1.6 12 1.1 even 1 trivial
1900.4.a.l.1.7 12 5.4 even 2 inner